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Abstract

In this paper the problem of estimating uncertainty re-
gions for identified models is considered. Usually, one
resorts to the asymptotic theory of system identifica-
tion, by means of which ellipsoidal uncertainty regions
can be constructed for the uncertain parameters. We
show that these uncertainty regions supplied by the
asymptotic theory can be unreliable in certain situa-
tions precisely characterized in the paper. Then, we
investigate on the conditions of validity of the asymp-
totic theory, and we prove a new statement of more
general applicability. Thanks to this statement, we can
identify for which standard classes of models (ARMAX,
Box Jenkins, etc.) the asymptotic theory can be safely
used to assess the estimation quality. These results
are of interest in many applications, including iterative
controller design schemes.

1 Introduction

Consider a data-generating dynamical system S and a
model Ŝ of it estimated from data. It has been fully
recognized in the literature that the estimated model
Ŝ is useless without a statement about its quality. In
other words, it is fundamental to characterize the error
model, i.e. the distance between S and Ŝ (see e.g [3],
[7], [8], [11] and [12]).
The most commonly used tool for evaluating the error
model is the asymptotic theory of system identification.
It returns ellipsoidal confidence regions in the space of
parameters such that the true system parameters be-
long to this ellipsoid with a specified probability (see
e.g. [10] and [13]). The main advantage in using the
asymptotic theory is that the confidence regions can be
easily computed from the available data.
On the other hand, asymptotic theory is rigourously
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correct only when the number of collected data tends
to infinity, while in practical applications only a fi-
nite number of data points is available. Therefore, the
asymptotic theory is used in practice as a heuristic tool
for the model quality evaluation. It is a common ex-
perience that it returns sensible results in many cases,
but not always, as it has been recently shown in [4], [5]
and [15].
More precisely, experience suggests that the asymp-
totic theory returns reliable confidence regions espe-
cially when uncertainty is limited (i.e. the estimated
model is quite near to the true system).
On the contrary, we will show (Section 3) that, in pres-
ence of wide uncertainty (i.e. the estimated model
could be very far from the true system), the asymp-
totic theory may return confidence regions which are
completely unreliable.
Note that model quality assessment plays a fundamen-
tal role exactly when uncertainty is very scattered, oth-
erwise the error model is small and the estimated model
can be safely used instead of the true system.
The aim of this paper is to pinpoint in a clear-cut way
the situations where the asymptotic theory may fail to
provide sensible results. The major contributions are
the following ones.

Contributions of the paper

i) By way of an example, we explain why the
asymptotic theory may fail in presence of a high
level of uncertainty

ii) We investigate on the conditions of validity of the
asymptotic theory, and we prove a new asymp-
totic result of more general applicability

iii) Thanks to this new statement, we identify the
model classes among the standard ones (ARX,
ARMAX, Box-Jenkins, etc.) such that the
asymptotic theory can be safely used even in pres-
ence of a high level of uncertainty

Poorly exciting inputs are the main causes for the pres-
ence of wide uncertainty. As a consequence, our results
are of interest whenever the system identification has
to be performed in conditions of poor excitation, as, for
example, when the system is operated in closed-loop.
In particular, for iterative design schemes this is even



more true because at the first iteration the closed-loop
bandwidth is very restricted (see [1], [6], [9], [14]).

Structure of the paper

In Section 2 the assumptions used in the paper are
stated and a brief summary of the asymptotic theory
is given. This allows us to keep the paper as self con-
tained as possible. Section 3 delivers the example as
explained in the point i) above. After a mid-paper
conclusion section (Section 4), Section 5 contains the
main result (see point ii) ) while its heuristic applica-
bility is discussed in Section 6. Finally, in Section 7 we
establish for which classes of models asymptotic theory
can be safely used.

For conciseness, the proof of all results are omitted.
The interested reader can find them in [2].

2 Asymptotic theory

In this section we provide a compendium of the asymp-
totic theory of system identification with the objective
of clarifying the context of our results. For a more
comprehensive description of the subject, we refer the
reader to the literature (see e.g. [10] and [13]).

2.1 Mathematical setting

Let

Mϑ =

{
ŷ(t, ϑ) =Wu(z

−1, ϑ)u(t) +

Wy(z
−1, ϑ)y(t), ϑ ∈ Θ ⊆ Rn

}

be a parameterized set of predictor models, where
Wu(z

−1, ϑ) and Wy(z
−1, ϑ) satisfy the following as-

sumption.

Assumption 1 Wu(z
−1, ϑ) and Wy(z

−1, ϑ) are ratio-
nal strictly proper transfer functions whose coefficients
are functions of a parameter ϑ ∈ Θ ⊂ Rn, Θ com-
pact. The coefficients are four times differentiable
and the fourth derivatives are continuous. Moreover,
Wu(z

−1, ϑ) and Wy(z
−1, ϑ) are asymptotically stable,

∀ϑ ∈ Θ.

Processes u and y are generated according to the fol-
lowing scheme.

Assumption 2 Processes u and y are given by

u(t) = Gu(z
−1)r(t) +Hu(z

−1)e(t)

y(t) = Gy(z
−1)r(t) +Hy(z

−1)e(t),

where Gu(z
−1), Gy(z

−1), Hu(z
−1) and Hy(z

−1) are
asymptotically stable rational transfer functions. e(t) is
a zero mean independent process with constant variance
equal to λ2 > 0 and such that supt E[|e(t)|4+δ] <∞, for

some δ > 0. r(t) is a wide sense stationary, ergodic,
stochastic, external input sequence. e(t) and r(t) are
independent.

Remark 1 The results given below can be proved even
if r(t) is a bounded deterministic external input se-
quence. Considering a stationary, ergodic reference in
Assumption 2 has been preferred since it simplifies the
presentation.

We also require that the data-generating system be-
longs to the class of models Mϑ, that is:

Assumption 3 There exists a parameter ϑo which is
an interior point of Θ such that

y(t) =Wu(z
−1, ϑo)u(t) +Wy(z

−1, ϑo)y(t) + e(t).

Parameter ϑ is estimated by the minimization of the
standard quadratic cost:

VN (ϑ) =
1

N

N∑

t=1

ε(t, ϑ)2,

where N is the number of data points and ε(t, ϑ) =
y(t)− ŷ(t, ϑ) is the prediction error.
Thus,

ϑ̂N = argmin
ϑ∈Θ

VN (ϑ).

The asymptotic cost criterion is V (ϑ) = E[ε(t, ϑ)2],
while Θ∗ denotes its set of minimizers, that is, Θ∗ ={
argminϑ∈Θ V (ϑ)

}
. Finally, let ψ(t, ϑ) be equal to

− d
dϑε(t, θ).

In the asymptotic theory it is assumed that the mini-
mizer of V (ϑ) is unique:

Assumption 4 The set Θ∗ has cardinality equal to 1.

Remark 2 Under Assumption 3, it is easy to demon-
strate that the parameter ϑo always belongs to the set
Θ∗. Therefore, Assumption 4 can be rewritten as
Θ∗ = {ϑo}.

2.2 Asymptotic theory

Let

QN =
1
N

∑N
t=1 ψ(t, ϑ̂N )ψ′(t, ϑ̂N )
1
N

∑N
t=1 ε(t, ϑ̂N )2

and consider the following ellipsoid centered in ϑ̂N :

E(r) =
{
ϑ : (ϑ̂N − ϑ)′QN (ϑ̂N − ϑ) ≤ r

}
, (1)

where r is a real positive number called the size of the
ellipsoid.
We have the following result.

Theorem 1 Let p ∈ [0, 1). Under Assumptions 1, 2,
3 and 4, it follows that

lim
N→∞

P

{
ϑo ∈ E

(α(p)
N

)}
= p,



where α(p) is the inverse of the function p =∫ α
0
fχ2(x)dx and fχ2(x) is the probability density of a

χ2 random variable with n degrees of freedom.

The above theorem suggests how to select r so as to
obtain an ellipsoidal confidence region for ϑo of pre-
assigned asymptotic probability. The proof of Theo-
rem 1 can be found in chapter 9 of [10].
The following result is obtained immediately from The-
orem 1.

Theorem 2 Under Assumptions 1, 2, 3 and 4, for any
sequence αN which tends to∞ as N →∞, we have that

lim
N→∞

P

{
ϑo ∈ E

(αN
N

)}
= 1.

Remark 3 As a natural choice for αN , consider αN =
α(p)(1 + βN ) with βN → ∞ as N → ∞, that is, the
ellipsoid size is inflated by 1 + βN with respect to The-
orem 1. If βN

N
→ 0, when N → ∞, the ellipsoid size

still tends to zero, though with a slower rate than the
ellipsoid of Theorem 1. Theorem 2 says that, no matter
how slow such an inflation takes place, the true param-
eter ϑo will asymptotically belong to the ellipsoid with
confidence 1.

In real applications, the asymptotic theory is often used
so as to generate confidence regions for the system pa-
rameters, even if, as is obvious, such a theory applies
only approximately since the evaluation is based on a
finite number of data points. Though it is common ex-
perience that the results are still reliable in many cases
even for a moderate data sample, it is also true that in
other situations even when N is large the asymptotic
theory may fail to provide sensible indications.
The goal of the present paper is to give a clear-cut view
of the situations in which this actually occurs and to
pinpoint the model classes for which the asymptotic
theory can be safely used. We start in the next section
with an example clarifying where the trouble can come
from in the use of the asymptotic theory.

3 An example where the asymptotic theory

provides wrong results

Consider the following data-generating system:

y(t) =
boz−1

1 + aoz−1
u(t) + (1 + hoz−1)e(t),

where ao = −0.7, bo = 0.3, ho = 0.5 and e(t) =
WGN(0, 1) (WGN = White Gaussian Noise). In ad-
dition, the plant is operated in closed loop as shown in
Figure 1. It is a trivial task to verify that the closed
loop system is stable.
We have identified a full order model when the refer-
ence signal r(t) = WGN(0, 10−6), independent of e(t),
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Figure 1: The real plant

and N = 10000 (note that the reference variance is
very small as compared to the noise variance - poor ex-
citation). A confidence region has also been estimated
using the asymptotic theory.
The amplitude Bode diagrams of the identified model
and of the real system u to y transfer functions have
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Figure 2: Amplitude Bode plot of the real plant (- -) and
of the estimated model (—)

been plotted in Figure 2.
From the plot, it is clear that there is a wide mismatch
between the real plant and the identified model. This is
not surprising, since the reference signal is really poorly
exciting. Correspondingly, we expect the asymptotic
theory to return a wide uncertainty region.
Figure 3 displays in the frequency domain the con-

fidence region E(α(p)
N

) with p = 0.99. Surprisingly,

Figure 3: Uncertainty region of the estimated model

the confidence region concentrates around the identi-
fied model, showing that the estimated uncertainty is
completely unreliable in this case.

Explanation

Let us briefly explain the mechanism that made the
asymptotic theory unreliable in the present situation.
The explanation becomes easier if we assume that the
reference signal is exactly equal to zero. Further below
we return to the case when r(t) has a small variance.



A simple computation shows that:

V (ϑ) =
1

2π

∫ π

−π

∣∣∣1 + hoz−1

1 + hz−1
· 1 + (a+ b)z−1

1 + (ao + bo)z−1
·

1 + aoz−1

1 + az−1

∣∣∣
2

z=ejω
dω,

where ϑ = [a b h]′.
The minimal value of V (ϑ) is 1 and it is easy to see that
the minimum is achieved if and only if every monomial
at the numerator is cancelled by another monomial at
the denominator. This happens only in the following
two cases:

a∗1 + b∗1 = ao + bo a∗2 + b∗2 = ao + bo

a∗1 = ao a∗2 = ho

h∗1 = ho h∗2 = ao.

Thus, there are just two distinct minima of the
asymptotic cost criterion, one of which corresponding
to the true system.
Turn now to the case where r(t) is a WGN(0, 10−6),
that is, to the actual situation. Here, the minimizer
of the asymptotic cost criterion V (ϑ) is unique, as the
asymptotic theory prescribes, and coincides with ϑo.
The other minimum becomes a local minimum. Yet,
the difference between the two minima will be very
small. When identification is performed, a limited
number of data points are available and, by minimizing
VN (ϑ), it may happen that the estimate gets trapped
in the minimum which does not correspond to the real
plant parameter.

In order to explain why the asymptotic theory
fails to provide a reliable confidence region, it is,
at this point, necessary to recall an aspect of the
asymptotic theory which is relevant to the present
discussion (see [10] and [13] for details).
Theorems 1 and 2 are both based on the following
fundamental expansion:

0 =
√
N

d

dϑ
VN (ϑ̂N )

=
√
N d
dϑVN (ϑo) + d2

dϑ2VN (ξN )
√
N(ϑ̂N − ϑo). (2)

This equation is nothing but the Taylor expansion of
d
dϑVN (where all terms are inflated by the coefficient√
N and ξN is a point between ϑo and ϑ̂N ). The evalu-

ation of the confidence region for ϑ̂N−ϑo is carried out
by observing that: first,

√
N d
dϑVN (ϑ̂N ) is asymptoti-

cally a zero mean Gaussian random variable; second,
d2

dϑ2VN (ξN ) converges to d2

dϑ2V (ϑo), since ϑ̂N → ϑo so

that ξN is squeezed towards ϑo. The quantity d2

dϑ2V (ϑo)

is further approximated by d2

dϑ2VN (ϑ̂N ) leading to the
asymptotic Theorems 1 and 2.
The last introduced approximation is acceptable pro-
vided that ϑ̂N is sufficiently near to ϑo. However, in
the previous example, ϑ̂N is far from ϑo, since it has

got trapped in a false local minimum.
In such a case,

√
N(ϑ̂N − ϑo) is very large, due to the

inflating term
√
N . Yet, equation (2) holds true since

d2

dϑ2VN is computed at the point ξN , between ϑo and

ϑ̂N , where, d2

dϑ2VN (ξN ) is almost singular.
Unfortunately, as explained before, ξN is not accessible

to observations and d2

dϑ2VN (ξN ) has to be substituted

by d2

dϑ2VN (ϑ̂N ) which turns out to be well positive defi-

nite. This leads to the mistaken conclusion that ϑ̂N−ϑo
is small and to the unreliable uncertainty region shown
in Figure 3.

4 Mid paper conclusions

The results of the previous sections can be summarized
as follows.

i) The asymptotic theory requires that the asymp-
totic cost criterion has a unique minimizer ϑ∗ =
ϑo and that ϑ̂N ≈ ϑ∗

ii) When there is wide uncertainty, even if ϑ∗ is
unique (and equal to ϑo), for any reasonable sam-

ple size N , one cannot assume that ϑ̂N ≈ ϑ∗

iii) As a result of ii), a blind application of the
asymptotic theory can lead to misleading results
(see the example in Section 3)

In the next sections the following results are pre-
sented:

v) We prove a new asymptotic result for uncertainty
estimation which requires weaker assumptions

vi) We show that the new asymptotic result can be
safely used in presence of a high level of uncer-
tainty (ϑ̂N far from ϑo) if a suitable additional
condition on the model class is satisfied

vii) We establish which standard model classes (AR-
MAX, Box-Jenkins, etc.) satisfy the additional
condition in point vi).

5 A new asymptotic result

In this section we provide a new asymptotic result
which is a variant of the standard asymptotic theory.
Precisely, we no longer insist that ϑ̂N → ϑo (as is a con-
sequence of Assumption 4) and, instead, assume that

ϑ̂N → ϑ∗ where ϑ∗ is some limiting estimate, possibly
different from ϑo.
If the model class satisfies a certain condition (Condi-
tion 1 below) we show that Theorem 2 still holds (see

Theorem 3). Thus, in our framework the fact that ϑ̂N is
close to ϑo is not crucial as it is in the standard asymp-
totic theory, and Theorem 3 can be safely applied with



a finite number of data points even in case of a high
level of uncertainty. This aspect will be discussed in
Section 6.

Assumption 5 ϑ̂N → ϑ∗ (not necessary equal to ϑo)
almost surely, where ϑ∗ is a minimizer of V (ϑ) and is
an interior point of Θ.

In the following Theorem 3 we show that the asymp-
totic Theorem 2 can be preserved in the present setting
provided that the following condition is satisfied.

Condition 1 Θ∗ = S ∩ Θ, where S is an affine sub-
space of the parameter space Rn.

Theorem 3 Suppose that Assumptions 1, 2, 3 and 5,
along with Condition 1, hold true.
For any sequence αN which tends to ∞ as N →∞, we
have that (see (1) for the definition of E(·))

lim
N→∞

P

{
ϑo ∈ E

(αN
N

)}
= 1.

6 Use of Theorem 3 with a finite number of

data points

Let us first recapitulate the reasons why applying the
asymptotic theory in Section 3 leads to a misleading
result.
In that example, if r(t) = 0, then V (ϑ) has two global

minimizers. If r(t) 6= 0 but small, then ϑ̂N is still close
to one of these two minimizers, and can possibly be in
the vicinity of the minimizer which does not correspond
to the true system. If so, the asymptotic theory leads
to computing a deceivingly small uncertainty region as
explained in Section 3. Moreover, this is recognized to
be the general cause of a possible malfunctioning of the
asymptotic theory with finite data samples.
Suppose now that a model class is used such that, in-
dependently of the level of the excitation in the sig-
nals, V (ϑ) is minimized in an affine subspace. Then,
when we move to the real identification setting where
N < ∞, the estimated parameter will be still close to
one point in this subspace and Theorem 3 will still hold
approximately.
Thus, it appears that the model classes to which the
asymptotic theory can be safely applied with finite
sample data points are those for which the set of min-
imizers of V (ϑ) is an affine subspace. Studying this
classes is the subject of the next section.

7 Assessment of the model classes for which V

is minimized in an affine subspace

We treat separately two different situations, namely
open-loop identification and closed-loop identification
as these two settings give different results.

7.1 Open-loop identification

By “open-loop identification” we mean that the in-
put signal u(t) and the noise signal e(t) are indepen-
dent. Technically speaking, this reflects to say that
Hu(z

−1) = 0 in Assumption 2.

Theorem 4 LetMϑ be the Box-Jenkins (BJ) class of
predictor models, i.e.

Mϑ =
{

ŷ(t, ϑ) = (1−H(z−1, ϑ)−1)y(t) +

H(z−1, ϑ)−1G(z−1, ϑ)u(t), ϑ ∈ Θ
}
,

where G and H are rational transfer functions and ϑ is
the vector of the coefficients of the polynomials at the
numerator and at the denominator of G and H.
Suppose that the identification is performed in open-
loop and that Assumptions 1, 2 and 3 are satisfied.
Then, Condition 1 holds true.

Theorem 4 can be applied to Output Error (OE) mod-
els as well, since OE is a particular case of BJ. We
remind that the OE predictor model class is

Mϑ =
{
ŷ(t, ϑ) = G(z−1, ϑ)u(t), ϑ ∈ Θ

}
,

where G is a rational transfer function and ϑ is the
vector of the coefficients of the polynomials at the nu-
merator and at the denominator of G.
A similar result applies to ARX and ARMAX models
too. That is,

Mϑ =
{

ŷ(t, ϑ) =
(
1− A(z−1, ϑ)

C(z−1, ϑ)

)
y(t) +

B(z−1, ϑ)

C(z−1, ϑ)
u(t), ϑ ∈ Θ

}
,

where, A, B and C are polynomials in z−1 and ϑ

is the vector of the coefficients of these polynomials
(C(z−1, ϑ) = 1 in the ARX case). One should note
that in ARX and ARMAX structures, G(z−1, ϑ) and
H(z−1, ϑ) are not freely parameterized as assumed in
Theorem 4 so that this theorem cannot directly applied
in this case. However, the proof of Theorem 4 can be
extended with minor amendments to cover the ARX
and ARMAX cases as well.
It is perhaps worth mentioning that not all model struc-
tures satisfy Condition 1 in open-loop (note that the
example in Section 3 is not a counter example here,
since the system is operated in closed-loop). An exam-
ple is given by the model class

A(z−1, ϑ)y(t) = G(z−1, ϑ)u(t) +H(z−1, ϑ)e(t),

where e(t) = WGN , A is a polynomial in z−1, G and
H are rational transfer functions and ϑ is the vector
of the coefficients of A and of the polynomials at the
numerator and at the denominator of G and H. See [2]
for details.



Example

We have considered again the example (based on BJ
model class) presented in Section 3, but now the system
has been operated in open-loop. In Figure 4 the fre-

Figure 4: Uncertainty region of the estimated model
(Dashed line = real plant frequency response,
solid line = estimated frequency response, grey
area = confidence region (p = 0.99))

quency response of the identified model together with
the estimated 99%-confidence region is plotted.
As can be seen, this confidence region covers the gap
between the identified model and the true system.
Thus, the estimated uncertainty is reliable, in agree-
ment with Theorem 4.

7.2 Closed-loop identification

Suppose now that the system is operated in closed-loop
with a controller R as in Figure 5.

R Pr u y

e

+

-

Figure 5: Closed loop system

Theorem 5 Suppose that the identification is per-
formed in closed-loop and that Assumptions 1, 2 and
3 are satisfied.
Then, Condition 1 holds true for the ARMAX and OE
classes of models.

It has to be noted that, when identification is per-
formed in closed-loop, the Box-Jenkins structure does
not meet Condition 1 in general. In fact, the exam-
ple presented in Section 3 was based on a Box-Jenkins
model.
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