Optimization meets AI: trustworthy decisions via the Scenario Approach

speaker: Simone Garatti

(Politecnico di Milano, Italy – email: simone.garatti@polimi.it)

Thanks to

Marco C. Campi

Thanks to

Marco C. Campi

Algo Carè

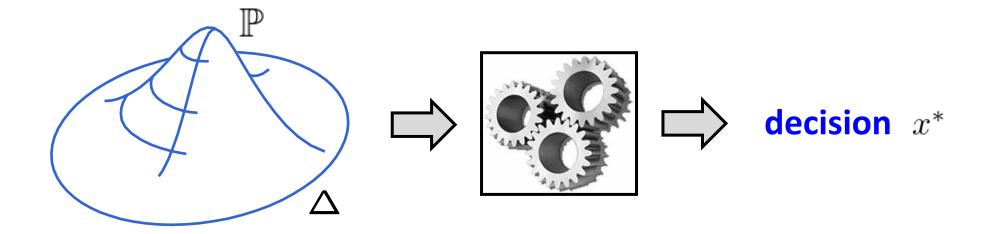
Alessandro Falsone

Kostas Margellos

Maria Prandini

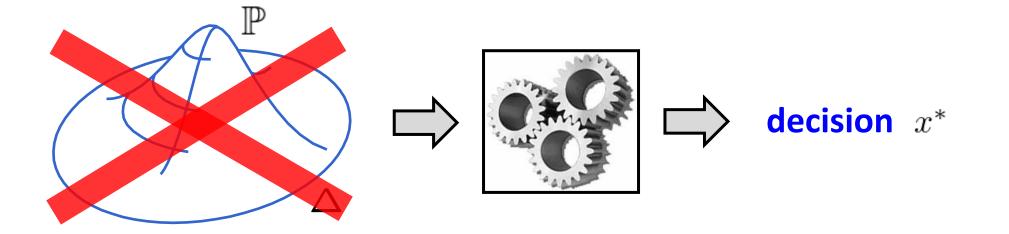
Data-driven decision-making

 δ = uncertain element \implies exercise caution



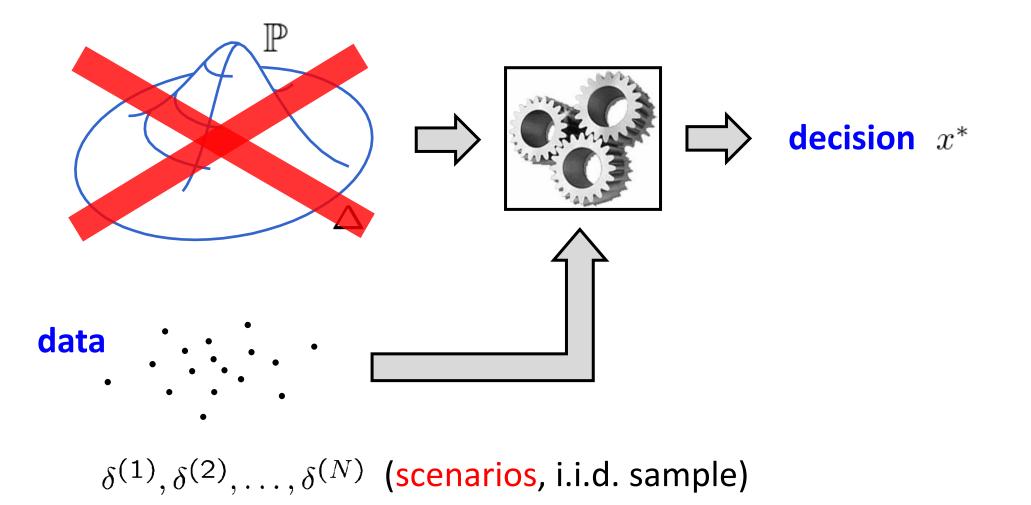
Data-driven decision-making

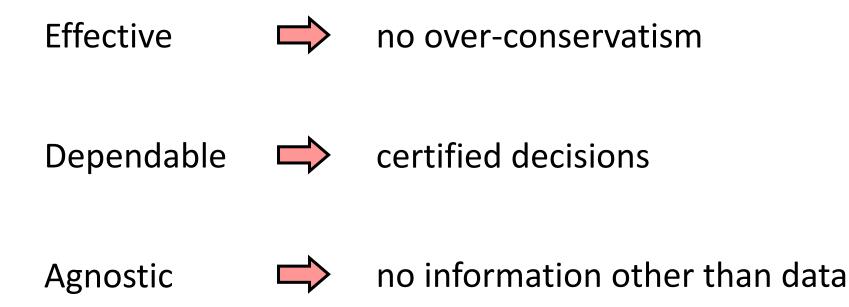
 δ = uncertain element \implies exercise caution

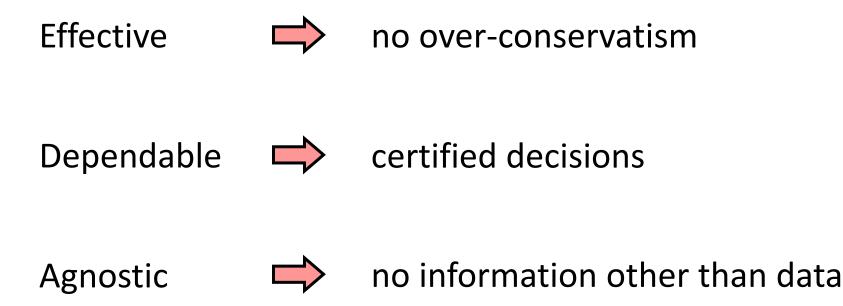


Data-driven decision-making

δ = uncertain element \implies exercise caution







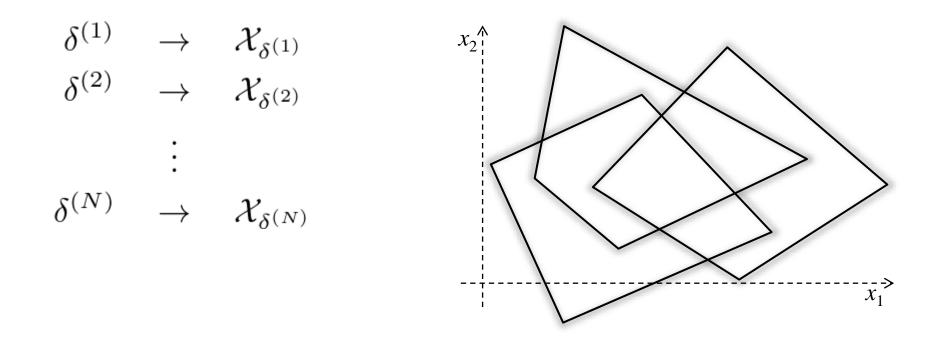
The way of the scenario approach: enforce design goals heuristically, possibly in various attempts (tunable schemes); provide the user with a precise assessment of the quality of the solution(s) to decide when goals are met

Decision vector: $x \in \mathcal{X}$

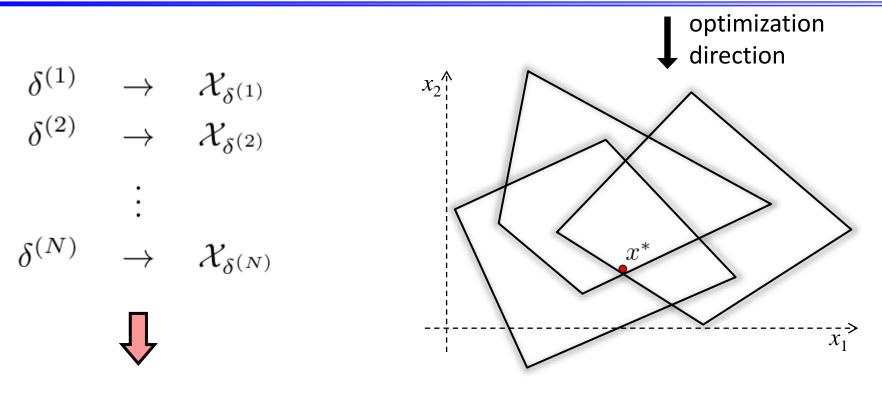
Cost function: c(x)

Family of constraint sets: X_{δ}

Scenarios: $\delta^{(1)}, \delta^{(2)}, \ldots, \delta^{(N)}$



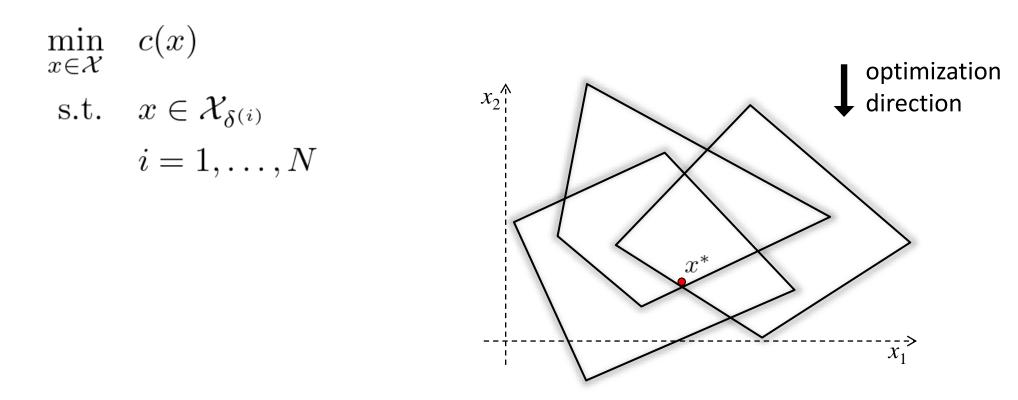
Robust scenario optimization



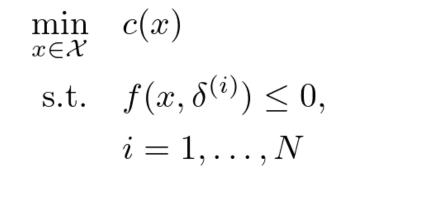
$$\min_{x \in \mathcal{X}} c(x)$$
s.t. $x \in \mathcal{X}_{\delta^{(i)}}$
 $i = 1, \dots, N$

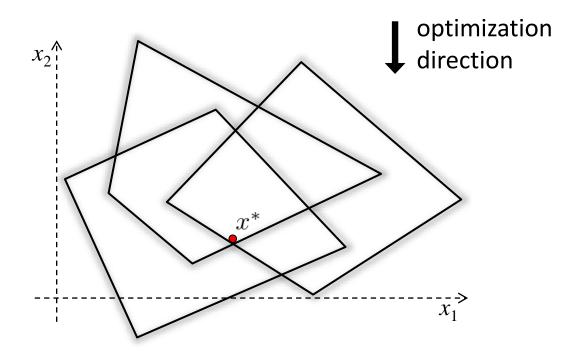
solution = x^*

Scenario optimization with constraints relaxation

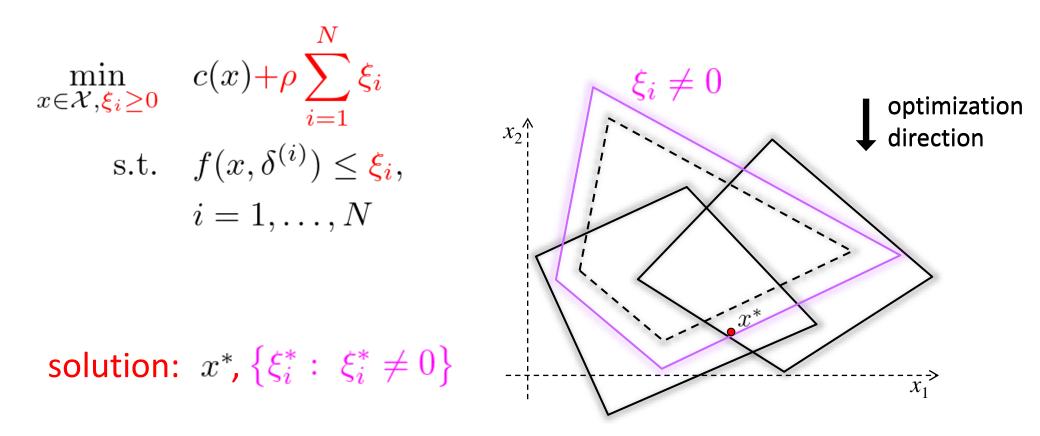


Scenario optimization with constraints relaxation





Scenario optimization with constraints relaxation



 ρ = tunable tradeoff parameter

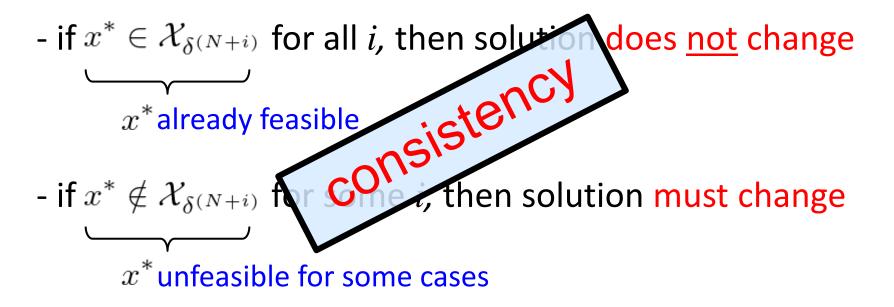
A general scenario decision-making framework

Decision map $M: \delta^{(1)}, \ldots, \delta^{(N)} \to (x^*, w^*)$ such that when new scenarios $\delta^{(N+1)}, \ldots, \delta^{(N+H)}$ are added:

- if $x^* \in \mathcal{X}_{\delta^{(N+i)}}$ for all i, then solution does <u>not</u> change x^* already feasible
- if $x^* \notin \mathcal{X}_{\delta^{(N+i)}}$ for some *i*, then solution must change x^* unfeasible for some cases

A general scenario decision-making framework

Decision map $M: \delta^{(1)}, \ldots, \delta^{(N)} \to (x^*, w^*)$ such that when new scenarios $\delta^{(N+1)}, \ldots, \delta^{(N+H)}$ are added:



robust optimization, opt. with constraint relaxation, expected shortfall optimization, variational inequalities, ...

- easy (algorithmically speaking) and widely applicable
- data used to directly target the objective

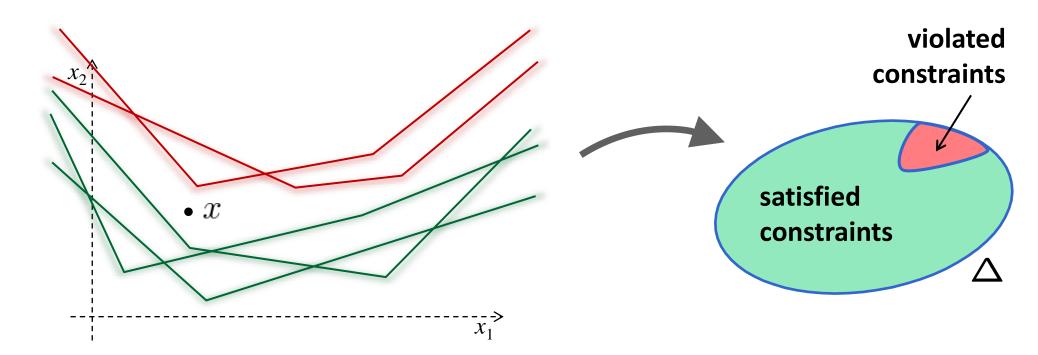
effective solutions!

- easy (algorithmically speaking) and widely applicable
- data used to directly target the objective

effective solutions!

- feasibility addressed empirically
 - dependability of the scenario approach rests on our capability to keep control of the actual feasibility level (risk)

$V(x) = \mathbb{P} \{ \delta \in \Delta : x \notin \mathcal{X}_{\delta} \}$ out-of-sample constraint violation



V(x) = "size" of red region

Solution certification

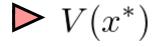
$$c(x) \quad \text{vs.} \quad V(x) = \mathbb{P} \left\{ \delta \in \Delta : \ x \notin \mathcal{X}_{\delta} \right\}$$

$$\clubsuit \quad \clubsuit \quad \texttt{vs.} \quad \texttt{vs.}$$

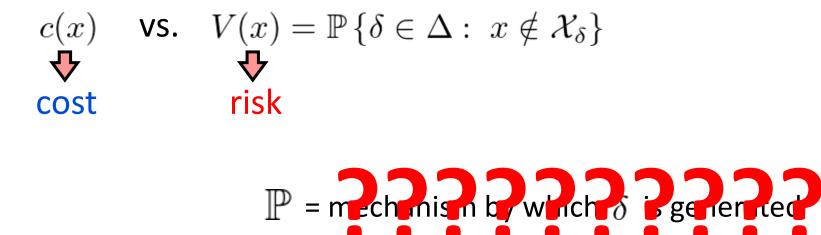
 \mathbb{P} = mechanism by which δ is generated

scenario decision certification

 \triangleright $c(x^*)$ accessible (once x^* is computed)



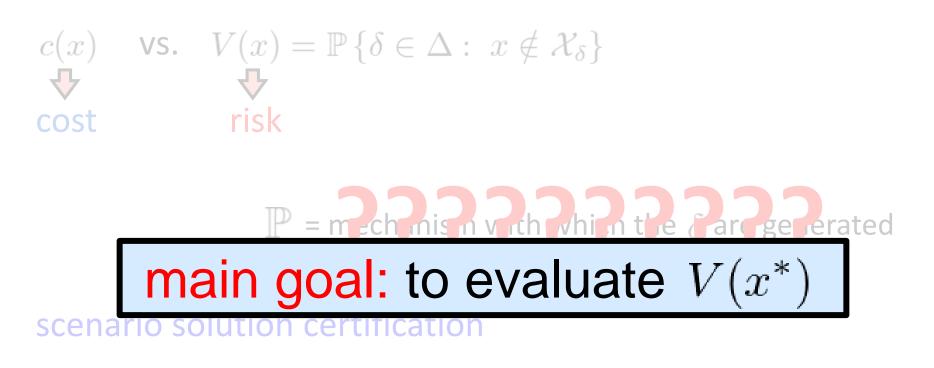
Solution certification



scenario decision certification

- \triangleright $c(x^*)$ accessible (once x^* is computed)
- $\triangleright V(x^*)$ not accessible

Solution certification



 $\triangleright c(x^*)$ accessible (once x^* is computed)

 $\triangleright V(x^*)$ not accessible

Issues

 no. of violated constraints is not a valid indicator of the risk

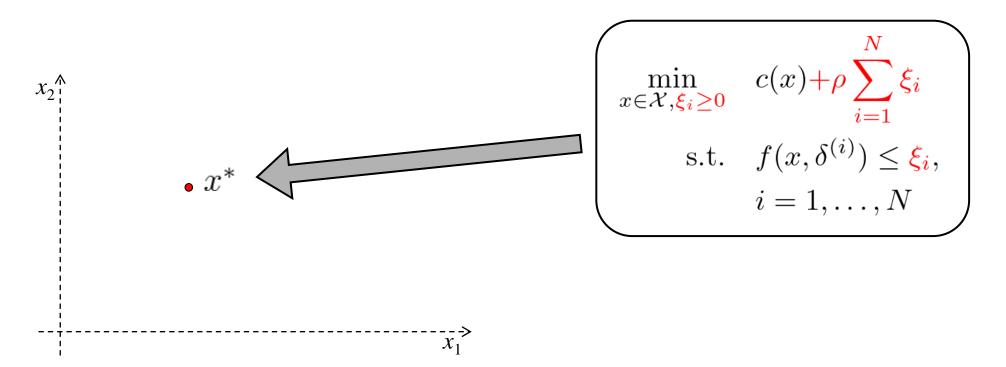
Issues

- no. of violated constraints is not a valid indicator of the risk
- validation with new data is **questionable**

Issues

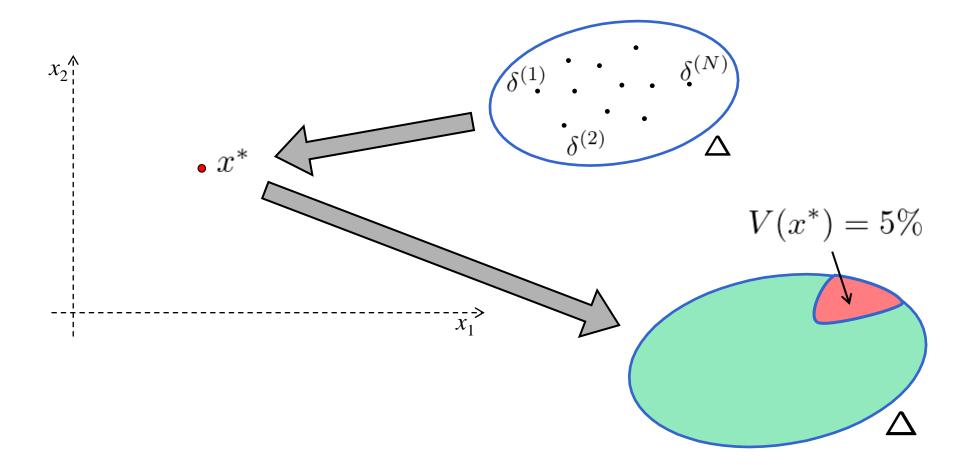
- no. of violated constraints is not a valid indicator of the risk
- validation with new data is **questionable**
 - using some data for testing rather than designing...
 waste of information!
 - scenarios (data) are often limited resources (collecting data can be time-consuming or burdensome, involving a monetary cost)
 - in the present context validation is not necessary!
 (brand-new generalization theory)

Problem: assess $V(x^*)$

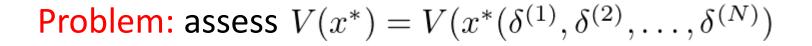


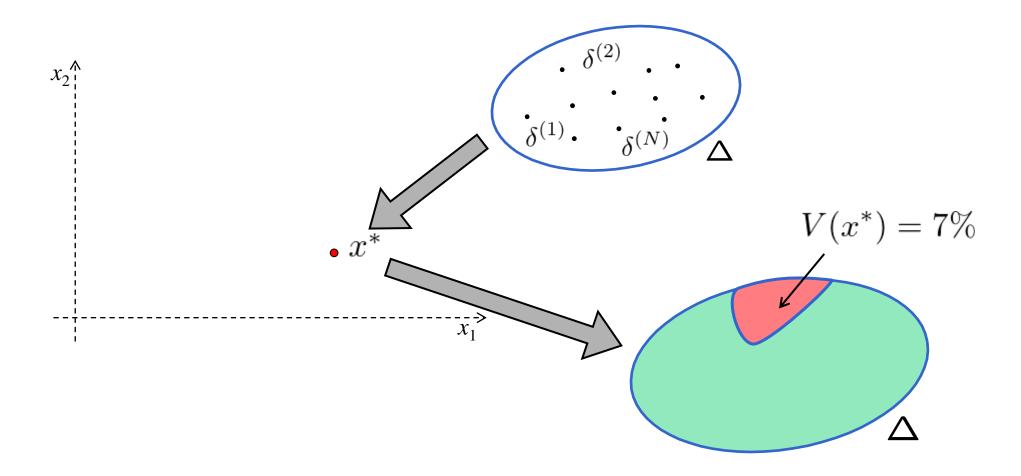
Risk of the scenario decision

Problem: assess
$$V(x^*) = V(x^*(\delta^{(1)}, \delta^{(2)}, ..., \delta^{(N)})$$



Risk of the scenario decision





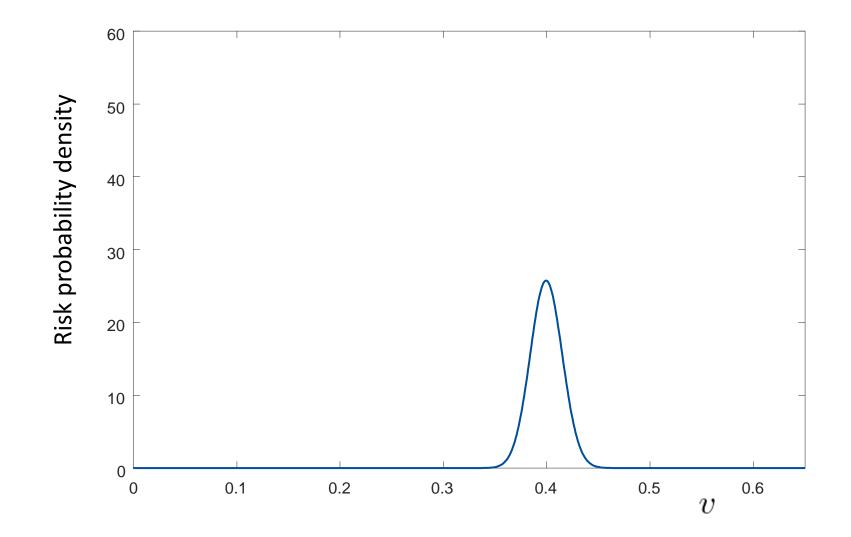
 $V(x^*)$ is a random variable

What about its probability distribution?

How does it change with $\mathbb P$, the mechanism generating δ ? Is it concentrated?

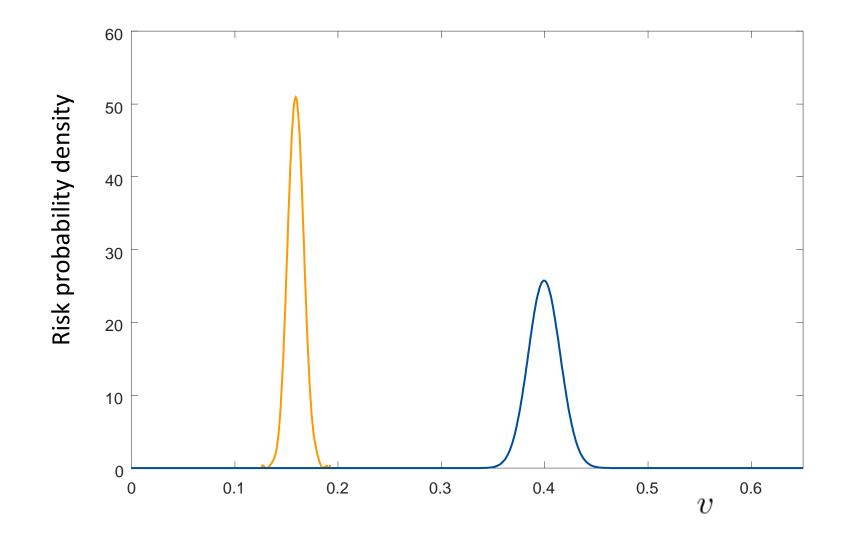
Distribution of the risk: examples

Same decision problem with N = 1000 for various \mathbb{P}



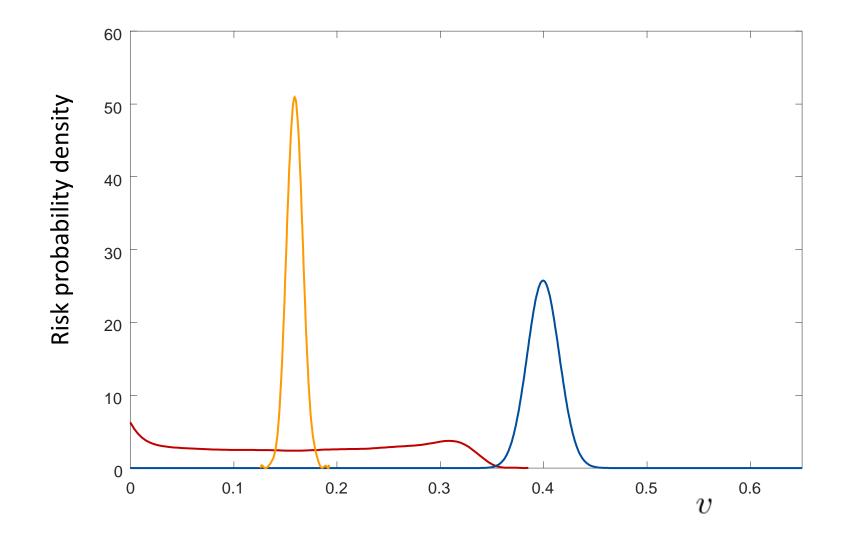
Distribution of the risk: examples

Same decision problem with N = 1000 for various \mathbb{P}



Distribution of the risk: examples

Same decision problem with N = 1000 for various \mathbb{P}

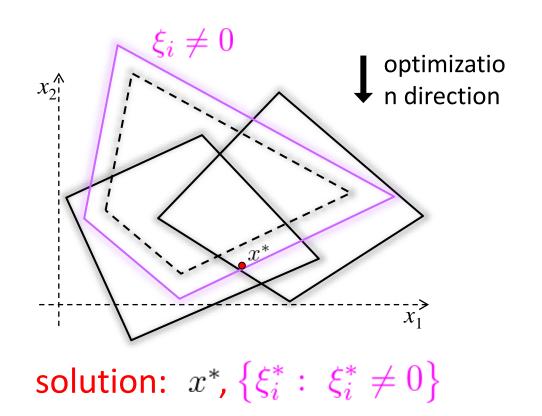


Support set:
$$\left\{\delta^{(i_1)}, \delta^{(i_2)}, \dots, \delta^{(i_k)}\right\}$$
 such that
1. $\operatorname{sol}\left(\delta^{(i_1)}, \delta^{(i_2)}, \dots, \delta^{(i_k)}\right) = \operatorname{sol}\left(\delta^{(1)}, \delta^{(2)}, \dots, \delta^{(N)}\right)$

2. no $\delta^{(i_j)}$ can be further removed without changing the solution

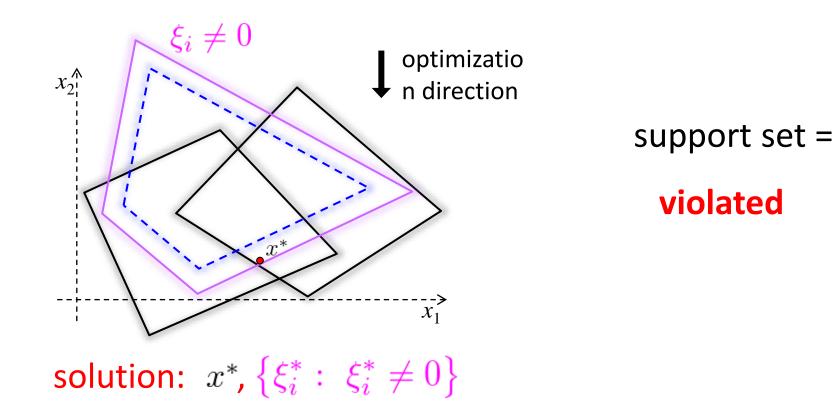
Support set:
$$\left\{\delta^{(i_1)}, \delta^{(i_2)}, \dots, \delta^{(i_k)}\right\}$$
 such that
1. $\operatorname{sol}\left(\delta^{(i_1)}, \delta^{(i_2)}, \dots, \delta^{(i_k)}\right) = \operatorname{sol}\left(\delta^{(1)}, \delta^{(2)}, \dots, \delta^{(N)}\right)$

2. no $\delta^{(i_j)}$ can be further removed without changing the solution



Support set:
$$\left\{\delta^{(i_1)}, \delta^{(i_2)}, \dots, \delta^{(i_k)}\right\}$$
 such that
1. $\operatorname{sol}\left(\delta^{(i_1)}, \delta^{(i_2)}, \dots, \delta^{(i_k)}\right) = \operatorname{sol}\left(\delta^{(1)}, \delta^{(2)}, \dots, \delta^{(N)}\right)$

2. no $\delta^{(i_j)}$ can be further removed without changing the solution

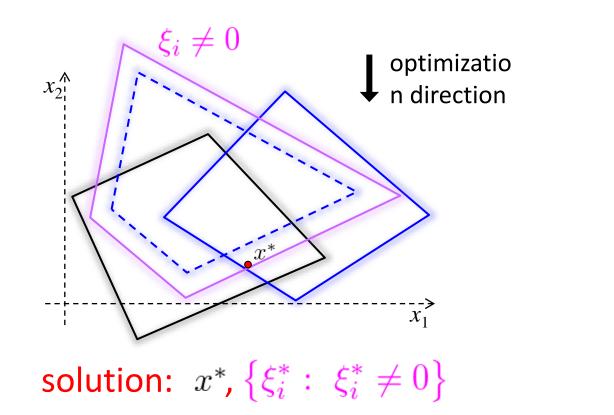


Support set:
$$\left\{\delta^{(i_1)}, \delta^{(i_2)}, \dots, \delta^{(i_k)}\right\}$$
 such that
1. $\operatorname{sol}\left(\delta^{(i_1)}, \delta^{(i_2)}, \dots, \delta^{(i_k)}\right) = \operatorname{sol}\left(\delta^{(1)}, \delta^{(2)}, \dots, \delta^{(N)}\right)$

2. no $\delta^{(i_j)}$ can be further removed without changing the solution

support set =

violated + active

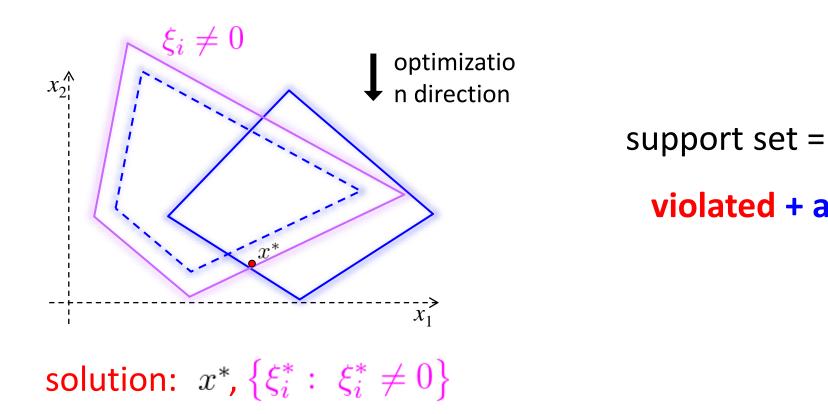


violated + active

Support set and complexity

Support set:
$$\left\{\delta^{(i_1)}, \delta^{(i_2)}, \dots, \delta^{(i_k)}\right\}$$
 such that
1. $\operatorname{sol}\left(\delta^{(i_1)}, \delta^{(i_2)}, \dots, \delta^{(i_k)}\right) = \operatorname{sol}\left(\delta^{(1)}, \delta^{(2)}, \dots, \delta^{(N)}\right)$

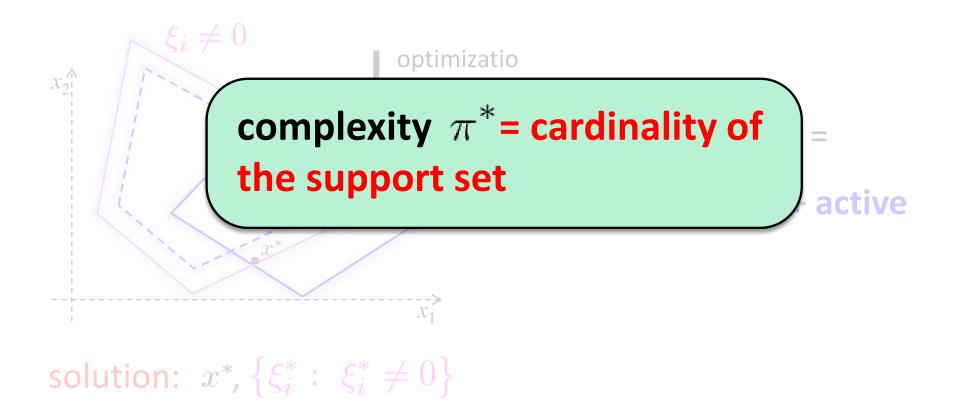
2. no $\delta^{(i_j)}$ can be further removed without changing the solution



Support set and complexity

Support set:
$$\left\{\delta^{(i_1)}, \delta^{(i_2)}, \dots, \delta^{(i_k)}\right\}$$
 such that
1. $\operatorname{sol}\left(\delta^{(i_1)}, \delta^{(i_2)}, \dots, \delta^{(i_k)}\right) = \operatorname{sol}\left(\delta^{(1)}, \delta^{(2)}, \dots, \delta^{(N)}\right)$

2. no $\delta^{(i_j)}$ can be further removed without changing the solution



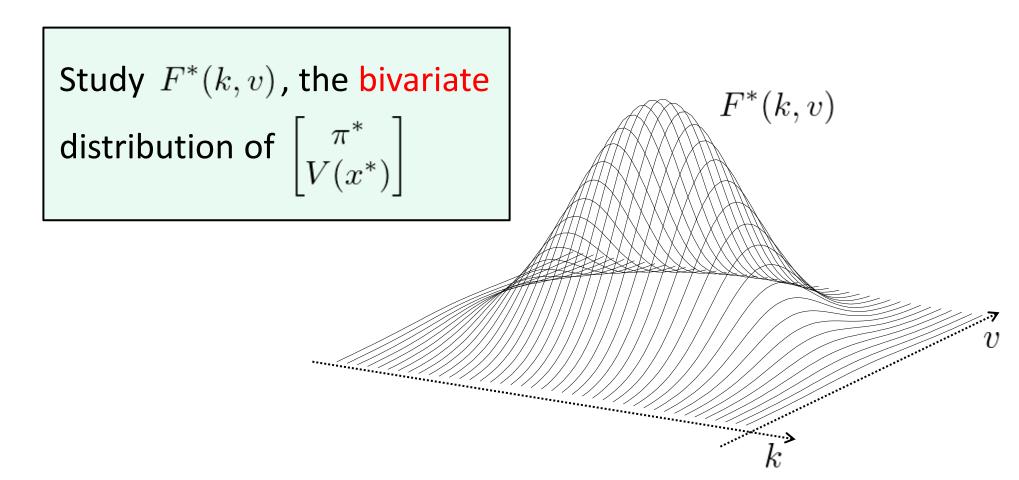
A new perspective

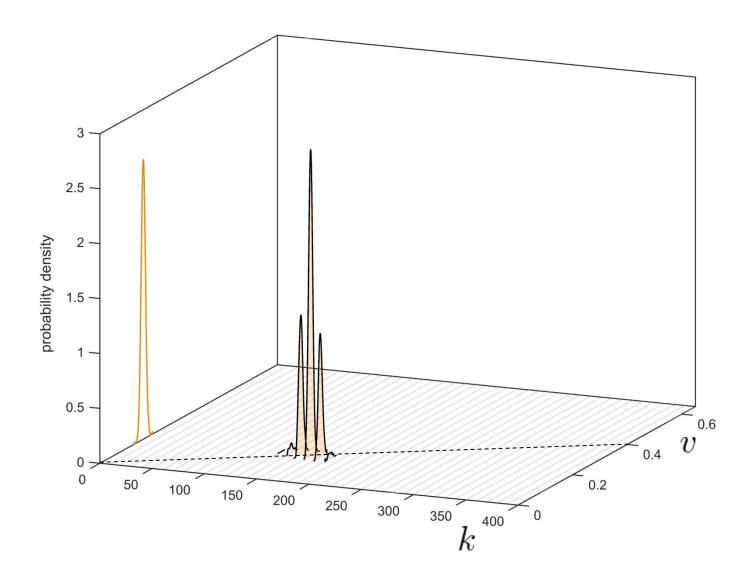
 π^* is a random variable (integer, $\pi^* = k, k \in \{0, 1, \dots, N\}$)

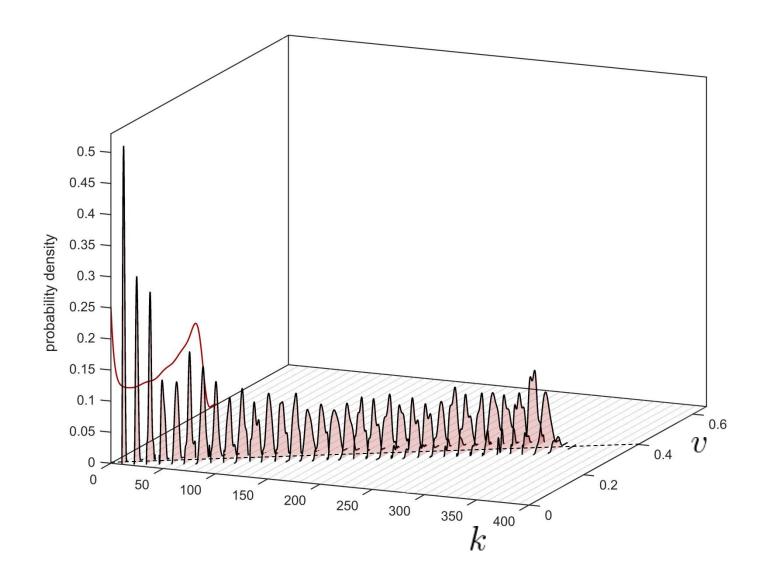
A new perspective

 π^* is a random variable (integer, $\pi^* = k, k \in \{0, 1, ..., N\}$) $V(x^*)$ is a random variable (real, $V(x^*) = v, v \in [0, 1]$)

 π^* is a random variable (integer, $\pi^* = k, k \in \{0, 1, ..., N\}$) $V(x^*)$ is a random variable (real, $V(x^*) = v, v \in [0, 1]$)



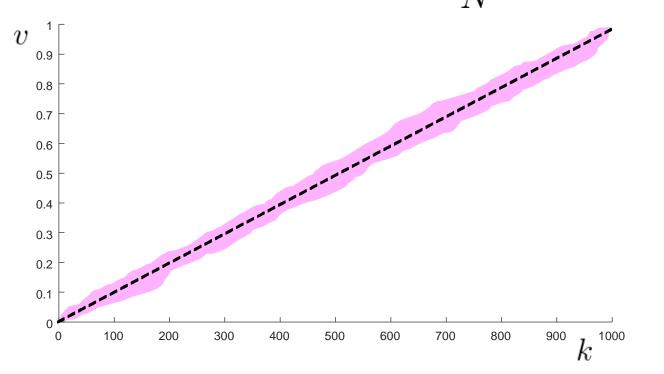




Main result (take-home message)

For all consistent decision schemes and distribution-free,

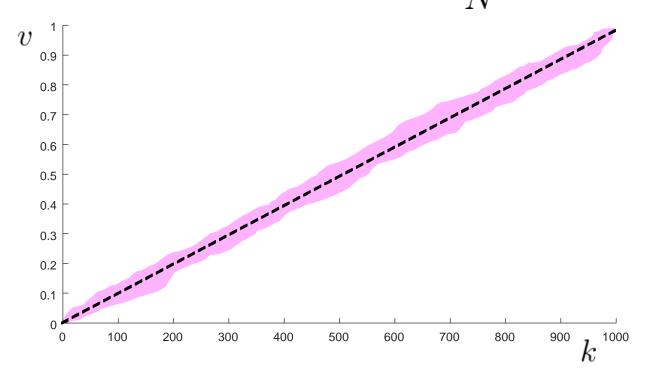
 $F^*(k,v)$ concentrates around/below $v = \frac{k}{N}, k = 0, 1, \dots, N$



Main result (take-home message)

For all consistent decision schemes and distribution-free,

 $F^*(k,v)$ concentrates around/below $v = \frac{k}{N}, k = 0, 1, \dots, N$

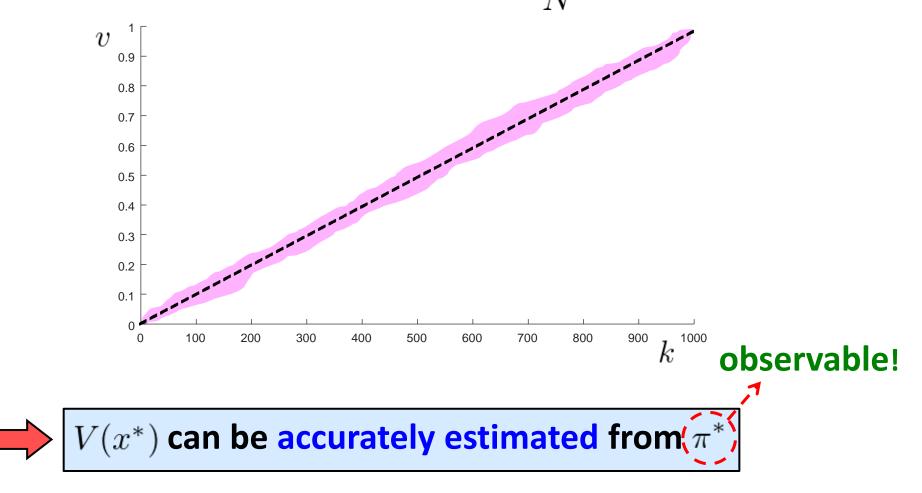


 $V(x^*)$ can be accurately estimated from π^*

Main result (take-home message)

For all consistent decision schemes and distribution-free,

 $F^*(k,v)$ concentrates around/below $v = \frac{k}{N}, k = 0, 1, \dots, N$



Choose $\beta \in (0,1)$ (confidence parameter)

Let $\epsilon^{U}(k)$ be the unique roots in (0,1) of polynomials

$$> \binom{N}{k} (1-\epsilon)^{N-k} - \frac{\beta}{2N} \sum_{m=k}^{N-1} \binom{m}{k} (1-\epsilon)^{m-k}$$

Then, irrespective of \mathbb{P} (distribution-free),

$$\mathbb{P}^N\Big\{\delta^{(1)},\ldots,\delta^{(N)}:$$

$$V(x^*) \le \epsilon^U(\pi^*) \bigg\} \ge 1 - \beta$$

<u>Assumption (non-degeneracy)</u>: the support set is unique with probability 1 (\cong non-accumulation of constraints in a convex setup)

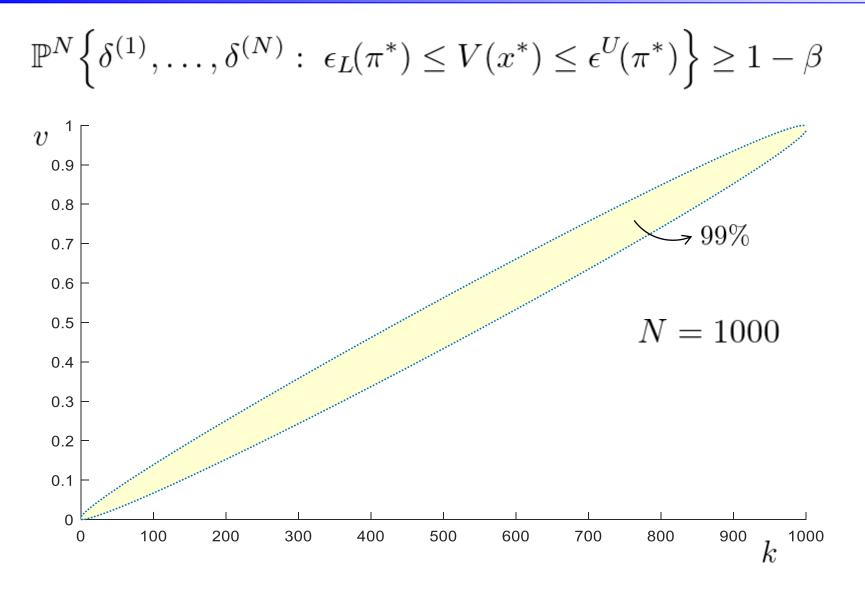
Choose $\beta \in (0, 1)$ (confidence parameter)

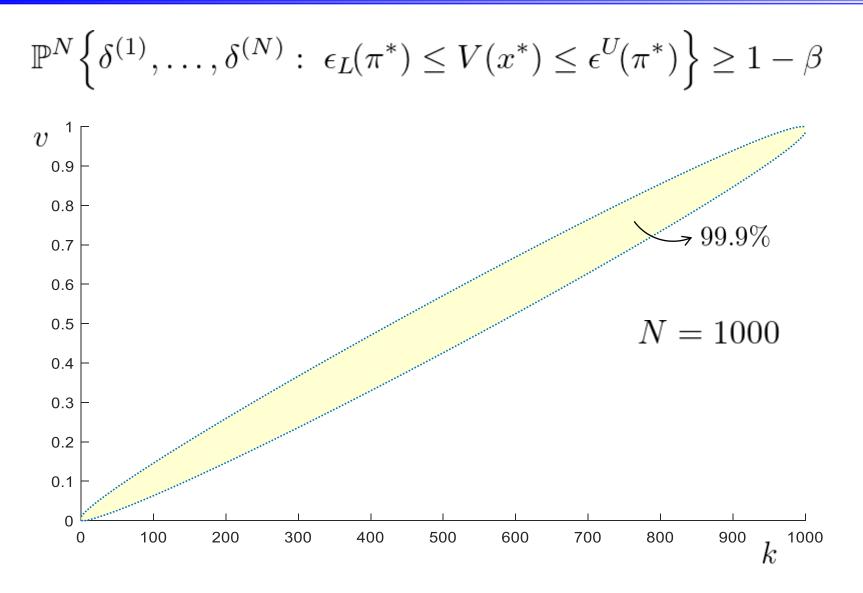
Let $\epsilon_L(k), \epsilon^U(k)$ be the unique roots in (0,1) of polynomials

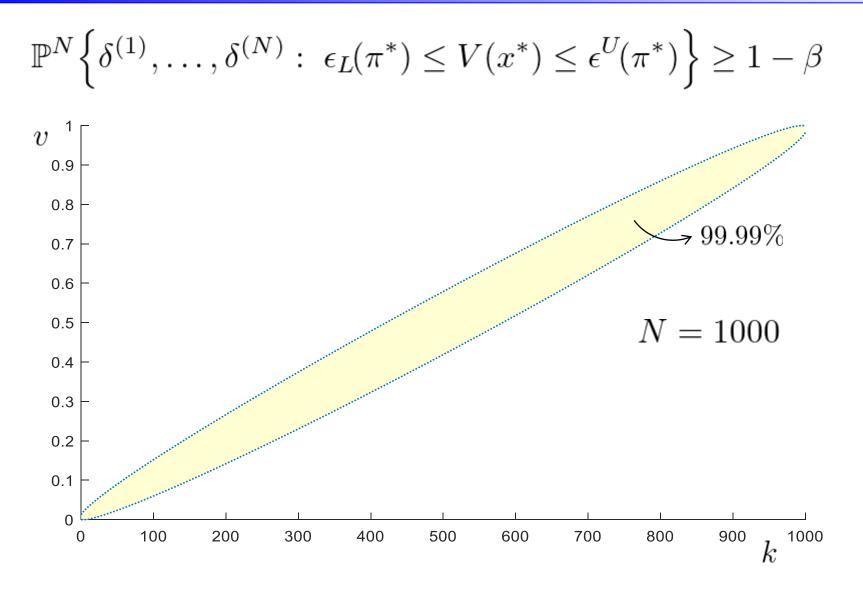
$$\triangleright \binom{N}{k} (1-\epsilon)^{N-k} - \frac{\beta}{2N} \sum_{m=k}^{N-1} \binom{m}{k} (1-\epsilon)^{m-k}$$
$$\triangleright \binom{N}{k} (1-\epsilon)^{N-k} - \frac{\beta}{2N} \sum_{m=N+1}^{2N} \binom{m}{k} (1-\epsilon)^{m-k}$$

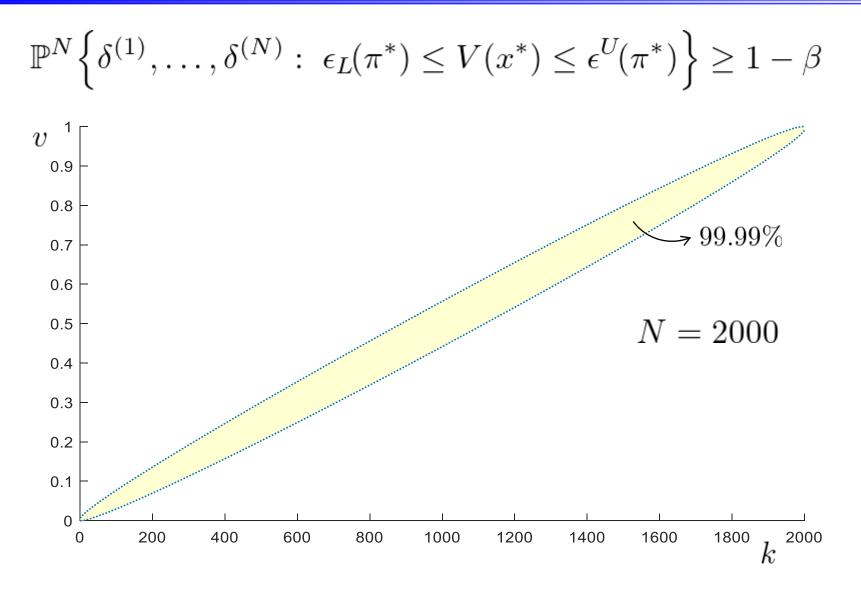
Then, irrespective of \mathbb{P} (distribution-free),

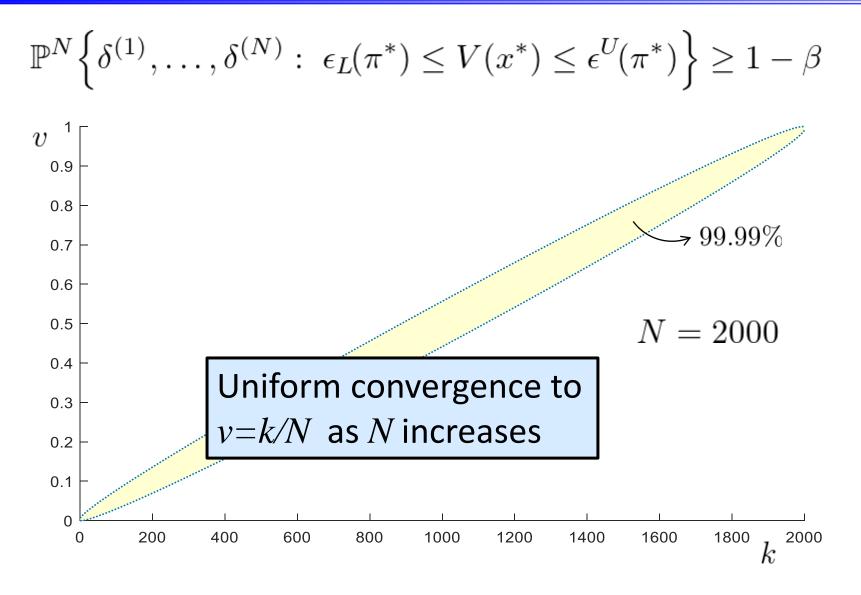
$$\mathbb{P}^{N}\left\{\delta^{(1)},\ldots,\delta^{(N)}:\ \epsilon_{L}(\pi^{*})\leq V(x^{*})\leq\epsilon^{U}(\pi^{*})\right\}\geq1-\beta$$

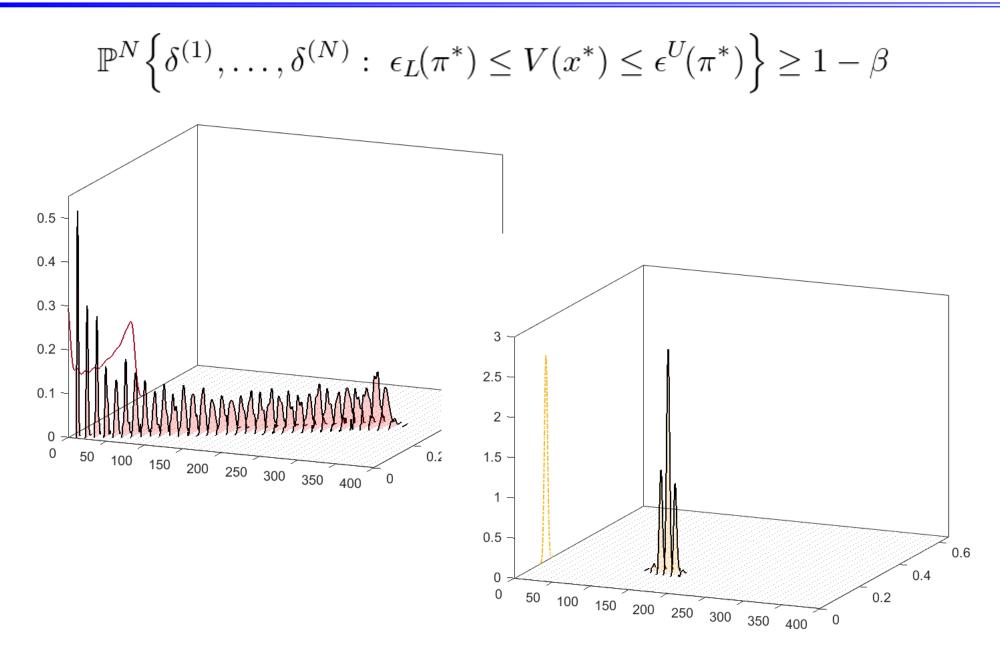


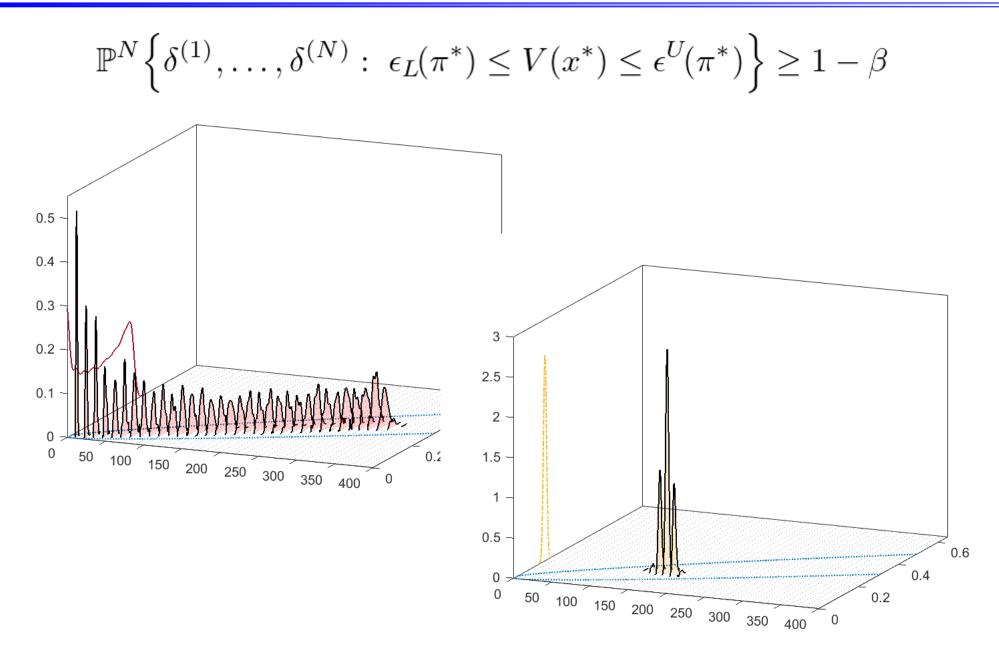




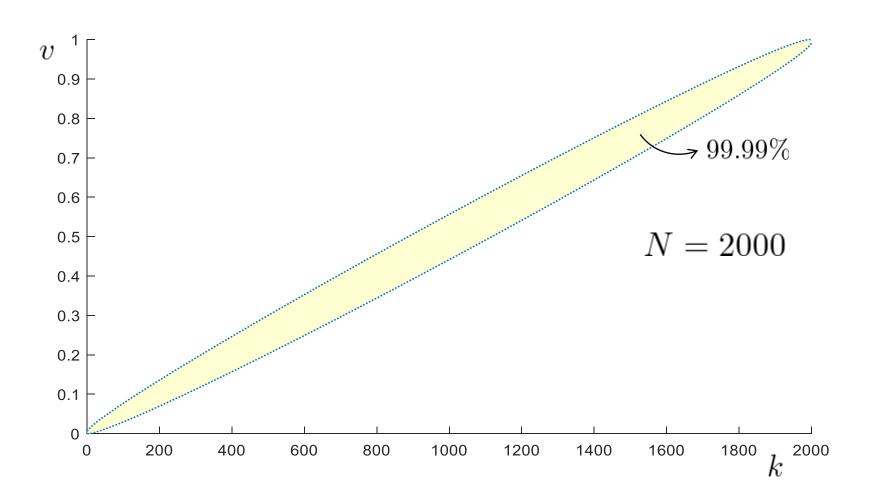




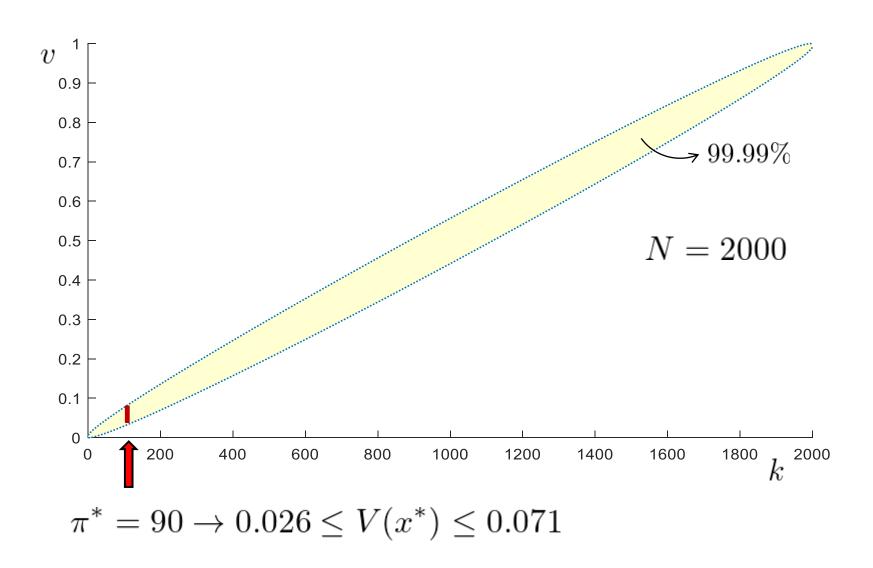




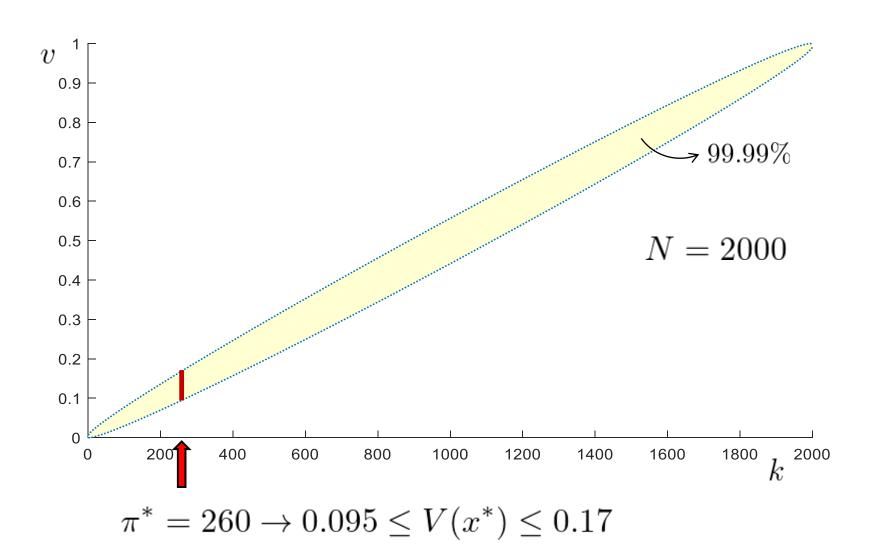
$\epsilon_L(\pi^*) \leq V(x^*) \leq \epsilon^U(\pi^*)$ is true with confidence 1 - eta



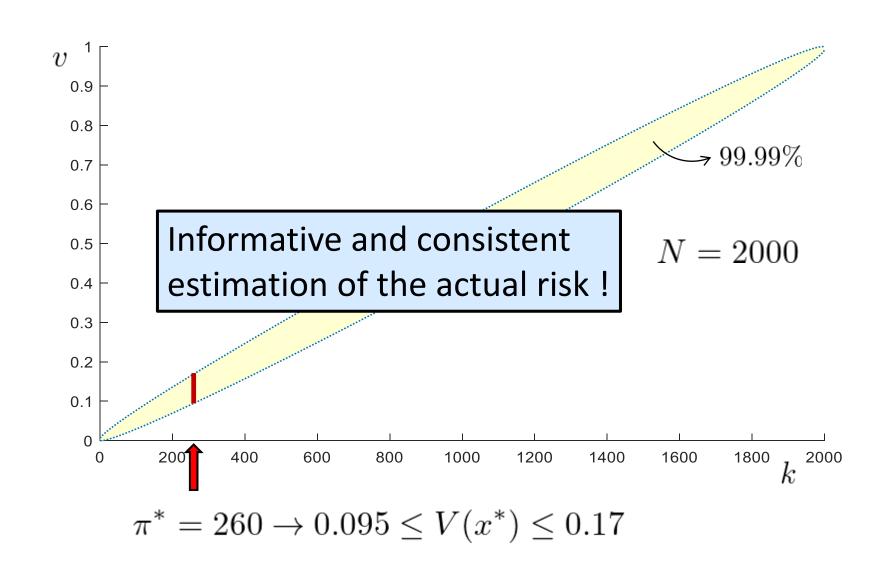
$\epsilon_L(\pi^*) \leq V(x^*) \leq \epsilon^U(\pi^*)$ is true with confidence $1 - \beta$

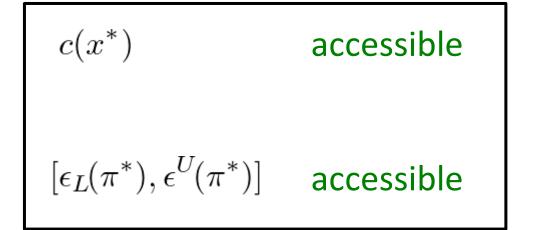


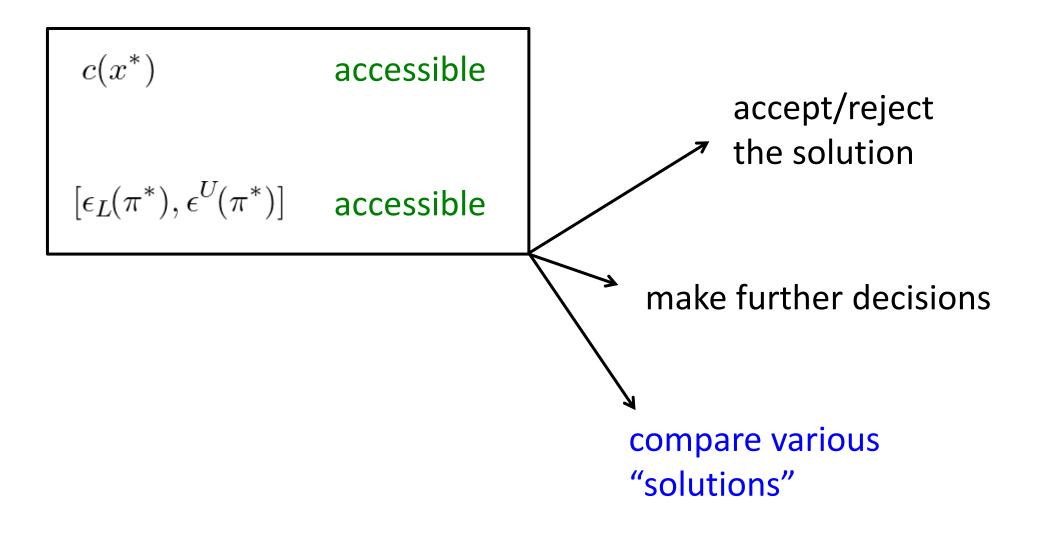
$\epsilon_L(\pi^*) \leq V(x^*) \leq \epsilon^U(\pi^*)$ is true with confidence $1 - \beta$

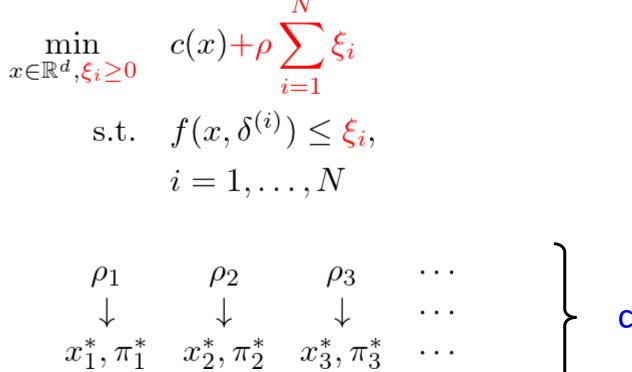


$\epsilon_L(\pi^*) \leq V(x^*) \leq \epsilon^U(\pi^*)$ is true with confidence $1 - \beta$

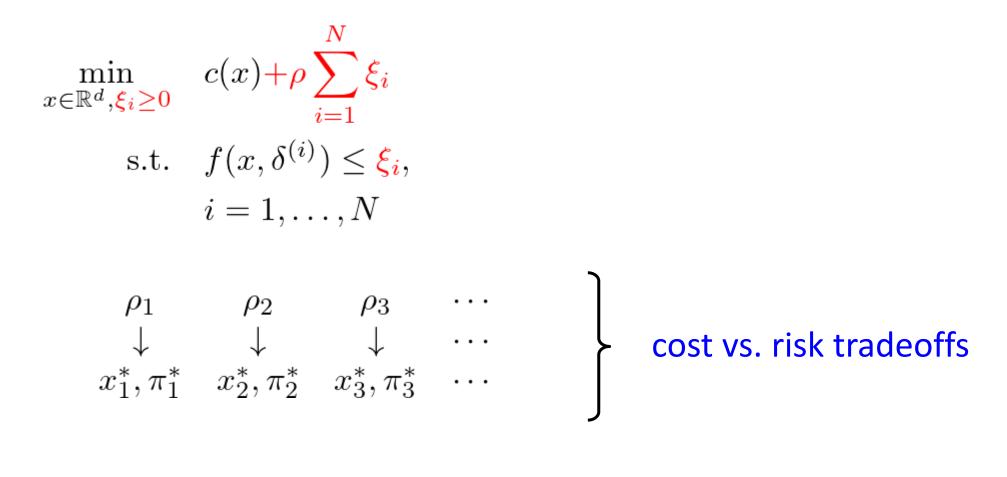






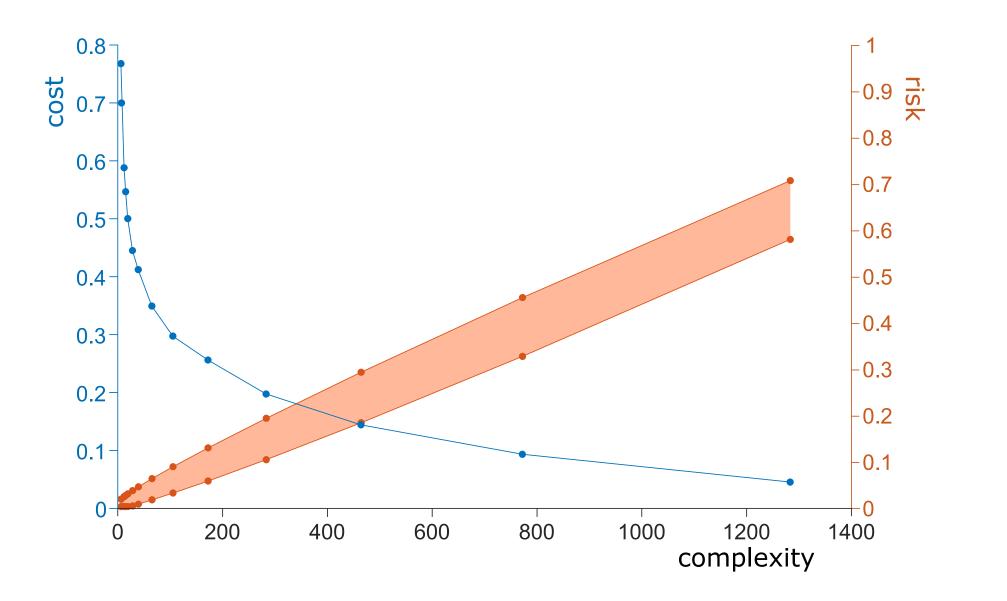


cost vs. risk tradeoffs

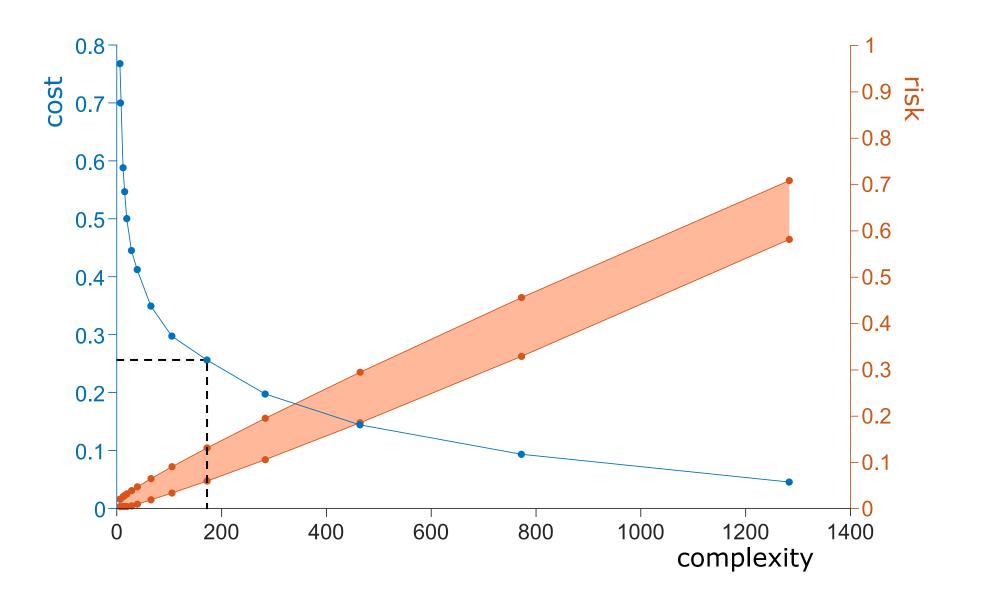


quantitative comparison via $c(x_i^*)$ and $[\epsilon_L(\pi_i^*), \epsilon^U(\pi_i^*)]$

Cost vs. risk plot



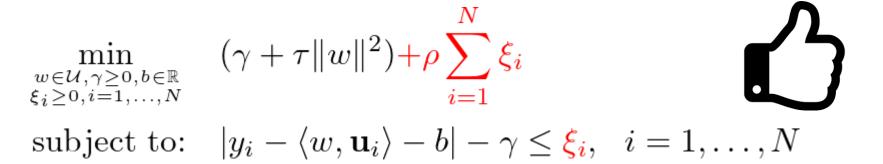
Cost vs. risk plot

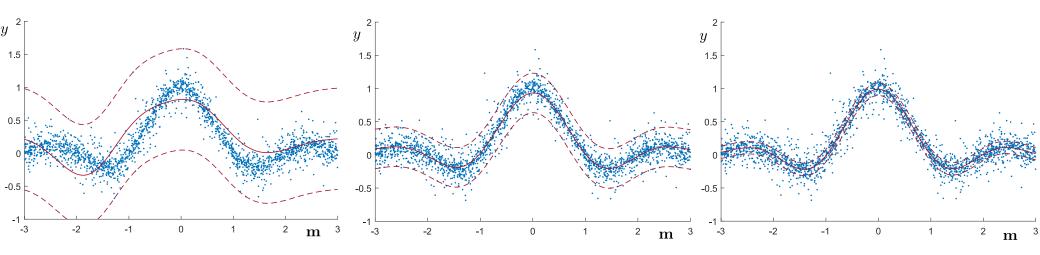


Application to Support Vector Methods

$$\min_{\substack{w \in \mathcal{U}, \gamma \ge 0, b \in \mathbb{R} \\ \xi_i \ge 0, i=1, \dots, N}} (\gamma + \tau \|w\|^2) + \rho \sum_{i=1}^N \xi_i$$
subject to: $|y_i - \langle w, \mathbf{u}_i \rangle - b| - \gamma \le \xi_i, \quad i = 1, \dots, N$

Application to Support Vector Methods





informativeness of prediction vs. probability of misprediction

Conclusions

- Data are a "gold mine" for decision-making, but good theories are needed for a reliable exploitation
- Scenario approach: a flexible and effective setup for datadriven decision making with a good theory to assess the reliability of the solution
- At a very general level, the complexity π^* (visible) carries fundamental information on the risk $V(x^*)$ (hidden), which can be estimated without using any information other the data used to design the solution
- Consistency encompasses many decision schemes; many others yet be discovered!

Thank you !

M.C. Campi, S. Garatti. Wait-and-judge scenario optimization. Mathematical Programming, 167(1):155-189, 2018. <u>https://doi.org/10.1007/s10107-016-1056-9</u>

S. Garatti , M.C. Campi. Risk and complexity in scenario optimization. Mathematical Programming, 191(1): 243-279, 2022. <u>https://doi.org/10.1007/s10107-019-01446-4</u>

M.C. Campi, S. Garatti. Compression, Generalization and Learning. Journal of Machine Learning Research, 24(339):1-74, 2023. <u>https://www.jmlr.org/papers/v24/22-0605.html</u>

S. Garatti , M.C. Campi. Non-Convex Scenario Optimization. Mathematical Programming – to appear

This research is supported by FAIR (Future Artificial Intelligence Research) project, funded by the NextGenerationEU program within the PNRR-PE-AI scheme (M4C2, Investment 1.3, Line on Artificial Intelligence)

Thank you !

M.C. Campi, S. Garatti. Wait-and-judge scenario optimization. Mathematical Programming, 167(1):155-189, 2018. <u>https://doi.org/10.1007/s10107-016-1056-9</u>

S. Garatti , M.C. Campi. Risk and complexity in scenario optimization. Mathematical Programming, 191(1): 243-279, 2022. <u>https://doi.org/10.1007/s10107-019-01446-4</u>

M.C. Campi, S. Garatti. Compression, Generalization and Learning. Journal of Machine Learning Research, 24(339):1-74, 2023. <u>https://www.jmlr.org/papers/v24/22-0605.html</u>

S. Garatti , M.C. Campi. Non-Convex Scenario Optimization. Mathematical Programming – to appear

This research is supported by FAIR (Future Artificial Intelligence Research) project, funded by the NextGenerationEU program within the PNRR-PE-AI scheme (M4C2, Investment 1.3, Line on Artificial Intelligence)

Thank you !

M.C. Campi, S. Garatti. Wait-and-judge scenario optimization. Mathematical Programming, 167(1):155-189, 2018. <u>https://doi.org/10.1007/s10107-016-1056-9</u>

S. Garatti , M.C. Campi. Risk and complexity in scenario optimization. Mathematical Programming, 191(1): 243-279, 2022. <u>https://doi.org/10.1007/s10107-019-01446-4</u>

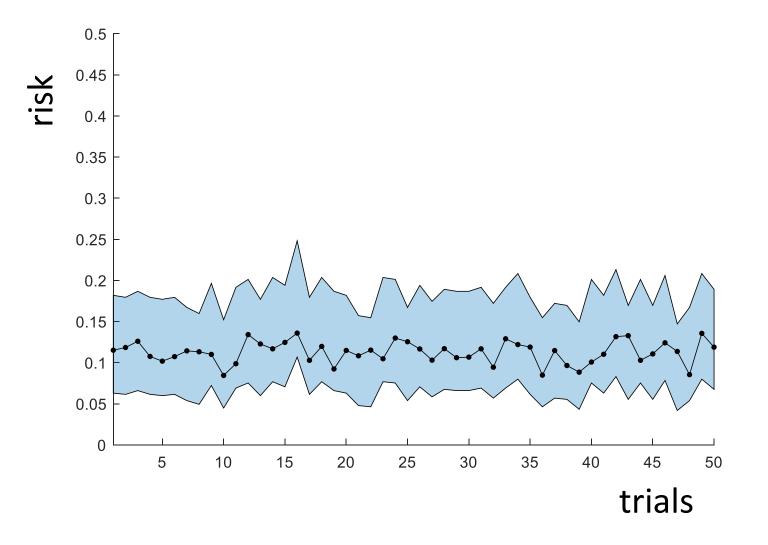
M.C. Campi, S. Garatti. Compression, Generalization and Learning. Journal of Machine Learning Research, 24(339):1-74, 2023. <u>https://www.jmlr.org/papers/v24/22-0605.html</u>

S. Garatti , M.C. Campi. Non-Convex Scenario Optimization. Mathematical Programming – to appear

This research is supported by FAIR (Future Artificial Intelligence Research) project, funded by the NextGenerationEU program within the PNRR-PE-AI scheme (M4C2, Investment 1.3, Line on Artificial Intelligence)

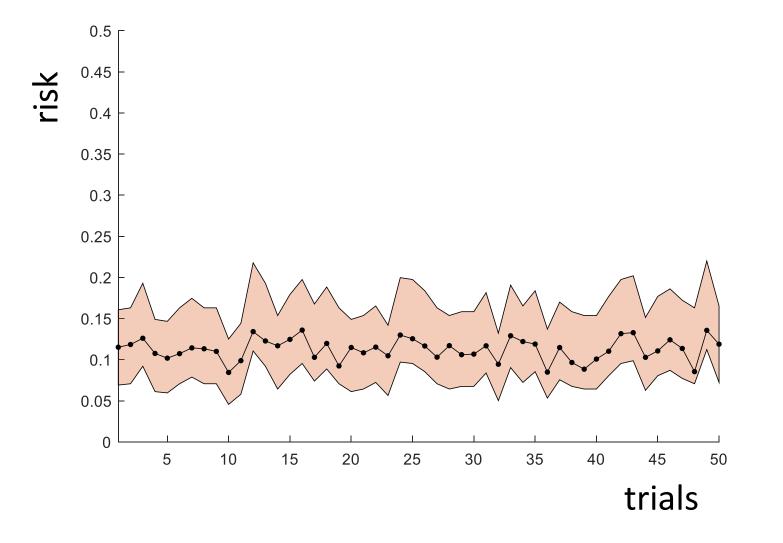
Scenario approach vs. test-set approach

N = 500, risk assessment via scenario theory



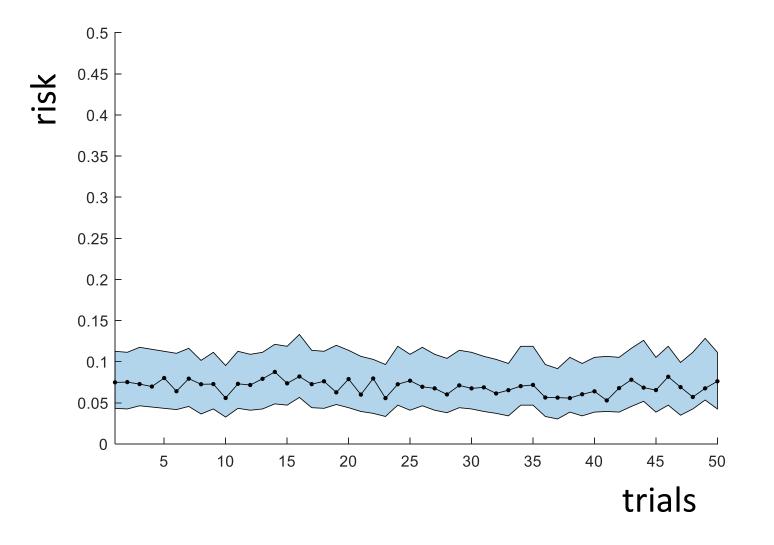
Scenario approach vs. test-set approach

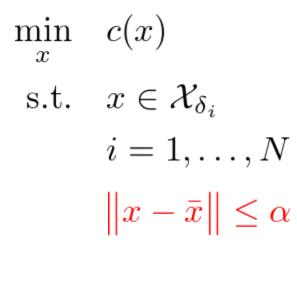
N = 500, risk assessment via validation using new 500 scenarios

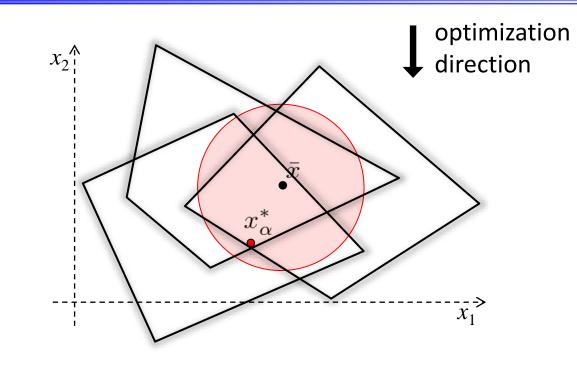


Scenario approach vs. test-set approach

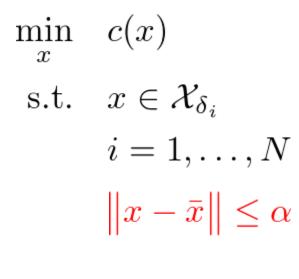
N = 1000, risk assessment via scenario theory

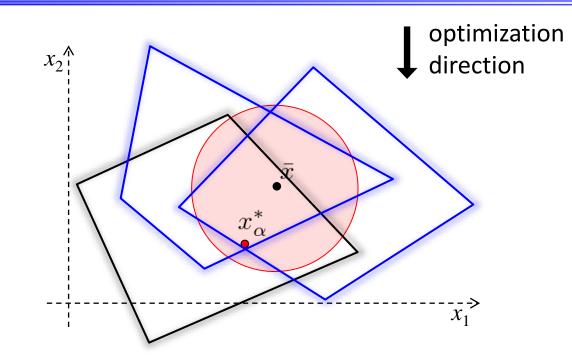






solution: x^*_{α}

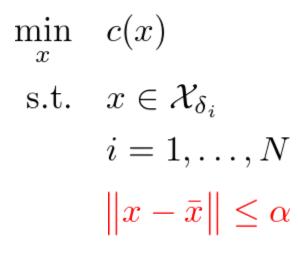


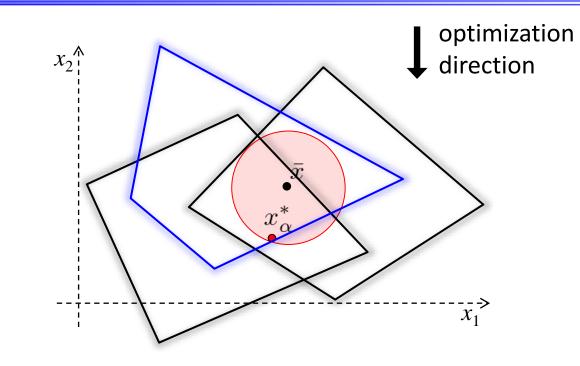


solution: x^*_{α}

complexity: s^*_{lpha}

(support set)

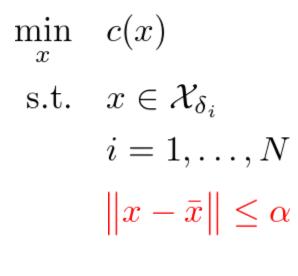


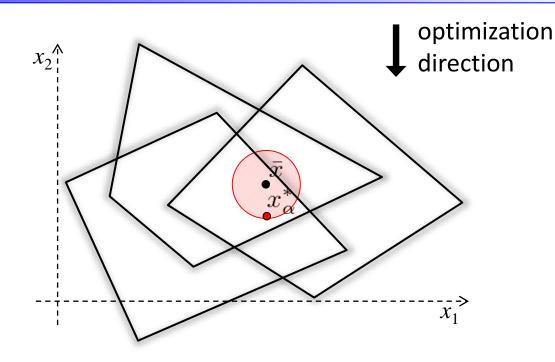


solution: x^*_{α}

complexity: s^*_{lpha}

(support set)





solution: x^*_{α}

complexity: s^*_{lpha}

(support set)

as $\alpha \to 0$

cost $c(x_{\alpha}^*)$ increasing

risk $\widehat{V}(s^*_\alpha)$ decreasing