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Abstract: In recent years, a great deal of attention has been devoted to iterative control as
an efficient methodology for the design of highly-performing controllers. In this paper, we
propose a new iterative scheme which explicitly accounts for the presence of uncertainty.
At each step, the designed controller is the best possible one relative to the existing level of
uncertainty and uncertainty is reduced through steps. In this way, the achieved performance
rapidly improves from one step to the next, while preserving the robust stability of the closed-
loop system. The controller design is performed at a low computational effort thanks to the

use of randomized algorithms.
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1. INTRODUCTION

The problem of designing a highly-performing con-
troller for a plant P whose dynamics is unknown is
considered. Let us assume that P comes with an initial
feedback controller associated with it. This controller,
however, guarantees poor performance which does
not meet the control specifications. In this context, a
typical way to proceed is to first identify a model of
the plant and then to design a new controller on the
basis of the identified model. It has been shown in
the literature that a one-step identification of the plant
often results in a model that is unsuitable for controller
design purposes (see (Gevers, 2000) and (Van den Hof
and Schrama, 1995).) The reason for this is that it is a-
priori difficult to select a suitable model class so as
to achieve a sensible compromise between the model
complexity and the number of available data points.

A different approach which has been studied in the
last decade is to perform a sequence of identifica-
tion and control design stages (iterative control.) In
this way, the designer learns how to compromise be-
tween different needs through experience as time pro-

gresses (see (Lee et al., 1993), (Van den Hof and
Schrama, 1995) and (Gevers, 2000).)

Iterative control

The idea of iterative control can be formalized as fol-
lows. Let us assume that the plant is a SISO discrete-
time linear system whose transfer function is P(z).
P(z) is unknown and can possibly be very complex.
Let R,(z) be the transfer function of the initial con-
troller connected in feedback with the plant.

Before we proceed, we need some notations. For a
generic feedback system with plant G(z) and con-
troller R(z), let J(R,G) denote the control cost. J is
such that J(R,G) > 0 VR, G, and the lower J the better
the performance. As we will see in the sequel, the eval-
uation of J can be performed either analytically or by
data processing. The objective of the control problem
we deal with is to find R(z) such that J(R,P) < ¢; in
other words, we seek a controller ensuring that the
performance level is no worse than a given level ¢
when applied to the plant P(z).

In general terms, an iterative procedure consists of the
following steps:



0. an initial controller R,(z) connected in feedback
with the plant is given. Seti = 1;

1. collect data in closed-loop and estimate a model
P(2); R

2. design a new controller R;(z) based on P;(z) and
connect it to the plant (see figure 1);

3. check the result:
3.1 if J(R;,P) < c, then stop.
3.2 else, puti =i+ 1 and go to step 1.
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Figure 1. Closed-loop system.

The control design at Step 2 is performed via the an-
alytical evaluation of J based on the current estimated
E(z) On the contrary, the validation test of Step 3 is
performed by means of data collected in closed loop
while the real plant is operated with R;(z) as controller.
As for Step 1, the benefits of adopting a closed loop
identification procedure have been discussed in many
papers, see e.g. (Van den Hof and Schrama, 1995).

At iteration i, the collected data will exhibit a fre-
quency content that covers a range up to approxi-
mately the crossover frequency of the control system
formed by R; ,(z) and P(z). As a consequence, we
cannot expect the identification at Step 1 to reveal all
the dynamics of the plant and the next controller R;(z)
will have to be designed on a conservative ground. In
particular, it should have a limited bandwidth (cau-
tious controller.)

In order to proceed cautiously, typically Step 2 is split
into a number of sub-steps: R;(z) is not directly de-
signed; rather, a sequence of intermediate controllers
are selected, each one generating an increased band-
width. After each design, the stability margin is moni-
tored by implementing the new controller and inspect-
ing the closed-loop system for possible oscillations
(see (Lee et al., 1993), (Anderson et al., 1998) and
(Bitmead et al., 1997).) It should be noted that all
the intermediate controllers used in the various phases
of Step 1 are based on the same model P,(z). When
oscillations are observed, the model E(z) is no longer
reliable and a new model has to be identified. This
means that Step 2 is halted and the procedure moves
on to Step 3.

Robust iterative control

The above outlined standard way of proceeding in
iterative schemes has a drawback: each intermediate
controller has to be tested on the real plant and this
requires to stop the plant operation many times for ex-
periments. This problem can be alleviated by resorting
to a robust iterative control setting.

One first important observation is that, in the above
procedure, only the nominal estimated model is used
while there is no concern at all for model uncertainty.
On the other hand, many identification techniques de-
liver an uncertainty region associated with the nominal

model. The new method we propose in this paper
relies on the exploitation of this extra information.
This is obtained by replacing steps 1 and 2 with the
following ones:

1’. collect data in closed-loop and estimate a model
Igl(z) along with its uncertainty;

2'. design the best possible robust controller R;(z)
according to the existing level of uncertainty.
Connect it to the plant;

The idea behind points 1’ and 2’ can be explained
as follows. At iteration i, a sensible selection of the
controller has to meet two different and contrasting
objectives:

1) on the one hand, the controller has to be cautious to
avoid a possible destabilization of the control system;

ii) on the other hand, it should not be over-cautious,
otherwise the corresponding performance improve-
ment is not significant.

The robust controller design in 2’ captures a compro-
mise between the above two objectives. In one single
step the best possible controller compatible with the
present level of uncertainty is designed. This is con-
trast with Step 2, where neglecting uncertainty has the
consequence of requiring the splitting of the step into a
number of sub-steps, with corresponding experimental
over-effort.

For another interesting contribution in iterative robust
control, along a different line than the present work,
see (De Callafon and Van den Hof, 1997).

Structure of the paper

In Section 2, we introduce our robust control ap-
proach. It is based on an average cost criterion. Ran-
domized algorithms for the computation of the corre-
sponding controller are presented in Section 3, leading
to the complete robust iterative algorithm summarized
in Section 4. Finally, a simulation example concludes
the paper in Section 5.

2. AVERAGE ROBUST CONTROL

Let & = {P(z,d) ¥ e®C ]Rp} be the param-

eterized set of feasible models, where P(z,9) is a
rational transfer function. Typically, ¥ is the vector
of coefficients of the numerator and the denominator
polynomials.

A prediction error identification procedure is used.
This Aidentiﬁcation returns a nominal model, namely
P(z,9) and a probability density f : ® — R, describ-
ing the likelihood that model P(z, 1) is the true sys-
tem. Under certain assumptions, this probability den-
sity is in fact a Gaussian with the nominal model as
mean and a variance which can be estimated from data
(see (Ljung, 1987) and (Ljung, 1999).)

Suppose that a set of controllers &% parameterized by
a vector v is also given:



%:{R(z,y) yelC R‘f}.

As a typical example, one can think of the PID class,
in which case:
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The average cost criterion c(7y) is defined as fol-
lows. Let J(y, ) be a shorthand for the control index
J(R(z,7),P(z,9)). Then,

e = [107.9)7(®)d0. M)
(C]

In this way, the performance index J(7,1) associate
with each model ¥ is weighted according to the cor-
responding likelihood (), so as to build the average
performance c() of the controller R(z,7y).

The optimal average robust controller is found by min-
imizing c¢(7):

¥’ = argminc(y) @)
yel

Remark 1. To find the controller parameters, one
could of course resort to worst-case robust control
techniques as well. In our experience, however, av-
erage robust control performs better in iterative con-
trol applications. The reason is that the worst-case
philosophy may result in over-conservative controllers
and this slows down the performance improvement
through iterations. []

Remark 2. The average cost criterion (1) can be min-
imized at a low computational effort by means of
randomized algorithms (see e.g. (Campi and Pran-
dini, to appear), (Campi and Prandini, 1998), and
(Vidyasagar, 1997)). For the sake of completeness,
in the next section we provide a short resume of the
results useful in our context. [

3. RANDOMIZED ALGORITHMS

The randomized algorithms are Montecarlo-like meth-
ods that compute an approximation of the average
robust controller (2), where the level of approximation
can be specified a-priori.

Let {7’1 yeens yn} be n controller parameters selected in
such a way that they densely cover the feasible set
I". We search for the best controller parameter among
{}/1, ceey }/,,}, rather than over the entire feasible set I'.
In order to compute

7 =ag min_ (),

an empirical counterpart of the average cost (1) is
used. Precisely, define

o= Y Ir9),

where, ¥,’s are m vectors independently extracted
from © according to the probability density f, and let

y=arg min (7).

It is possible that ¥ # 7°. However, by a suitable selec-
tion of m, the difference ¢(y) — c(¥°) can be made ar-
bitrarily small. This is precisely stated in the following
theorem (see (Vidyasagar, 1997) and also (Campi and
Prandini, to appear) and (Campi and Prandini, 1998).)

Theorem 1. :

Fix two real numbers € > 0 and § > 0 and assume that
J(y,¥) €[0,1], ¥y, 6.

If m > (2€2)~'1In(2n/8) then, ¢(¥) < ¢(7°) + 2¢ with
a probability greater than or equal to 1 — . (J

Remark 3. Note that m does not depend on the size p
of the space in which O is embedded. This is in con-
trast with standard non-random numerical methods for
computing integrals. [J

Remark 4. The condition J(7y, ) € [0,1] can in gen-
eral be fullfilled by a suitable re-scaling of the control
cost. J

Before proceeding, we are well advised to raise a
delicate point; namely the curse of dimensionality.
Indeed, in order to explore the entire controller set,
the integer n must increase exponentially with g, the
dimensionality of the controller parameter space, so
that it becomes very large even for relatively small val-
ues of g. Correspondingly, the computational burden
of the algorithm for the search of the best controller
becomes rapidly intractable. One point of strength of
the method we will propose in Section 5 is that g = 1
there, so that this problem automatically disappears.

4. COMPLETE ITERATIVE ALGORITHM

By complementing the algorithm of Section 1 with
the randomized methods discussed in the previous
section, we arrive to the following iterative robust
algorithm:

0. an initial controller R, (z) connected in feedback
with the plant is given.
Choose the model class & and the controller
class Z. Sample I with {}/1, e }/,,}.
Select € and 0 and let m > # In %”.
Seti=1;

1. collect data in closed-loop and estimate a model
[A’l(z) = P(z,9;) along with the density f;;

2. extract 9/, k = 1...m according to f..
Let

m

1 .
Y.=arg min — Y J(y,9
i gye{yl,---«%} m k; 7 %)



and set R;(z) = R(z,7,).
Connect R;(z) to the plant;
3. check the result:
3.1 if J(R;,P) < c, then stop.
3.2 else, puti =i+ 1 and go to step 1.

5. APPLICATION EXAMPLE: THE GRENOBLE
FLEXIBLE TRANSMISSION SYSTEM

In this section, an application of the average robust
iterative algorithm presented in Section 4 is described.
The presented example has been chosen for its sim-
plicity in order to focus on some issues of this new
iterative control design rather than on technical details.
In fact, many implementation features discussed herein
are of general interest.

Statement of the example

We consider the Grenoble transmission system pre-
sented in (Landau et al., 1995). The system is consti-
tuted by three pulleys connected by two elastic belts
as shown in Figure 2, and its transfer function is given
by:

0.033z+0.054
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A
u(t) (®)

Figure 2. The Grenoble transmission system.

Such transfer function is characterized by two couples
of complex conjugate stable poles, giving rise to two
resonant peaks (see Figure 3.) One zero outside the
unit circle is also present.
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Figure 3. Bode diagram of P(z).

In the simulations, the system output is corrupted
by additive white noise d(r) having zero mean and
variance equal to 0.01 , namely:

y(1) = P(2)u(t) +d(z).

We suppose that the system is initially connected with
a conservative controller which results in a stable but
very slow closed loop system.

Determining f;
For identification, the FIR model class

() = P(z,8)u(t) + & (1)

has been used, where

P(z,9) =0z '+ 2+ + 1950[50
and £ (¢) ~ WN(0,A2).

Using 50 parameters is advisable in order to capture
the entire dynamics of the system. As we have already
noticed, considering models with many parameters
does not adversely affect the randomized algorithm
since the computational burden is not influenced by
the dimensionality of ® (see Remark 3.) Notice also
that in this example the true system structure is simple
enough and one could directly estimate its parameters.
However, we need to keep in mind that the plant
structure can not be considered to be known in real
application.

The closed loop identification of the FIR model is
easily performed directly (i.e. by measuring the plant
P input and output signals) by means of least squares
techniques, along standard lines (Ljung, 1987). The
density f; of the estimated model is evaluated by
resorting to the asymptotic theory.

Controller class
The controller class is updated through iterations ac-
cording to the following rationale.

)

At iteration i, an additional model M, (z) = g"EZ)
of reduced complexity is first identified (an AR-
MAX(4,2,4) has been considered). Ml( ) is used to

design a deadbeat controller R,(z):

N

5 _ gi(z)
KO =5 mr -0

which corresponds to the complementary sensitivity
function:

Bi(2)
Bz’

It should be noted that A7Ii(z) has nothing to do with
P(z,9;). The reason for identifying this additional
reduced complexity model 1\7Ii(z) (rather than using

the nominal model P(z, 5,)) is to generate a deadbeat
controller of simple structure.
The controller class is then defined as

Ri(z,7) = H(z, V)R, (2).



where H(z,7) is a detuning filter which is introduced
to decrease the crossover frequency of the control
system. In this way, robustness in the control system
is incorporated.

In the present application, a simple proportional action
has been used as detuning filter: H(z,y) = 7y, with
y € [0,1]. Figure 4 shows its effect on the nominal
open-loop transfer function.

40
dB

—40+ =001

1 10

Figure 4. Bode diagram of yﬁi(z)ﬂi (z) as a function
of v.

In general, the choice of the detuning filter is an open

problem, currently underway.

Cost criterion
The cost criterion is:

1, if (7, ) is unstable
Ji(% 6)

Ji(% 19) =

, otherwise

where (7, 1) denotes the closed-loop system of R;(z, y)
and P(z, %) and

ROPO) -

) = |l R ppe)

2

Note that J takes value in [0, 1].

Simulation results R
Figure 5 represents the reduced order model M,(z) for
i=1,2,3.

Figure 5. Estimated nominal models at the first three
iteration (l — l (“_vs), 2 (“_ _”)’ 3 (u_ . _”).)

As for f;, Figures 6 - 8 represent the Bode plot of
some models extracted according to f;, f,, and f;,
respectively.
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Figure 6. Uncertainty at the first iteration (i = 1.)
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Figure 8. Uncertainty at the third iteration (i = 3.)

At the first iteration, i = 1, uncertainty is very scattered
around the nominal model. The randomized algorithm
has been applied with € = 0.1 and 6 =0.1. The control
parameter has been selected by sampling the [0, 1]
interval with a step equals to 0.025, leading to n = 40
and m = 335.

The resulting ¥, is equal to 0.075. Its small value
indicates a conservative choice which is justified by
the high level of uncertainty (see Figure 6.) The step-
response of the closed-loop system at iteration 1 is
depicted in Figure 9.
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Figure 9. Step response of the closed loop at the first
three iteration.

Carrying on the iterative procedure leads to the selec-
tion of 7; as indicated in Figure 10; see Figure 9 for the
corresponding closed loop step responses. Figure 11
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Figure 10. ; at each iteration.



represents the value of the empirical average cost ¢(7;)
through iterations.
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Figure 11. ¢(7;) plotted for each iterations.

Remark 5. One should note that the identification pro-
cedure is made simple in this example by the (unreal-
istic) assumption that the plant noise is white. Under
general assumption, I'V identification or identification
of ARMA models can be used, while the general phi-
losophy of the method remains unchanged. [
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