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Example: classification

= SVM classifier
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Example: scenario robust optimization (cont’d)

rate of return of 𝑘 financial assets in day 𝑖

money split over the 𝑘 financial assets

loss in day 𝑖
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Example: scenario optimization with relaxation
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Which is the learning-based scheme for the problem at hand?

Difficult to say a-priori without incurring in over-conservatism 
… a blend of approximate knowledge and heuristics, often in 
various attempts (hyperparameters tuning)

No limits in exploration, but some guidance is needed…

A lesson from supervised learning

accurate and rigorous certification of the actual 
performance  of the explored decisions

… is it possible?
final decision 
selection

dependable 
utilization of it
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The risk of  a decision

= { is inappropriate for a new    }

{ a new constraint is violated by      }

For instance, in scenario optimization:

interaction between decision and environment

Issue:      is not available…

is it possible to assess             from data ?

?

?



Why not relying on a test dataset…

• holding out some data for testing rather than 
designing… waste of information, questionable!

• scenarios (data) are often limited resources (collecting 
data can be time-consuming or burdensome, involving 
a monetary cost)

• in the context of this talk, testing is not necessary…

… data can well play a double role!
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variables

Under preference and coherence, the joint distribution of risk 
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Complexity:

Risk: random 
variables
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observable!

Under preference and coherence, the joint distribution of risk 
and complexity is concentrated around/below



Let             be the unique roots in (0,1) of polynomials

Choose                     (confidence parameter)        

Then, irrespective of      (distribution-free),

Main result (formal statement)

Theorem (with M. Campi)        

Assume preference and coherence



Main result (graphical illustration)
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Choose                     (confidence parameter)        

Then, irrespective of     ,

Main result (cont’d)

Theorem (with M. Campi)        

Assume preference and coherence + additional assumptions

Let                        be the unique roots in (0,1) of polynomials
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Main result (cont’d)

is true with confidence

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Complexity is a universal observable to 
obtain very informative assessments of 
the actual risk !
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An example: convex hull

Compression = vertexes of the convex hull

= no. of vertexes

𝑄 inappropriate for 𝑝 if 
𝑝 remains outside

Risk = mass outside
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N = 500, risk assessment via test dataset (new 500 scenarios)
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An example: convex hull

N = 1000, risk assessment via sample compression theory
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uniform in ℝ𝟑

uniform in ℝ𝟓

Gaussian in ℝ𝟓



Preferent compression: range of applicability

Many learning algorithms (SV methods, all scenario 
optimization schemes…) naturally satisfy compression 
properties… many yet to be discovered…

However, many others do not… notably: Neural Networks  



Idea – the Pick-to-Learn (P2L) algorithm:

construct a meta-algorithm that builds on the existing 
learning algorithm as a block-box to induce the compression 
properties

Many learning algorithms (SV methods, all scenario 
optimization schemes…) naturally satisfy compression 
properties… many yet to be discovered…

However, many others do not… notably: Neural Networks  

Preferent compression: range of applicability



The Pick-to-Learn (P2L) algorithm

INPUT: scenarios , learning algorithm     ,      
initial decision 

Is        appropriate for 
all scenarios in      ?

Initialization:

RETURN

= element in      for which is least appropriate 

YES

NO



P2L:

P2L: main features

P2L:

new learning-based decision scheme

compression function      associated to 



P2L:

P2L:

new learning-based decision scheme

Theorem (with D. Paccagnan and M. Campi)

Preference and coherence hold true!

the risk of                                        can be assessed via 
the size of     

P2L: main features

compression function      associated to 



Numerical example: classification of MNIST dataset
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Numerical example: non-linear regression

P2L vs test-set validation (TSV)

risk bound P2L

risk bound TSV

actual risk P2L

actual risk TSV

train / initialization portion
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An example: convex hull

Compression = vertexes of the convex hull + violated

= no. of vertexes + violated

𝑄 inappropriate for 𝑝 if 
𝑝 remains outside

Risk = mass outside
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