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Abstract—In this paper the problem of computing uncer- controller design schemes (see [2], [6], [13] and [7]). At
tainty regions for models identified through an Instrumental g more general level, one can argue that model quality
Variable technique is considered. Recently, it has been pointed assessment becomes important when the system-model

out that, in certain operating conditions, the asymptotic theory . L .
of system identification (the most widely used method for model mismatch is significant and this occurs when the system

quality assessment) may deliver unreliable confidence regions. IS poorly excited, so that a good model quality assessment
The aim of this paper is to show that, in an Instrumental method should work properly especially in this case.
Variable setting, the asymptotic theory exhibits a certain “ro-

bustness” that makes it reliable even when used with moderate : :
data samples. Reasons for this are highlighted in the paper This paper focuses on an Instrumental Variably)(

through a theoretical analysis and simulation examples. identification setting. The aim is to show that in this seftin
the asymptotic theory exhibits a certain “robustness” s th
. INTRODUCTION it can be safely used even in the case of poor excitation and
Model quality assessment is a very important (and alslor moderate data samples.

challenging) problem in system identification. In fact, &sh
been widely recognized that an identified model is of littleStructure of the paper
use in practical applications if an estimate of its reliépil |n Section Il thelV identification setting is presented and a
is not given along with the model itself. In other words,brief summary of the standard asymptotic theory is given.
if S is the data-generating system afdis the identified Moreover, the problems that may arise when using the
model, it is fundamental to characterize the system-modakymptotic theory in presence of poor excitation are pdinte
mismatch, i.e. the distance betwesrand S (see [10], [8], out. Section IIl delivers a new asymptotic result, also dvall
[4] and [5]). in “singular” conditions, precisely defined in Section IIl.
One of the best-known tools for model quality assessment fhis result makes it possible to show in Section IV that the
the asymptotic theory of system identification ([9] and |12] asymptotic theory folV methods can be safely used even
The asymptotic theory works in a probabilistic frameworkyhen data are poorly exciting. Some simulation results are
and returns ellipsoidal confidence regions for— namely, given in Section V.
regions in the parameter space to which the data-generating

system parameter belongs with a pre-assigned probability. [I. MODEL QUALITY ASSESSMENT FORIV
It has been proved that such ellipsoidal confidence regions IDENTIFICATION
are asymptotically correct as the number of data point

increases. /§ Mathematical setting

The major drawback with the use of the asymptotic theory Throughout the paper we suppose that the data are gener-
is that, in real applications, only a finite number of dataated by the following dynamical system, which is assumed
points is available. Therefore, the asymptotic theory oldto be asymptotically stable:

true in practice only approximately, and it is a common

experience that it returns sensible results in many casis, b y(t) = ()" 9° +v(t) 1)

not always. As a matter of fact, it has been recently shown

that — in condition ofpoor excitationand depending on the Where
underlying identification setting — the computed ellipsoid

may as well be completely unreliable as an approximatéa(t) yt-1).
confidence region (see [3] and [1]).

This limitation of the asymptotic theory could be quite
severe because lack of excitation is common in many V0 =[—af ... —al, b7 ...

applications, particularly when the identification has ® b

performed in closed-loop with restricted bandwidth. Thiss the true system parametervector.

happens, for example, at the first iterations of iterativ&he inputu(¢) and the noise processt) are generated ac-

y(t —ng) u(t—1) ... ult —mnyp)]

is then-vector (@ = n, + ny;) of observations and



cording to the following scheme which encompasses closede. it is the part of the observation vector depending on the
loop as well as open-loop configurations: external input sequencet). o
B B Remark 3:The choice((t) = ¢, (t) is optimal in a sense,
u(t) = G(Z,i)r(t) + H (2 e(?) (2) i.e. it minimizes the estirr(1a)tion eErc))r variance (see [1L]).
v(t) = V(= )e(t), practical applications,.(¢) can be constructed approximately
where G(z~1), H(z71), V(2~1), r(t) and e(t) satisfy the DY first identifying an initial model (through some identifi-
following assumption. cation method) and then by generating “synthetic” data by
Assumption 1:The transfer functionsG(=—1), H(.—') feeding the identified model with(¢) (open-loop case) or by
and V(1) are rational, proper and asymptotically stablefé€ding the entire control scheme where the plant has been
In addition, V(z~!) has no zeroes on the unit circle inSubstituted by the estimated model (closed-loop case} Thi
the complex planee(t) is a sequence of independent zerdProcedure can be also repeated in an iterative scheme.
mean random variables with variana& > 0 and such that Let ©" be the set of solutions to equation

E[le(t)[**9] < oo, for somed > 0. r(t) is a wide sense EIC() o819 = BIC(E) (). 5
stationary, stochastic, ergodic, external input sequerncée &)Y C(B)y()] ®)
ande(t) are independenty It can be proved (see [9], [11] and [12]) that, in the present

Remark 1:1t is important to note that both(¢) andy(¢)  setting, the distance betweehy and ©* tends to zero, as
can be seen as the sum of two independent processes, dhe— oo. _ .
depending orr(t) and the other depending efft). That is, Moreover, thanks to Assumption 2 and equation (1), equa-

u(t) = up(t) + ue(t) andy(t) = y,(t) + ye(t), where tion (5) can be rewritten as
ur(t) = Gz"r(t), ue(t) = H(z Ve(t), Elpr(t)e(t)']9 = Elpr(t)p(t) 197 + Elp, (H)v(t)],
() = B(Z_l)G(Z_1>’I“(t) and and, sincep(t) = . (t) + .(t) andr(t) is independent of
Az~ e(t), the last equation is equivalent to
_BeTY 1 -1 N9 _ 90) —
elt) = Zry HGDe) + 45V eld) Elir (1) r (1) 19 — 9°) = 0. ®)
It follows that the cardinality of©* depends on the rank
(A(z*l) =1+4+afz"' + ... +af 27", of the matrix E[p,(t)¢, ()] and ¢¥° always belongs to

©*. Thus, if E[,(t)e(t)'] is nonsingular, ther®* is the

-1y — o.,—1 0 .—np
B(_Z ) bz + e + ,b,”bz_ o _singleton{¥°} anddn — 9¥° as N — oo.
The predictor model used in identification Is obtained

from (1) by removingu(t) and replacing?® with a generic B. Asymptotic theory

parameten): We turn now to the problem of evaluating the accuracy of
N n the model estimated through thé method. The asymptotic
yt,0) = ()0, 9 R ®) Theorem 1 below can be trivially obtained from the general

The estimate) y is computed as: results presented in [9], [11] and [12]. Before the theorem

we need some preliminaries.

Suppose thaE[p,(t)e.(t)'] is nonsingular. Then, let

Qu = NE|¢2 (062 (1) . @)

where o2 (t) = >~  a;.(t — i) and «; are the Markov
coefficients ofV(z71), viz. V(z71) = 372 a2z ¢, and let

N 1 Y 1
Iy = SOI{N D )ty = ¥ > C(t)y(t)} 4

where N is the number of data points ang{t), the so
calledinstrumental variableis an-dimensional, stationary,
stochastic process, independente@f).

Remark 2:Assuming that the data are generated accord- p, _ E[ Deon(t /} -t E{ Do (t ,} -1 8
ing to (1) implies in a certain sense, precisely addressed ~ er(t)er(t) Qo Elerer )] - (@
later, that the true system belongs to the model class (yrther, consider the following ellipsoid centeredd:
This assumption is common whenever the asymptotic theory N R
is developed for model quality assessment since, otherwise Ealr) = {0 c(On —9) Py (ON — ) < 7«}7 9)
the asymptotic theory can ascertain the variance part of the

system-model mismatch only. See [9] and [12]. wherer, the size of the ellipsoid, is a real positive number.

Throughout the paper we assume thidt) is chosen as Remark 4:1t is perhaps worth mentioning that assuming

follows: thatV (') has no zeroes on the unit circle (Assumption 1)
Assumption 2:C(t) = ¢, (t), whereg, (¢) is equal to serves to the purpose to guarantee that the definitiah, @f)

is well posed, i.e.P, is invertible. See “Complements to
[yr-(t—1) ooyt —ng) wr(t—1) oo u(t—mp)],s Remark 4” in the appendix for details.



The following theorem suggests how to selectso that and, then, we show in Section IV that, in the light of this
E.(r) is an ellipsoidal confidence region fat° of pre- new theory, the asymptotic results maintain its applidgbil
assigned asymptotic probabilitP{E} = probability of E  in case of poor excitation.
in the following).

[1l. ASYMPTOTIC THEORY FOR THE SINGULAR CASE

Theorem 1:Under the assumptions in this section, we .
P Let us assume now thatet E[p, (). (¢)'] = 0, i.e. we

have that ; . ; \ S
are in the singular case. The aim of this section is to show
lim P{ﬁ" c ga(@)} =p, that a result similar to Theorem 1 still holds true in the
N—oo N present situation.
where p(p) is the inverse of the functiop = [ f,2(z)da As it has l?egn already noted in Section I, if matrix
and .- (z) is the probability density of 82 random variable El¢r(t)¢r(¢)'] is singular, then the set of asymptotic
with n degrees of freedont estimateso* is not a singleton, but it is an affine subspace

whose dimensionalityl is equal to the dimension of the

Remark 5:1n the practical computation df,(r), as itis kernel of E[e.(t)or(t)'] (see equation (6)). Refer the

obvious,Q, and P, cannot be computed exactly and haveParameter space to a basis having the fifstomponents

to be substituted by their sample counterpads, and P,. Parallel to ©*, and the remainingn — d components
These can be computed simply by substltuﬂ]hg/lth 1y orthogonal toQ* Let x [z].be thg firstd [thg remaining

in equations (7) and (8). Note that, stQ, and P, tends no- C,l] coordinates n t,h's b§5|§ (Seg Figure 1 for a
almost surely taQ,, and P, as N increases, the introduced graphical representation in a bi-dimensional space). ,Thus
approximation is negligible, provide thay is sufficiently
large.

/\
C. Discussion on the practical use of the asymptotic theory z\

It should be noted that the exact computatiorﬁ@(%

requires the knowledge of andV (z~!) (see equations (7)-
(9)). However, both these quantities are unknown in practic
and have to be identified from the data.

To estimate\® andV/(»~"), a common choice is to identify
an ARMA model describing the residual erreft, 19N =
y(t)—yl(t, 19N) This is motivated by the fact thatt, 19N)

v(t) = V(27 ')e(t) asN — oo, since, under the assumption
of Theorem 195 — v°.

In a practical application, the number of data points is dinit
so thatdy # 9¥° and A\? and V(z~!) cannot be identified
exactly. However, whem,.(¢) is well exciting (and therefore Fig. 1. The parameter space

Elp,(t)p:(t)'] is positive definite with all the eigenvalues N
away from zero) we havé)y ~ ©¥° and the introduced [(z°)" (z°)']" and [(Zn)" (Zn)']" representd® and Jy,
approximation is small. respectively, an®* writes {[z’ 2]' : z = 2°}.

Consider now the situation of poorly exciting inputs, sotthaln the present singular setting, matri > ((t)p(t)’ =
matrix E[e, ()¢, (£)'] has some eigenvalues close to zero. Asy > ¢-(t)¢(t)’ in equation (4) is singular itself, leaving a
long asE[g;(t)¢,(t)'] is not exactly singular, it is still true degree of freedom in the choice ofy. In the sequel we
that the estimate y converges to the true system parameteassume that)y is fixed by a suitable deterministic tie-break
Y2 as N — oo. However, such a convergence takes placaile (e.g select among théN satisfying (4) the one which
with a very slow rate and it may happen tha¢ is far from m|n|m|zesH19N||) such thatdy tends to a limiting estimate
¥° even for a largeN. In this case it is no longer true that ¥* = [(z*)" (2*)']', asN — oo. Note that, though)* € ©*
e(t,¥n) approximates(t), so thatA\? and V(z~1) cannot (and, therefore;* = 2°), ¥* # 9¥° in general since:* # x°.

be identified with a good precision as well. We turn now our attention to the problem of model quality
Thus, one could doubt as to the sensibility of applying thassessment. Sincéy has been chosen deterministically,
asymptotic result in case of poor excitation. One of the maiwe cannot characterize the distance betwegn and
scopes of this paper is to present the somehow surprisingly in a probabilistic way. In contrast, a probabilistic
result that this is not so. characterization is possible in thedirection, as precisely
To this aim, we first develop in the next section a new asymstated in Theorem 2 below.

totic theory valid for the singular case (lack of excitajion We need a simple preliminary lemma. Let®(t)" ©Z(¢t)'])




be ¢,.(t) referred to ther, z coordinates. We have: Remark 8:In view of the result of Theorem 2, it is
possible to determine a confidence region #8r (and not
C T () — ; 2 znnn  only for z°). Since the difference betweén; andz° remains
: Lem”?a L:p7(t) = 0 almost furely, Wh"éEL@T(q%(t) ] unpredictable, the natural choice is to consider the degéne
is nonsingular. Moreoverg(t,9*) = y(t) — y(t,¥*) only ellipsoid
depends ore(t) and can be written a3 ;- B;e(t — i), for

suitable3;'s. ey (%) - {[x' 1 Gy — 2 (B5) " (B — 2) < %”)}
Proof: see the appendix. which is nothing but the ellipsoid; (%) extended along
Let the « direction towards infinity. The fact thab& ; (22
oo oo is an asymptotig-confidence region fo° directly follows
Q5 = VE[ Y Bigit— )Y el — 3] from Theorem 2,
= = IV. USE OF THE NEW ASYMPTOTIC RESULTS IN PRACTICE
and let Consider an identification problem where we have a finite
-1 -1 numberN of data points. After estimating,, we can com-
_ z / z z / ~
b5 = E[%(t)‘pf(t) } Q5E {‘pi(t)‘pr(ﬁ) } ’ pute the prediction errar(¢,9y) and then estimate a model

and further consider the following ellipsoid centeredzip: Zj:l vie(t — i) describing such a prediction error. Here,
~;'s are the coefficients estimated from data and depending

E5(r) = {Z : By — Z)/(pg)—l(gN —2) < r}, on the context in the discussion to follow, represent either
an estimate of they,’s or an estimate of thed;’s. Then,
wherer is again the size of the ellipsoid and is a real positivgye compute the e|||p30|d (”J(\’,’ ) along the line traced in
number. - Section I1. Namely,
Remark 6:E |z (t)pz(t) exists in view of Lemma 1. () R R ()
Instead, similarly toQ,, in Remark 4, invertibility of a(%) - {19 (@ — Y P by — ) < L } (10)
requires thaty_;° 3;z~* has no zeroes on the unit circle. h
Such condition is assumed here for granted. where )
i z fay N - 2 N

The following theorem suggests how to selesb thate3(r) P = (L SN %(t)%(t)/) e SANREAL ()Pl (3 1

is an ellipsoidal confidence region far of pre-assigned ! N 1
asymptotic probability. (% S %(t)%«(t)') ;
Theorem 2:We have that OY(t) = S gvipr(t — i) and p(p) is the inverse of the
functionp = [ fy2(z)dz where f,2(z) is the probability
lim ]p{zo c gg(@)} =p, density of ax? random variable witm degrees of freedom.
0 N Note that this is nothing but the normal line of proceeding

in the application of the asymptotic theory to Instrumental
Variable techniques.

Suppose first that the regressgr.(t) excites well all the
directions in the parameters space (full excitation case).
Then, ¥ ~ 9¥° so that they;’s become an estimate of the
«;'s and 57 % ~ &, % so that Theorem 1 applies
Note that 3; # «; in general. Thus, if one uses theto conclude that we have computed a reliable estimate of a
Markov coefficientsa;’s of V(z~!) when computingez, — p-confidence region fop”.

the resulting ellipsoid fails to represent a confidenceargi The crucial fact is that the way of proceeding in (10) is also
with the pre-assigned level of confidence. What is remarkabfgotivated in case of poor excitation wheflg; is far from

in Theorem 2 is that, in order to compute a correct ellipsoid!’ (the case where estimating thig - mismatch is in fact
one has to use alternative coefficients’s and these more significant) as we next discuss grounding our analysis

coefficients can be in fact estimated from the residual err@n the theory developed in Section Iil.
e(t, 19N) since 19N — 9 and e(t,0*) = Y00, Bie(t — i) The poor excitation case can be seen as a “perturbation” case

(see Lemma 1). with respect to the singular setting of Section lll, so that
Remark 7:1t is worth mentioning that Theorem 2 is acan be seen as a perturbed versionJofin that section.
generalization of Theorem 1. As a matter of fact, in thé\s we have seen in Section Ii(t,9*) = >°7 Bie(t — 1)
nonsingular casej = 0 so thatz = ¢ and the statement and theg;’s are in fact the coefficients to be used in the
of Theorem 2 reduces to that of Theorem-l. construction ofEZ(”J(\’;)) in Theorem 2. This motivates the

where p(p) is the inverse of the functiop = 0” fy2(x)de
and f,2 () is the probability density of > random variable
with n — d degrees of freedony

Proof: see the appendix.



°in ¢ out o % of success
¥ in& | ¥ fE f

in Table I. As it appears, using the true parametels leads

Ea <9(0N95)) 233 267 47% to wrong results.
§7<p(0]-v95>> 491 9 98% VI. CONCLUDING REMARKS
In this paper, a new asymptotic result, valid also in a
TABLE | singular case, has been developed forldnidentification
RELIABILITY OF THE ESTIMATED CONFIDENCE REGION setting. Grounded on this new result, we have shown that

the asymptotic theory can be safely used for model quality
assessment, even in the case of poor excitation and moderate

) ] ) data samples.
use of the~;’s (which are estimates of thg;’s) in the

construction ofgy(%) in equation (10). Note also that

p(p) in  (10) refers to ay? with n degrees of freedom X e .
(while we hadn — d degrees of freedom in Theorem 2)“New Techniqgues of Identification and Adaptive Control for

because in (10) we compute confidence regions for the whdfadustrial Systems” and by th? European Project “Nonlinear
n dimensional parameter vectdf. and Adaptive Control (NACO)" .

VIIl. A PPENDIX

. . . Complements to Remark #ote that, P, is invertible pro-
The simulation example of the present section serves tIQ/ P N P

purpose to illustrate the theory and it is not intended ash r Ejtes tg : tgo‘glesn2ﬁzs:lr]e%l:é?r'ogirznv&leczzg\;\égrl% >vO:
application example. Correspondingly, the simplest fbssi A2 B (£) 02 (1) Jo — /\2-U’E[(Lpa(t)—E[(pa(t)D(ng(t)—
situation has been selected. While the situation is artifici [ a(t)])ﬁ}er&g VB[ (O)]E] a’im,v " "

the drawn conclusions bear a breath of general applicabilit iiféegoa(t) _ V(Z,l)sf’(’t) wesi)rbtain .through the Parseval
We have considered a first order data-generating system W] ntityr e '

Y0 = [—a® b°] =1[0.9 0.1 andV(2~!) = 1+ 0.5z~ ’ .

That is: VQav = ;‘—ﬂ ffﬂ V'@, (79 - |V (e99) ]2 dw

+A?V(1)% - v'Eler ()] Eler ()]0,

where®,.(¢“) is the spectrum of the-dimensional process

(t).

is implies that
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V. SIMULATION RESULTS

y(t) =0.9y(t — 1) + 0.1u(t — 1) + e(t) + 0.5e(t — 1),

where e(t) = WGN(0,1) (WGN = White Gaussian
Noise). To identify this system, the plant has been operat
in open-loop withu(t) = r(¢), and thelV technique has
been used withp(t) = [y(t—1) u(t—1)]" and((t) = pr = v/Quv > minge|_x q {|V(ej°")|2 L2 [T W ®, (7Y dw

’ 27 T
[y.(t — 1) r(t—1)]’, where +/\2V(1)2,U/]E[%(t)]E[%(t)]/v}.
yr(t) =09y, (t — 1) + 0.1r(t — 1).
Applying now the assumption thdt(z~!) has no zeroes
As input signal, we have used(t) = 1+ ¢(t), where on the unit circle we havenin,c(_, . |V (e/)* = k >
&(t) = WGN(0,107°). Note that the variance of(t) is 0. Since, in addition\2 > 0 and E[g,(t)¢,.(t)'] > 0 by
very small as compared to the noise variance so that tgsumption, we conclude that
input u(t) is poorly exciting {:(¢) is nearly exciting of order

1 while two parameters have to be identified). V'Qav > kN (% J7 0P (e7)v dw
The identification hqs been per_forméd() times, by using V[, (4)|Elpy (8)]'v
N = 5000 data points each time. In each experiment a

~ — 2,/ l
parameter vectodX, = [—ak bk ], k =1...500, has been = kA? - V'Elen(t)pr(t)]v >0, Vv #0,
identified and @95%-confidence region has been estimatede. @, is positive definite
as é’j(@ (the coefficientsy;'s have been computed
by identifying an ARMA(3,3) model for the residue — seeProof of Lemma 1Let T" then x n rotation matrix such that

Section IV). The true parameter® turned out to belong to 1V = [¢" 2'|". Referring equation (6) to the, = coordinates

55(%) in 491 cases out ob00, that is, with empirical (-€- TEler (1), (t)'1T"T () — %) = 0), we obtain
frequency 0f98%. g | erer®) or(ep(t) | fo—z)
As an interesting comparison, we have further computed CE()(t) QE(t)pz(t) | | 2 — 2° :

the£5% ci)infl_denceilregmn \;]V.'th the m;]e parameterss fSince [#' 2']' is a solution of this equation if and only if
(Zi:&(;iz(o 95_) V(z7)). In this case, the success raFe o, _ 2°, while each value of: is feasible, it follows that
90 € & ("T> was of47%. The results are summarized g[,(¢)z()'] must be nonsingular, Whil&[y? ()2 (t)']



must be equal to zero so thaf (t) = 0, almost surely. [2] S. Bittanti, M.C. Campi, and S. Garatti. An iterative

Consider nowe(t,9*) = y(t) — y(¢,9*). It can be rewritten controller design scheme based on average robust con-
as trol. Proc. 15th World IFAC Congress, Barcelgriz002.

e ok et o e . [3] S. Bittanti, M.C. Campi, and S. Garatti. New results on
p()' (07=0")+o(t) = (1) (2° —2")+¢* (1) (2°=2")+0(D), the asymptotic theory of system identification for the
where [p(t) *(t)'] = Tp(t). Noting thatz® = z* and assessment of the quality of estima’;e_d modétsoc.
that o®(t) = ¢2(t) + p%(t) = ©*(t)" almost surely, we of the 41st IEEE Conference on Decision and Control,
obtain " c © Las Vegas2002.

e(t,0%) = @2 (1) (2° — 2) + v(2). (11) [4] S. Bittanti and G. Picci, editorsldentification, Adap-

tation, Learning - The science of learning models from

Thus,e(t,9*) is the stationary output of a dynamical linear ~ data Springer Verlag, 1996.
system fed bye(t), and Zfio Bie(t — i) is the Markov [5] S. Bittanti, editor. Adaptation and Learning in Control

representation of such a process. and Signal ProcessingPergamon Press, 2002.
[6] M. Gevers. A decade of progress in iterative control
Proof of Theorem 2:Referring equation (4) to the, z design: from theory to practiceSymp. on Advanced
coordinates, we have that Control of Chemical Processes, Pisa, ltapages 677—
LN o LN ) 694, 2000.
N i1 PrO@T () (TN — 2°) + 5 2oy (D)7 (1) [7] W.S. Lee, B.D.O. Anderson, R.L. Kosut, and I.M.Y.
By —2°) = =N eE)(t) Mareels. On robust performance improvement through
N , R N the windsurfer approach to adaptive robust control.
& ey PP () (TN — 2°) + 5 ey PRt 7 (1) Proc. 32nd IEEE Conf. Decision and Control, San
By —2°) = LN pz(t)u(t) Antonio, TX pages 2821-2827, 1993.

with * () andw*(t) defined as in the proof of Lemma 1 [8] L. Ljung. Model validation and model error modeling.

The first equation i%) — 0 almost surely, since? (¢) = 0, report from theAstrdm Symposium on Control, Lund,

almost surely. Instead, inflating the second equation/By Sweden1999. o
yields [9] L. Ljung. System Identification: Theory for the User

N v Prentice-Hall, Upper Saddle River, NJ, 1999.
1 2N 2 g\ ~ o 1 2 [10] B. Ninness and G. Goodwin. Estimation of model
- M t t N — = — s t t s 12 . .
N ;“’ ()" (1) VN G = 2°) m;“" (Do(e), - (12) quality. Automatica 31:1771-1795, 1995.
[11] T. Soderstdbm and P. Stoica. Instrumental Variable

almost surely, where(t) = v(t) + ¢ (t)'(z° — Zn) and we Methods for System lIdentification Springer-Verlag,
have used the fact that”(t) = ¢y (t) + fei(t/) = we(t), New York, 1983.

almost SL_Jrer. Note that '.[he ierm + fé(t) (27 — fEN.) [12] T. Soderstbm and P. Stoica. System ldentification
depends just om(t) and, sincery — " asN — oo, it Prentice-Hall, Englewood Cliffs, NJ, 1989.

tends toe(t,9") (see (11)). The latter, in turn, is equal t0113] pm.J. Van den Hof and R.J.P. Schrama. Identification

Yizo Bie(t — i) (Lemma 1). _ and control - closed-loop issuesutomatica 31:1751—
Then, following the same rationale in [9] — chapter— 1770. 1995.

it can be proved that the ternY N(Zy — 2°) in (12) is
asymptotically distributed as (@ — d)-dimensional Gaussian
random variable with zero mean and variance equal to

B3 (1)e; (1)) - NE| S5, Bigs (¢ — i)
T Byi(t =) ] - Elei(ei (et = F3.
Then, the theorem thesis easily follows noting that

N(zZn —2)(P5)~"(2ny — 2) is asymptotically distributed as
a x? random variable with(n — d)-degree of freedomg
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