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Abstract: Iterative control is an efficient methodology tloe design of highly-performing

controllers. In this paper, we discuss many implementatéisnes of a new iterative
scheme which explicitly accounts for the presence of ungest The developed iter-

ative enables one to improve quickly the performance thnosghsequent steps, while
preserving the robust stability of the closed-loop system.
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1. INTRODUCTION

(1) & C u(t) P _,V(t)>
The standard paradigm in control design is to work out

a suitable controller once a model of the plant is given.

When the model cannot be derived from physical Fig. 1. Closed-loop system.

considerations, one typically resorts to identification

methods. In the sequel, we will consider SISO discrete-time
In the context of system identification, the one-shot plants and we will adopt the following notation:
identification strategy (i.e. the model is first identi-
fied and the controller is then designed based on the
obtained model) may suffer from drawbacks in case
of high levels of uncertainty, especially for the dif-
ficulties inherent in the a-priori selection of a model
class (see (Gevers, 2000) and (Van den Hof and
Schrama, 1995)).

In recent years, a great deal of attention has been
devoted to iterative (identification and control) tech-
niques. Here, the design is performed with a se-
guence of intertwined closed-loop identification and
control steps, so as to progressively bring into light
the plant dynamics and correspondingly improve the There is a variety of iterative techniques with different
control system performance (see (Gevers, 2000), (Leeand specific features ((Lext al, 1995), (Van den Hof

et al, 1995) and (Van den Hof and Schrama, 1995)). and Schrama, 1995), (Gevers, 2000), (De Callafon and

- P(2) is the plant transfer function;

- i is the iteration index; each iteration is subdi-
vided in two steps:

i.a identification of a modeR (z) of P(2);
i.b design of a controlle€;(2);

- J(C,P) is the control cost for the pair formed
by the controlleiC(z) and plantP(z) (Figure 1).
We assume that(C,P) > 0, VC, P, and that the
lowerJ the better the performance. The objective
of the control problem we deal with is to find a
controller such thal(C,P) < k.



Van den Hof, 1997)). In the well known “windsurfer"
approach ((Leeet al, 1995)) stepi.b is split into a

one iteration to the next, while preserving the robust
stability of the closed-loop system. This is contrast

number of sub-steps: namely, starting from the model with standard iterative schemes, where neglecting un-

identified at stegd.a, the controller is progressively

certainty has the consequence of requiring the splitting

tuned so as to enlarge the closed-loop bandwidth andof the control design step into a number of sub-steps,
at any sub-steps the designed controller is tested onwith corresponding experimental over-effort.

the real plant to avoid reaching the instability limit.

In principle, this is a wise cautious procedure since

in the first iterations the identified model is still rather
unreliable. When it is likely that a further increment in

the bandwidth may lead to instability, one proceeds to

the new iteration + 1 so as to improve the knowledge

on the plant dynamics thanks to a new identification
phase exploiting the data measured from the closed

loop system consisting 4Ci(z),P(2) }, whereCi(z) is

the last controller obtained at the end of the previous

iteration. Unfortunately, this way of proceeding may

require a number of intermediate steps and a rela-
tively long design phase with many experiments on

the real plant. The cautiousness of this approach is

(Andersoret al,, 1998) and (Bitmeadt al, 1997)).

As discussed in (De Callafon and Van den Hof, 1997)

and (Bittantiet al, 2002), a way of alleviating the

drawbacks stemming from the cautiousness of the

above approaches is to resortratustiterative con-
trol techniques, i.e. iterative schemes which explicitly

The iterative algorithm outlined above describes the
essential idea of iterative robust control at a general
level. However, to fill the gap between the general
idea and the real application, one has to decide how
to perform the identification and the model quality
estimation (step.a), and also which kind of robust
control method has to be used (stdy).

These points do not seem to be well clarified in the ex-
isting literature, though it is apparent that addressing
them is of paramount importance for the success of
the iterative algorithm. The main goal of this paper is

to explicitly discuss the above issues so as to provide
a complete iterative robust control scheme.

feature shared by other standard iterative schemes (S:gremsely, the estimation of the nominal model and

model uncertainty in stejpais discussed in Section 2,
while in Section 3 our robust control approach, based
on an average cost criterion, is presented. Then, the
complete iterative scheme is presented in Section 4,
and a simulation example is finally given in Section 5.

account for the presence of uncertainty in the control 2. THE IDENTIFICATION AND UNCERTAINTY

design phase. Along this robust line, poirat is split
in two sub-points, and the whole identification-control
procedure becomes:

i.a from the data collected in closed-loop
i.a.l estimate the nominal model;
i.a.2 estimate the model uncertainty;

i.b design thebest possible robust controller; @)
according to the existing level of uncertainty.
Connect it to the plant as in Figure 1;

i.c check the result:

i.c.1 if J(G;,P) <k, then stop.
i.c.2 else, put =i+ 1 and go to stepa.

The algorithm is initialized by connecting the plant
with an initial controllerCy(z). Typically, due to the
uncertainty in the model plant, the performance of
such initial control system is poor.

The idea behind pointsa andi.b above can be ex-
plained as follows. At iteration, a sensible selection
of the controller has to meet two different and con-
trasting objectives:

ESTIMATION STEP

For the identification of the nominal model (ste@1)

we consider standard Prediction Error Methods (PEM)
as well as Instrumental Variable (IV) identification
(see (Ljung, 1999)). The uncertainty evaluation is per-
formed by means of the corresponding asymptotic the-
ory. As itis well known ((Ljung, 1999)), in the asymp-
totic theory the uncertainty is assessed through a prob-
ability density f;(9) (fi : © — R, whered e @ CR"

is a vector parameterizing the model class) describing
the likelihood that the model correspondingtas the

true system. Under weak assumptions, this probability
density is Gaussian with mean and variance which can
be estimated from the available data.

Although all these methods are well known in the lit-
erature, in the present framework some care is needed.

First of all, let us notice that for the success of the
iterative procedure it is usually advisable to consider
different classes of models for the two steips.1

andi.a.2. The reason for this lies in the fact that the

- on the one hand, the controller has to be cautious”omi”a| model and the uncertainty description play

to avoid a possible destabilization of the control
system;

- on the other hand, it should not be overconser-

different roles in the subsequent control design step
i.b (see also Section 3 where step is discussed).
Indeed, the nominal model is used to design a hominal

vative, otherwise the corresponding performance controller and therefore a class of low order models is

improvement is not significant.

advisable to obtained low complexity controllers. The
uncertainty description, instead, is used to detune the

The robust controller design performs in a single step previous controller parameters so as to meet a robust
the best compromise between the above two objectivesstapility requirement. It is clear that in this second
according to the present level of uncertainty. In this phase it is important to use a full order model class so
way, the achieved performance rapidly improves from as to capture all the uncertainty in the nominal mode!.



In the sequel, we will denote by#,, A € A C R™, closed-loop system (i.e. the instability is penalized by
the parametric class of low order models, whereasJ(C,P)). Then, the average cost criteriofy) is built
M(z Ai) will denote the nominal model identified at as follows:

: L "o ]

iterationi. Finally, Zy, 3§ € © C R ,Wlll_be the full cy) = / Iy, ) 5i(9)dd = Eold(y, )],

order model class used for model quality assessment. c]

Before proceeding, one should be also aware that thevhereJ(y, 9) is a shorthand fad(C(z, y),P(z,9)). In

choice of the model class?y is critical since, for this way, the performance indeky, 9) is weighted

: . " according to the likelihood of given by fi(3), so

certain classes of models and in condition of poor ex-

o : . = _ . thatc(y) measures the average performanc€(@ y)
citation, the asymptotic theory of system identification L .

. for the existing uncertainty.
may lead to completely unreliable results. Indeed, 3S1he optimal averaqe robust controllfz, y°) is then
shown in (Garattet al, 2004), the estimated density b | averag : '
; 2 found by minimizingc(y), i.e.

may be extremely peaky so suggesting that uncertainty
is restricted, and nevertheless the real plant dynamics Y’ =arg ;QIFV\C(V)- 1)

is located far from the peak. Note that poor excitation

conditions are likely to occur in iterative control since, Remark 1.To find the controller parameters, one
during the first iterations, the controller is cautious could of course resort tevorst-caserobust control
and therefore the bandwidth is limited. According to methods as well. In our experience’ however, average
the discussion in (Garatét al, 2004) and (Garat&t  robust control performs better in iterative control ap-
al., 2003), the above problem can be avoided using IV plications. The reason is that the worst-case philos-
identification. When resorting to PEM methods, then gphy may result in over-conservative controllers and

the class of models”y has to be carefully chosen, this siow down the performance improvement through
see (Garattet al,, 2004) and (Garatet al., 2003) for iterations.

motivations and more detailed explanation.

3. THE ROBUST CONTROLLER DESIGN STEP  The average robust controller 1 can be computed at

a low effort by means of the so-called randomized
The objective of this section is to describe how the &lgorithms (see e.g. (Vidyasagar, 2001) and (Campi
information supplied by step.a (i.e. M(Z,}\\i) and and Prandini, 2003)). For the sake of completeness,

() can be used to design the “best possible” robust & short resume of thg res.ults useful ?n the iterative
controllerGi (z) in stepi.b. control context is provided in the following.

Here, we consider a two-steps design method: Randomized algorithms

The randomized algorithms are Montecarlo-like meth-
ods that compute an approximation of the average
robust controller 1, where the level of approximation
can be a-priori specified.

Let {y1,...,¥p} be psamples of . We search for the
best controller parameter amor{g'l,...,yp}, rather

1. Design anominal controllerC;(z) based on the
nominal modeM(z,Xi).

2. Detune the nominal controller parameters ac-
cording to the existing level of uncertainty so as
to meet a robust stability requirement.

These two points are now discussed in turn. than over the entire feasible detin other words,
The nominal controller is typically obtained by mini- Y=arg min c(y)
mizing the control cosd(C(z),M(z A;)) with respect VE{VL Vol

to C(z). The result of nominal controller design is is computed in place of°. We suppose that the
usually a high performing controller, which, however, samples{yl,...,yp} are drawn in such a way to
is also very sensitive to model inaccuracy. densely cover the feasible det

The detuning of the nominal controller is obtained In order to comput&®, an empirical counterpart of the
through a detuning filteH(z y), y € I € R!, which average codt(y) is used. Precisely, define

has to be used in connection wii(z), so obtaining 14

the controllerC;(z) = H(z y) - Ci(2). By varyingy, it cly) = q > Iy: ),

is possible to incorporate robustness in the nominal k=1 .

controller so as to make;(z) suited to stabilize the ~Where d’'s are q parameter vectors independently
plant, even though the latter is different from the nom- €xtracted from® according to the probability density
inal model. The price of the detuning is typically a fi(%),and let

degradation of the nominal performance. y=arg min
As is obvious the value of for the current iteration vein o}
has to be chosen according to the existing level of As it is obviousy # V° in general. Nevertheless, the
uncertainty as described bfy($). In this work,we differencec(y°) —c(y) (i.e. the difference between the
propose an average robust approach for such a selecddeal average optimal performance and the actual one)
tion. can be made arbitrarily small by a suitable selection
Suppose that the control co3(C,P) takes on quite  of g, as precisely stated in the following theorem (see
large values when the pdi€, P) generates an unstable (Vidyasagar, 2001) and (Campi and Prandini, 2003)).

~

c(y).-



Theorem 1.Fix two real numbers > 0 andd > 0 and
assume thal(y,9) € [0,1], Yy, 6.

If q> (2¢2)~LIn(2p/d) then,c(y) < c(Y°) + 2¢ with
a probability greater than or equal te-15.

Remark 2.The conditionJ(y,9) € [0,1] can in gen-
eral be fulfilled by suitably re-scaling the control cost.

Remark 3.Note that, in contrast to standard non-
random numerical methodj, does not depend either
on the smoothness dfy,3) or on the sizen of the
space in whicl® is embedded. This allows in general
to keep the computational effort of randomized algo-
rithms small.

Remark 4.Before proceeding, one should be also
aware of the fact that, in order to explore the entire
controller setp, the number of sample§y, ..., yp},
must increase exponentially withthe dimensionality

of the controller parameter space. In this waybhe-
comes very large even for relatively small values of
| (curse of dimensionalijyand correspondingly, the
computational burden of the algorithm for the search
of the best controller becomes rapidly intractable.
However, in contrast to what happened @rthe di-
mensionality of” is not required to be large. Rather, as
we will see in Section 5, in many cases 1 suffices,

so that this problem automatically disappears.

4. A COMPLETE ITERATIVE ROBUST
CONTROLLER DESIGN SCHEME

By complementing the algorithm described in Sec-
tion (1) with all the points discussed in previous sec-
tions, we obtain the following iterative robust algo-
rithm.

Step 0:an initial controllerCy(z) is connected in feed-
back with the plant. Choose the model clags along
with the model clasg”?y . Choose also the detuning fil-
terH(zy), y € . Samplel” with {y1,...,yp}. Select

g ands. Letq > 5 In 2. Seti = 1;

i.a from the data collected in closed-lgop
i.a.l identify a low-order mode\l(z, A;) in .#);
i.a.2 estimate the probability density(3) over
the high order class of model®y;
i.b designC(z) based orM(z A;). Extractd}, k =
1...qaccording tofj(J) and let

13 -
y=arg min =Y Jy3)).
il gVG{Vl-»-»-,Vp} 4= (V.9
SetCi(z) =H (Z,Vi)éi (). Connect it to the plant;
i.c check the result:
i.c.1 if J(Ci,P) <k, then stop.
i.c.2 else, put=i-+1and go to stepa.

5. APPLICATION EXAMPLE

In this section an application example of the iterative
algorithm outlined in Section 4 is presented. The pre-

sented example has been chosen for its simplicity in
order to focus on some issues of the new iterative con-
troller design schemes rather than on technical details.
Many implementation features discussed herein are of
general interest.

The plant description

We consider the well known Grenoble transmission
system presented in (Landatial,, 1995). This system

is constituted by three pulleys connected by two elas-
tic belts as shown in Figure 2, and its transfer function

X

~ | X
u(t)

o
Fig. 2. The Grenoble transmission system.

is given by:

B 0.033z+0.054

- 42853437222 -2.652+0.87°

Such transfer function is characterized by two pairs
of complex conjugate stable poles, giving rise to two
resonant peaks. A zero outside the unit circle (non
minimum phase system) is also present.

In the simulations, the system output is corrupted by
an additive noisel(t). Namely:

P(2)

y(t) =P(z)u(t) +d(t), @)
where
dit) = zz:ozge(t)’ e(t) = WGN(0,0.0025

(WGN = White Gaussian Noise). Note thdft) is a
high-correlated stochastic noise as it is typical of many
real applications. Moreover, the noise level is quite
high (the variance adi(t) turns out to be @2).
The system is initially connected with the controller
7' 2.858 +3.7222 - 2.652 4 0.87
0.08* —0.03z—0.05 ’
which results in a stable but slow closed-loop system.

Co(z) = 0.05-

Identification and uncerlainty estimation
The nominal modeM(z, A;) of reduced complexity is
identified, at each iteration through the following
class of ARMAX(4,2,4) models:
B(z,A) C(zA)
= t) = t t
= {Y0) = Z U0+ 20}
wheren (t) = WN(0,0?) andA is the vector oA, B,C
coefficients.

As for the estimation offi(3), two different high-
order model class”} and 3 are considered.
The first is a full-order Box-Jenkins model class:

75 = {y() =Gz 9)u) +HEZ 9EWV ],



where &(t) = WN(O, u?) and 9 is the vector of the  The cost criterion

numerator and denominator polynomial coefficients of The cost criterion is:

G andH. The probability densityf.}(9) is evaluated 1,

by resorting to the asymptotic theory of Prediction J(y,9) = I(y,ﬁ)
Error Methods. - 71+J-(y 9)
According to (Garattiet al, 2004) the evaluation "
of the uncertainty can be unreliable for Box-Jenkins Where(y,3) denotes the closed-loop systenRpfz, )
model classes?} has been introduced here to merely andP(z $) and
show that the reliability problem of the asymptotic _ Gi(y)P(9)
theory can be severe in iterative control ;s is not J(y,9) = W)
chosen with care (see Section 2). 1+G(y)P(9)
The second model Clas_s Which has been used to estingte that] takes value irf0, 1].
mate the model uncertainty is as follows:

if (y,&) is unstable

, otherwise

~

-F

2

Simulation results
PG = {y(t) =P(z,9)u(t) +V(t)}7 The iterative robust controller design scheme in Sec-
tion 4 has been applied to the present examplei.
Figure 3 represents the reduced order madgt A;)
estimated at the first iterationn £ 1). As for the

wherev(t) is a noise process arR(z,J) is parame-
terized through Finite Impulse Response (FIR) filters,
i.e.P(2,9) =z 14+ 92 2+ ...+ Iz "

In this case, the identification is performed through 20
the Instrumental Variable method, and the probability =2
density f2(8) is evaluated by resorting to the asymp-
totic theory of 1V techniques as well.

7% is advisable in the iterative robust control for the

following reasons: I 0° ®

-20+
—-40}

1. The asymptotic theory does not suffer from prob-
lems of reliability in this case ((Garatét al,
2003)).

2. High order FIR models are well suited to provide
a full description of the true plant since the
numbern of parameters necessary to describe
P(2) can be determined in real applications by
simply inspecting the impulse plant response.

Fig. 3. Estimated nominal model at the first iteration
(“—") and true system (“- -”) bode diagrams.

For the Grenoble transmission system, a FIR model h 15*1 150 )

with 50 parameters has been selected in order to cap-

ture the entire dynamics of the plant. As we have Fig. 4. Uncertainty at the first iteration (Box-Jenkins
already noticed, considering models with many pa- models).

rameters does not adversely affect the randomized al-
gorithms (see Section 3).

Nominal controller and detuning

The nominal controllerCi(z) of simple structure
is obtained through the nominal identified model
M(z Ai) = B(z Ai)/A(z A;) according to the deadbeat
control method:

A-(z) B A(Z,;\\i) Fig. 5. Uncertainty at the first iteration (FIR models).
B(l,ii)zk —B(z, Xi) ’ estimated probability density, Figure 4 and 5 represent
the Bode plot of some models extracted according

wherek is equal to the order oz 4). Gi(2) leads f1(8) (Box-Jenkins model class) arfg(9) (FIR
to the following complementary sensitivity function

o ) model class).
when itis connected witM(z Ai): From Figure 3 a large error betwebh(z A;) and the
R B; (Z’ji) true data-generating system is apparent. Correspond-
F(9)=———. ingly, one would also expect the estimated uncertainty
Bi (1, Ai)% to be quite large.
As a detuning filterH(z y), a simple proportional When uncertainty is estimated within Box-Jenkins
action has been uséti(z, y) =y, y € [0,1]. models, the results is completely unreliable: the un-
The idea is that througit is possible to decrease the certainty concentrates around a model far from the
crossover frequency of the loop functig;(z)P(z), true system, this would have lead to a destabilizing

so that the controller robustness is increased. controller in the next step of the iterative algorithm.



When instead FIR models are used, the uncertainty is 1

correctly estimated (in fact, it is very scattered around 0sl . .
the true system) so that it has been possible to perform

the subsequent controller design step. In fact, the ran- o8 *

domized algorithms have been applied wéth= 0.1 04f

andd = 0.01 while the parameter set of feasible con- 0al .

trollersT” = [0,1] has been sampled in= 30 points. R

The resulting numbeg of models extracted according o 2 3 a 5

to the probability density?($) was 435. _ _ .
The controller obtained at the first iteration is char- Fig. 9.V; at each iteration.
acterized by a detuning parametgr equal to 006.
Its small value indicates a conservative choice which 025t e 1
is justified by the high level of uncertainty. The step- 0zl
response of the obtained closed-loop system is de-
picted in Figure 8.

0.15- b

01r A

Carrying on the iterative procedure the identified nom- oosl . |
inal model becomes a more and more accurate de- ' . .
scription of the real plant (Figure 6), and, correspond- ° 1 2 3 4 5

Fig. 10.€(y;) plotted for each iterations.
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