Learning-based decision-making via sample compression: theoretical results and algorithms

speaker: Simone Garatti

(Politecnico di Milano, Italy – email: simone.garatti@polimi.it)

Many thanks to all collaborators!

Marco C. Campi

Many thanks to all collaborators!

Marco C. Campi

Algo Carè

Federico Ramponi

Kostas Margellos

Alessandro Falsone

Maria Prandini

Dario Paccagnan

Many thanks to all collaborators!

Marco C. Campi

Algo Carè

Federico Ramponi

Kostas Margellos

Alessandro Falsone

Maria Prandini

Learning-based decision-making

δ = uncertain element \implies exercise caution

Learning-based decision-making

δ = uncertain element \implies exercise caution

Learning-based decision-making

Example: classification

data

 $\delta_i = (x_i, y_i)$ $x_i \in \mathbb{R}^d$ $y_i \in \{\mathsf{red}, \mathsf{blue}\}$

Example: classification

data

 $\delta_i = (x_i, y_i)$ $x_i \in \mathbb{R}^d$ $y_i \in \{\mathsf{red}, \mathsf{blue}\}$

 \mathcal{H} = SVM classifier

$$\min_{\substack{w \in \Phi, b \in \mathbb{R} \\ \varepsilon_i \ge 0, i=1,\dots, N}} \|w\|^2 + \rho \sum_{i=1}^N \xi_i$$

s.t. $1 - y_i(\langle w, \phi(x_i) \rangle - b) \le \xi_i, \quad i = 1,\dots, N$

Example: scenario robust optimization

Example: scenario robust optimization

Example: scenario robust optimization (cont'd)

rate of return of k financial assets in day i $\delta_i = (R_i^1, R_i^2, \dots, R_i^k)$

money split over the k financial assets

 $\theta = (\$^1, \$^2, \dots, \$^k, L)$

$$\begin{array}{ccc} \min_{\substack{\$^{i},L\\\$^{1}+\cdots+\$^{k}=1}} & L\\ \text{s.t.} & -(\$^{1}R_{i}^{1}+\$^{2}R_{i}^{2}+\cdots+\$^{k}R_{i}^{k}) \leq L\\ & i=1,\ldots,N \end{array}$$

Example: scenario optimization with relaxation

Example: scenario optimization with relaxation

Which is the learning-based scheme for the problem at hand?

Difficult to say a-priori without incurring in over-conservatism ... a blend of approximate knowledge and heuristics, often in various attempts (hyperparameters tuning)

No limits in exploration, but some guidance is needed...

 $\mathsf{R}(\mathcal{H}) = \mathbb{P}_{\delta} \{ \mathcal{H} \text{ is inappropriate for a new} \delta \}$ \downarrow interaction between decision and environment

For instance, in scenario optimization:

 \mathbb{P}_{δ} { a new constraint is violated by θ^* }

For instance, in scenario optimization:

 \mathbb{P}_{δ} { a new constraint is violated by θ^* }

Issue: \mathbb{P} is not available...

is it possible to assess R(H) from data ?

- holding out some data for testing rather than designing... waste of information, questionable!
- scenarios (data) are often limited resources (collecting data can be time-consuming or burdensome, involving a monetary cost)
- in the context of this talk, testing is not necessary...

... data can well play a double role!

$$\kappa(\delta_1,\ldots,\delta_N)=\delta_{i_1},\ldots,\delta_{i_k}$$

map extracting a data subsample from the dataset

Preference

$$\kappa(\delta_1, \dots, \delta_N) \subseteq S \subseteq (\delta_1, \dots, \delta_N)$$
$$\bigvee_{\kappa(S) = \kappa(\delta_1, \dots, \delta_N)}$$

$$\kappa(\delta_1,\ldots,\delta_N)=\delta_{i_1},\ldots,\delta_{i_k}$$

map extracting a data subsample from the dataset

Preference

$$\kappa(\delta_1, \dots, \delta_N) \subseteq S \subseteq (\delta_1, \dots, \delta_N)$$
$$\bigvee_{\kappa(S) = \kappa(\delta_1, \dots, \delta_N)}$$

$$\kappa(\delta_1,\ldots,\delta_N)=\delta_{i_1},\ldots,\delta_{i_k}$$

map extracting a data subsample from the dataset

Preference

$$\kappa(\delta_1, \dots, \delta_N) \subseteq S \subseteq (\delta_1, \dots, \delta_N)$$
$$\bigvee_{\kappa(S) = \kappa(\delta_1, \dots, \delta_N)}$$

$$\kappa(\delta_1,\ldots,\delta_N)=\delta_{i_1},\ldots,\delta_{i_k}$$

map extracting a data subsample from the dataset

Coherence

a new scenario for which ${\mathcal H}$ is inappropriate is added \bigcup_V

the compression must change

$$\kappa(\delta_1,\ldots,\delta_N)=\delta_{i_1},\ldots,\delta_{i_k}$$

map extracting a data subsample from the dataset

Coherence

a new scenario for which ${\mathcal H}$ is inappropriate is added \bigcup_V

the compression must change

$$\kappa(\delta_1,\ldots,\delta_N)=\delta_{i_1},\ldots,\delta_{i_k}$$

map extracting a data subsample from the dataset

Coherence

a new scenario for which ${\mathcal H}$ is inappropriate is added \bigcup_V

the compression must change

The main result in a nutshell

Risk:
$$\mathsf{R}(\mathcal{H}) = \mathsf{R}(\mathcal{H}(\delta_1, \dots, \delta_N))$$

Risk:
$$\mathsf{R}(\mathcal{H}) = \mathsf{R}(\mathcal{H}(\delta_1, \dots, \delta_N))$$
randomComplexity: $\pi = |\kappa(\delta_1, \dots, \delta_N)|$ variables \uparrow size of compressed set

Risk:
$$\mathsf{R}(\mathcal{H}) = \mathsf{R}(\mathcal{H}(\delta_1, \dots, \delta_N))$$
randomComplexity: $\pi = |\kappa(\delta_1, \dots, \delta_N)|$ variables

Under preference and coherence, the joint distribution of risk and complexity is concentrated around/below $R(H) = \pi/N$

Risk:
$$\mathsf{R}(\mathcal{H}) = \mathsf{R}(\mathcal{H}(\delta_1, \dots, \delta_N))$$
randomComplexity: $\pi = |\kappa(\delta_1, \dots, \delta_N)|$ variables

Under preference and coherence, the joint distribution of risk and complexity is concentrated around/below $R(H) = \pi/N$

$$\mathsf{R}(\mathcal{H})$$
 can be accurately estimated from π

Risk:
$$\mathsf{R}(\mathcal{H}) = \mathsf{R}(\mathcal{H}(\delta_1, \dots, \delta_N))$$
randomComplexity: $\pi = |\kappa(\delta_1, \dots, \delta_N)|$ variables

Under preference and coherence, the joint distribution of risk and complexity is concentrated around/below $R(H) = \pi/N$

Theorem (with M. Campi) Assume preference and coherence Choose $\beta \in (0,1)$ (confidence parameter) Let $\epsilon^{U}(k)$ be the unique roots in (0,1) of polynomials $\triangleright \binom{N}{k} (1-\epsilon)^{N-k} - \frac{\beta}{2N} \sum_{i=1}^{N-1} \binom{m}{k} (1-\epsilon)^{m-k}$ Then, irrespective of \mathbb{P} (distribution-free), $\mathbb{P}^{N}\left\{\delta_{1},\ldots,\delta_{N}:\ \mathsf{R}(\mathcal{H})\leq\epsilon^{U}(\pi)\right\}\geq1-\beta$

$\mathsf{R}(\mathcal{H}) \leq \epsilon^U(\pi)$ is true with confidence $1 - \beta$

$\mathsf{R}(\mathcal{H}) \leq \epsilon^U(\pi)$ is true with confidence $1 - \beta$

$\mathsf{R}(\mathcal{H}) \leq \epsilon^{U}(\pi)$ is true with confidence $1 - \beta$

Theorem (with M. Campi)

Assume preference and coherence + additional assumptions

Choose $\beta \in (0,1)$ (confidence parameter)

Let $\epsilon_L(k), \epsilon^U(k)$ be the unique roots in (0,1) of polynomials

$$\triangleright \quad \binom{N}{k} (1-\epsilon)^{N-k} - \frac{\beta}{2N} \sum_{m=k}^{N-1} \binom{m}{k} (1-\epsilon)^{m-k}$$
$$\triangleright \quad \binom{N}{k} (1-\epsilon)^{N-k} - \frac{\beta}{2N} \sum_{m=N+1}^{2N} \binom{m}{k} (1-\epsilon)^{m-k}$$

Then, irrespective of \mathbb{P} ,

 $\mathbb{P}^{N}\left\{\delta_{1},\ldots,\delta_{N}:\ \epsilon_{L}(\pi)\leq\mathsf{R}(\mathcal{H})\leq\epsilon^{U}(\pi)\right\}\geq1-\beta$

$\epsilon_L(\pi) \leq \mathsf{R}(\mathcal{H}) \leq \epsilon^U(\pi)$ is true with confidence $1 - \beta$

$\epsilon_L(\pi) \leq \mathsf{R}(\mathcal{H}) \leq \epsilon^U(\pi)$ is true with confidence $1 - \beta$

Main result (cont'd)

 $\epsilon_L(\pi) \leq \mathsf{R}(\mathcal{H}) \leq \epsilon^U(\pi)$ is true with confidence $1 - \beta$

 \min_Q $\operatorname{volume}(Q)$ s.t. $p^{(i)} \in Q$, $i = 1, \dots, N$

 $\min_{Q} \quad \text{volume}(Q) \\ \text{s.t.} \quad p^{(i)} \in Q, \\ i = 1, \dots, N$

Q inappropriate for p if p remains outside

Risk = mass outside

 $\min_{Q} \quad \text{volume}(Q) \\ \text{s.t.} \quad p^{(i)} \in Q, \\ \quad i = 1, \dots, N$

Q inappropriate for p if p remains outside

Risk = mass outside

Compression = vertexes of the convex hull

 π = no. of vertexes

N = 500, risk assessment via sample compression theory

N = 500, risk assessment via sample compression theory

N = 500, risk assessment via test dataset (new 500 scenarios)

N = 1000, risk assessment via sample compression theory

Many learning algorithms (SV methods, all scenario optimization schemes...) naturally satisfy compression properties... many yet to be discovered...

However, many others do not... notably: Neural Networks

Many learning algorithms (SV methods, all scenario optimization schemes...) naturally satisfy compression properties... many yet to be discovered...

However, many others do not... notably: Neural Networks

Idea – the Pick-to-Learn (P2L) algorithm:

construct a meta-algorithm that builds on the existing learning algorithm as a block-box to induce the compression properties

INPUT: scenarios $\delta_1, \delta_2, \ldots, \delta_N$, learning algorithm \mathfrak{L} , initial decision \mathcal{H}_0

Initialization:
$$T = \emptyset, V = (\delta_1, \dots, \delta_N), \mathcal{H} = \mathcal{H}_0$$

 $\overline{\delta}$ = element in V for which \mathcal{H} is least appropriate

P2L:
$$\delta_1, \ldots, \delta_N \to \mathcal{H}$$

 \implies new learning-based decision scheme \mathfrak{L}'

P2L:
$$\delta_1, \ldots, \delta_N \to T$$

 \Rightarrow compression function κ' associated to \mathfrak{L}'

P2L:
$$\delta_1, \ldots, \delta_N \to \mathcal{H}$$

 \implies new learning-based decision scheme \mathfrak{L}'

P2L:
$$\delta_1, \ldots, \delta_N \to T$$

$$\Rightarrow$$
 compression function κ' associated to \mathfrak{L}'

Theorem (with D. Paccagnan and M. Campi)

Preference and coherence hold true!

the risk of $\mathcal{H} = \mathfrak{L}'(\delta_1, \dots, \delta_N)$ can be assessed via the size of T

Numerical example: classification of MNIST dataset

binary digit classification – $\mathfrak{L} = SGD$ for NN

P2L vs test-set validation (TSV)

train / initialization portion

Numerical example: non-linear regression

P2L vs test-set validation (TSV)

0.4

0.3

0.2

0.1

0

--- risk bound P2L --- risk bound TSV actual risk P2L actual risk TSV

FUTURE AI RESEARCH

Many thanks to prof. Nicolò Cesa-Bianchi for insightful and inspiring discussions

This research is supported by FAIR (Future Artificial Intelligence Research) project, funded by the NextGenerationEU program within the PNRR-PE-AI scheme (M4C2, Investment 1.3, Line on Artificial Intelligence)

Relevant articles

- M.C. Campi, S. Garatti. Compression, Generalization and Learning. Journal of Machine Learning Research, 24(339):1-74, 2023.
- D. Paccagnan, M.C. Campi, S. Garatti, The Pick-to-Learn Algorithm: Empowering Compression for Tight Generalization Bounds and Improved Post-training Performance. In: Advances in Neural Information Processing Systems 36 (NeurIPS 2023), 2023.

Many thanks to prof. Nicolò Cesa-Bianchi for insightful and inspiring discussions

Relevant a

- M.C. Campi, S. Garatti. Compression, Generalization and Learning. Journal of Machine Learning Research, 24(339):1-74, 2023.
- D. Paccagnan, M.C. Campi, S. Garatti, The Pick-to-Learn Algorithm: Empowering Compression for Tight Generalization Bounds and Improved Post-training Performance. In: Advances in Neural Information Processing Systems 36 (NeurIPS 2023), 2023.

$$\min_{Q} \quad \text{volume}(Q) + \rho \sum_{i=1}^{N} \xi_{i}$$

s.t.
$$\operatorname{dist}(p^{(i)}, Q) \leq \xi_{i}$$
$$i = 1, \dots, N$$

$$\min_{Q} \quad \text{volume}(Q) + \rho \sum_{i=1}^{N} \xi_{i}$$

s.t.
$$\operatorname{dist}(p^{(i)}, Q) \leq \xi_{i}$$
$$i = 1, \dots, N$$

Q inappropriate for p if p remains outside

Risk = mass outside

s.t. $\operatorname{dist}(p^{(i)}, Q) \le \xi_i$ $i = 1, \ldots, N$

> Q inappropriate for p if p remains outside

Risk = mass outside

Compression = vertexes of the convex hull + violated π = no. of vertexes + violated

i=1

