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Abstract— Iterative control has been widely studied in recent achieves a sensible compromise between plant complexity
years as an efficient methodology for the design of highly- and the limitations posed by finiteness of the data set (bias
performing controllers of complex plants. The idea behind ¢ \ariance error trade-off). Moreover, when the plantinp
iterative design is that, when the plant is exceedingly complex, . L T
the design of the controller in one shot is hazardous. Instead, can be manipulated, des'g”!”g an experiment able to reveal
one can perform a sequence of closed-loop identification and at best the plant characteristics that are relevant foratbert
controller design steps, aiming at progressively learning how to design can be difficult to obtain.
increase the control performance through experience. A well recognized fact, [9], [13], is that not all the plant
In this paper, we introduce a new iterative control scheme  cparacteristics are important for closed-loop perforneanc

which explicitly accounts for the presence of uncertainty in the . e -
plant description at each step (iterative robust control). Our Thus, the goal of the identification step is that of accuyatel

contention is that introducing robustness in iterative schemes identifying only those (usually few) plant dynamical fersi
permits to quickly improve performance through steps, while  which are relevant to control design. Though the system-
preserving the robust stability of the closed-loop system. model mismatch may still remain large, highly-performing
controllers can then be designed as the identified model
turns out to be properly tuned towards control objectives
A. Why iterative control? (identification for contrg). Clearly, the problem here is how

controller C for an uncertain (possibly nonlinear) plapt the “plant dynamical features which are relevant to control

(see Figure 1). We suppose that the control performanQ@Sign"-_ _ _ _ _
When P is a simple linear system, control design basically

requires only the knowledge of the plant frequency behavior

I. INTRODUCTION

WLl o Y, p y(t), over an interval of frequencies around the desired closed-
loop crossover frequency. Such information can be retdeve
T by suitably exciting the system or by pre-filtering of the

available data, [12].

When instead plar® is complex and/or presents nonlineari-
ties, tuning the identification method towards the final caint

is evaluated by means of a given control ca¢E,P) > 0 Qesigp ot_)jecti\_/e can be difficult. These are the circum&sinc
such that the lowed the better the performance. The finalin Which iterative procedures prove powerful, [9], [11]3]1
objective is to find a controlle€ that guarantees a given In general terms, an iterative control scheme goes as_fsllow
performance levelJ(C,P) < k. Suppose that a cont_rolleﬁi,l has been already designed,
The main feature of the control problem under consideratiofh0se performance is however not good enough. The con-
is that the plant dynamics is assumed toupénown a situ-  troller G is updated tGi through the following steps:

ation which occurs in many practical engineering problems.1 . data are collected iciosed-loopwith C;_1 in place, and

A typical way to deal with uncertainty in the plant dynamics 3 modelP is estimated:

is to resort to identification methods to obtain a model 2. a new controlleC; is designed based d®;

E of the plant. Then, the controller is deSignEd based ong, G is connected to the p|ant and the performance is
P. This way of proceeding, however, calls for some care.  checked: ifJ(C;,P) < k then the procedure is halted;
Indeed, it is well known, [9], [13], that identifying the pit otherwisei =i+ 1 and the procedure is repeated from
dynamics in one-shot may often result in a model which is  step 1.

unsuitable for controller design purposes. The reasonais th o _
it is a-priori difficult to select a suitable model class whic 1he controller validation at step 3 is performed by means of
experimental data collected while the real plant is opérate
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Fig. 1. Closed-loop system.



following. in [1] and [2], a common feature is the need for cautious
Suppose a person is not too far from a cliff. It is dark and s/hadjustments at each controller update step. This can be
can only light the scenery up by means of few matches heasily understood considering that, at each iteratjoonly
has in his pocket. The objective is to get as close as possildepartial description of the plant becomes available, and,
to the northernmost point on the edge of the cliff, withoutonsequently, the controll€; will have to be designed on
falling down (see Figure 2). a conservative grounctdtious controlley.
A basic decision to be taken is whether to use the match&s many iterative schemes the modal at step 1 of the
altogether or else one after the other. By striking the negtch procedure is simply a nominal model of the plant with no
altogether, the hope is to bring into light the whole route t@oncern for its reliability. Consequently, when the colém
the cliff edge (full plant identification). However, therould C; is designed at step 2, one has no hints of its range of
be the risk that the light would be too dim to reveal wherevalidity. This circumstance reflects into an over-constvea
the edge is located exactly. So, the matches would probahige of the model.
be wasted if used this way. A wiser strategy consists instedn e.g. the well known “windsurfer” approach, [11], the fact
in lighting one match at a time so as to reveal the scene that the model reliability is unknown is taken care of by
the vicinity of the current position, and then moving a dttl splitting step 2 into a number of sub-steps: using the model
step towards north in the visible area. As the person movédentified at step 1 and without updating it, the controlker i
progressively tuned so as to increase the control perfarenan
at any sub-step, the designed controller is tested on the
\ N real plant to avoid reaching the closed-loop stability timi
» When it is detected that a further performance improvement
p is likely to generate instability, the modé is no longer
A deemed reliable and a new model is identified. This means
I that step 2 is halted and the procedure moves on to step 3.
|
4

Unfortunately, this way of proceeding has a drawback: each
intermediate controller has to be tested on the real plaght an
this requires to access the plant many times for experiment.
This results in a relatively long and expensive design proce
dure.

Fig. 2. An iterative procedure for the cliff problem. The drawbacks in the above approach can be alleviated by

resorting torobustiterative control techniques, i.e. iterative

in the new position, s/he cannot proceed any further in a saféhemes which explicitly account for the presence of un-
way. At this point, another match is used so that the next st&grtainty in the control design phase at step 2. This can be
can be performed safely, and so on until the northernmogbtained by replacing steps 1 and 2 with the following ones:
point is reached. 1. from the data collected in closed-loop:
Iterative control works similarly. The closed-loop sedtin 1.a estimate a nominal model;
at step 1 is introduced to avoid a full plant identification. 1’ b estimate the model uncertainty;
Indeed, in closed-loop only some features of the plant arey  gesign thebest possible robust controller; @ccording
excited and estlmate_d. Thus, during the first iterations — 5 the existing level of uncertainty.
when poorly-performing controllers are connected to th;

he idea behind points’ and 2 above can be explained as

(?Ilows. At iterationi, a sensible selection of the controller

Has to meet two different and contrasting objectives:

- on the one hand, the controller has to be cautious to
avoid a possible destabilization of the control system;

- on the other hand, it should not be overconservative,

plant — only certain plant dynamical features are unveile
This information can be used to adjust in step 2 the curre
controller, so moving a little step in the direction of im-
proving the control performance. Iterating this scheme, th
desired control performance can be eventually reached.
One important aspect which is worth emphasizing in the ) X ;
metaphor is that the northernmost point was reached by Otheérwise the corresponding performance improvement
enlightening not all the cliff but only a path connecting IS Mot significant.

the initial position to the target. Therefore, the idengifion  The robust controller design at step®rforms in a single
effort is spent towards achieving the final objective withoustep the best compromise between the above two objectives
learning “too much” of the system. Similarly, when improv-according to the present level of uncertainty. In this way,
ing step by step the control system performance, we nede achieved performance rapidly improves through itera-

not to exp|ore the whole p|ant dynamics in genera]l tions, while preserving the robust Stablllty of the closed-
o ) loop system. This is in contrast with standard iterative
B. The need for robustness in iterative control schemes, where neglecting uncertainty has the consequence

Iterative control has been intensively studied in the lagif requiring the splitting of the control design step into a
decade and there is a variety of iterative techniques withumber of sub-steps, with corresponding experimental-over
different and specific features, [9], [11], [13]. Yet, aswho effort.



The iterative algorithm outlined above describes the di&den peak. Note also that poor excitation conditions are likely t

idea of iterative robust control at a general level. Thisigde occur in iterative control, especially during the first &tons

more concretely developed in the subsequent sectionsof thivhen the controller is over-conservative. According to the

paper by performing specific choices for the implementatiodiscussion in [8] and [7], the above problem is avoided when

of steps 1and 2. See also [3] and [6] for extra discussion.IV identification is used. When one instead resorts to PEM
methods, the class of model8y has to be carefully chosen.

C. Structure of the paper See [8] and [7] for a more detailed discussion.

The estimation of the nominal model and model uncer-
tainty in step 1is discussed in Section I, while in Sec- lll. THE ROBUST CONTROLLER DESIGN STEP

tion 11l our robust control approach, based on a probaislist The objective of this section is to describe how the
robust method, is presented. The complete iterative schemgormation supplied by step’ 1i.e. M(Xi) and fi(9)) can
is wrapped-up in Section IV, and a simulation example ipe ysed to design the “best possible robust contr@iein

finally given in Section V. step 2.
Il. THE IDENTIFICATION AND UNCERTAINTY A two-stgge deS|g_n method is h‘ire considered: _
ESTIMATION STEP a. Design anominal controllerC; based on the nominal
modelM(A;).

For the identification of the nominal model in stejal a
typical choice, [12], is to resort to standard PredictionoEr
Methods (PEM) or to Correlation Approach techniques (as
e.g. Instrumental Variable (IV) identification). The uncer ] ) i
tainty evaluation is performed by means of the correspandin! '€S€ two points are now discussed in order.
asymptotic theory, [12]. As is well known, in this theory theThe nominal controlle€; is typically obtained by optimizing
uncertainty is assessed through a probability densjty) the control cos8(C,M(4;)) with respect tcC. The resultis a
(f :©® - R, whered € © C R" is a vector parameterizing high performing controller for the identified nominal model
the model class) describing the likelihood that the moddY!(Ai) (i.e. J(Ci,M(Ai)) < k), which, however, is also very
corresponding ta? is the true system. In many cases, thissensitive to model inaccuracy. At the beginning, wiv;)
probability density turns out to be Gaussian with mean ani@ not properly tuned to the the plant dynamiCscan even
variance which can be estimated from the available data. destabilizeP.

Although all these methods have a long-standing history ihhe detuning of the nominal controller is achieved by
the literature, in our framework some care is needed. modifying the structure of5; (introducing e.g. new poles
First of all, for the success of the iterative procedure it i@nd/or zeroes; changing some of the controller parameters;
usually advisable to consider different classes of modeRJC.) so obtaining a new controll€(y), wherey € I C R!

for the two steps la and 1.b. The reason lies in the fact is the vector of all the parameters introduced in the detyinin
that the nominal model and the uncertainty description plaghase. By varying/, robustness may be incorporated in the
different roles in the subsequent control design ste(s@e nominal controller so as to maké(y) suited to stabilize
also Section Il where step’ 2s discussed). Precisely, the the plant even though the latter is different from the norina
nominal model is used to design a nominal controller anthodel. The price to pay is typically a degradation of the
therefore a class of low order models is advisable to obtaimominal performance.

controllers of low complexity. The uncertainty descriptio ~ As is obvious, the value of for the current iteration has
instead, is used to detune the previous controller parametdo be chosen according to the existing level of uncertainty
SO as to meet a robust stability requirement. It is clearithat as described byi(3). In this work, following [5], we adopt
this second phase it is important to use a high order modah approach which is robust in probability.

class so as to capture the uncertainty besetting the nomid2g¢note by(y,d) the closed-loop system obtain whex(y)
model. is connected to a generic systdhid) in the uncertainty

In the sequel, we will denote by#,, A € A CR™ the class. For simplicity, we assume that the smallefy, the
parametric class of low order models, wherdag\) will ~ weaker the effect of the detuning on the nominal controller.
denote the nominal model identified at iteratibnFinally, ~Moreover,Ci(0) = C;.

Py, 9 € ©C R" will be the full-order model class used for The optimal robust controlle€;(y°) for the present level of
model quality assessment. uncertainty is then obtained as the solution of the follawin
Before proceeding, one should be also aware that the choi@gtimization problem.

of the model class%?y is somehow critical since, for
certain classes of models and in condition of poor exci-
tation, the asymptotic theory of system identification may
lead to unreliable results. Indeed, as shown in [8], therdere, a is a parameter belonging t©,1) and P{A} de-
are situations where the estimated density turns out to Io®tes the probability of the everk with respect to the
extremely peaky — suggesting that uncertainty is resttiete density functionf;(3). Note thatP{(y,J) is not stabl¢ =
even though the real plant dynamics is located far from thg; 1, 9/ is not stavle fi(9) -d&, wherel denotes the indicator

b. Detunethe nominal controller parameters according to
the existing level of uncertainty as described 9 ),
S0 as to meet a robust stability requirement.

minVEF Hy” (1)
subject toP{(y, ) is not stablé < a.



function.P{(y,3) is not stablé is thus a function of the sole P{(y,3) is not stablé, g does not depend on the sineof
variabley. the space in whicl® is embedded. This allows to keep the
As it appears, in this approach one tries to keep the detucemputational effort of randomized algorithms small.

ing effect as moderate as possible, provided that a robubhe optimal controller robust in probability can be complute
requirement on stability is satisfied. The main feature herat low computational effort by solving the following opti-
is that the guarantee on stability is given in probabilitithw mization problem in place of (1):

a level of risk no greater thaa. Obviously, by selectingr ]

to be a small number, the controller can be made as safe as MiNye ..y} |Vl

wanted. On the other hand, an exceedingly small valuerfor subject to% S_11(y.9,) is not stable< O — €.

may result in an overconservative controller and this mig .

slow down the performance improvement through iterationhitham;s _to '{h(;:ot;?m< L rt]hfd fou_r;ﬁioh_|sh SUCE t}.?.?t

To this purpose, the degree of freedom in the choicer of {(y,9) is not stablg < a holds wi 'gh probability
greater than % 0.

is a point of strength of the probabilistic approach as on
P g b bp Remark 3:Before proceeding, we are well advised to

can tune the robustness level depending on the applicatio ) i . . .
at hand P ¢ PP rar\}se a delicate point, namely tlirse of dimensionality

Another important feature of the probabilistic robust con!ndeed' in order 1o explore the entlrg controller set, th@ﬂu
t?er p of samples{ yl,...,yp}, must increase exponentially

troller is that it can be computed at a low effort by means o hl the di ionality of th I
a randomized approach (see e.g. [14] and [4]). For the saldth !, the dimensionality of the controller parameter space.

of completeness, a short resume of the results useful in tHE this way, p becomes very large even for relqtlvely small

iterative control context is provided in the following. values ofl and, correspondingly, the computational burden

Let {Vl y} be p samples off. We search for the of the algorithm for the search of the best controller become
P p .

best controller parameter amor{gll,...,yp}, rather than rapidly intractable. However, in contrast to what happened

over the entire feasible sét We suppose that the samplesfor ©, the dimensionality of” is not required to be large.

{yl,...,yp} are drawn in such a way they densely cover thJen f‘.”‘Ct’ as we W|II.see in Section V, n many cades 1
feasible sef suffices, so that this problem automatically cools dofan.
In order to computey®, an empirical counterpart of the

probability P is used. Precisely, define IV. A COMPLETE ITERATIVE ROBUST CONTROLLER

DESIGN SCHEME

~ . 13 . . . . .
P{(y,d) is not stablé¢ = = Z 1(y,.8,) is not stable By complementing the algorithm described in Section |
9 with all the points discussed in previous two sections, we
where 8y’s are q parameter vectors independently extracte@btain the following iterative robust algorithm:

from © according to the probability densitfy($ ). Note that 0. (initialization step) connect an initial controlle€y in

P{(y,9) is not stabl¢ is again a function of the solg feedback to the plant. Choose the model clagsalong
The approximation introduced whéh is used in place of with the model class?s. Choose also the detuning
P can be kept moderate by suitably selecting the nunaper parameter spac€ and sample it with{y,...,yp}.
of extracteddy’s. The well known Hoeffding theorem ([14], Selecta, € and 3, and letq > =%, In %p Seti =1;
[4]) can be used to this aim. 1. from the data collected in closed-loop:
Theorem 1 (Hoeffding)Fix two real numbers > 0 and La identify a low-order modeM(ﬁi) in .z,
0>0.1f o1 1.b estimate the probability densitfy(3) over the high
9> (2¢%)7"In(2p/9), @) order class of models7g;
then P{(y,3) is not stablé < @{(y,ﬁ) is not stablé + ¢, 2. designC based onM(Xi), and fromG build G (y).
Vye{w,...,yp} with a probability greater than-14. O Extract 9, k= 1...q, according tofi(J) and let
Remark 1:Theorem 1 says thaP{(y,J) is not stablé )
can be approximated b§{(y,9) is not stabl¢ with arbi- vo= arg'_”r"%{vi-,.-#p}”VH
trary precision as long as the numheof 9y extractions is subject tog et 1,9, is not stable< O — €;

sufficiently high. Note however that the result holds trughwi
a certain probability + & only. This is a consequence of the
fact thatP{(y,¢) is not stablg is a random element depend-
ing on the extractedy,...,9q: [P{(y,?) is not stabl¢ —
P{(y,9) is not stablé¢| can be smaller thare for some
multi-samples and not for others, addrefers to the proba- In this section an application example of the iterative
bility of extracting a “bad” multi-samplés, ..., Jq. Finally, algorithm is presented. This application example has been
note thatg depends on the logarithm &fso that a very small chosen for its simplicity in order to focus on some issues of
values ofd can be forced-in without lifting] too much.J  the new iterative controller design scheme rather than on

Remark 2:Note that, in contrast to other non-randomtechnical details. Many implementation features disadisse
numerical methods which can be used to computeerein are of general breath.

3. conneciCi(y°) to the plant and check for the result: if
J(Gi(y°),P) < k then stop; elsé=i+1 and go to 1.

V. APPLICATION EXAMPLE



A. The plant description wherev(t) is a noise process arfé(z,3) is parameterized

Consider the Grenoble transmission system presented th’foiulgh a Fjr;ite Impulseilr?es.ponse (FIR) filter, Pez, §) =
[10]. This system is constituted by three pulleys connectethiZ ~+ 922 “+...+3Inz " with n=100.

by two elastic belts as shown in Figure 3. The system inpl_lﬂientiﬁcation was performed through the InStrumental Val’i
able (1V) method, and the probability density$) was eval-

uated by resorting to the asymptotic theory of IV techniques
The chosen??y presents the following advantages:

1. The asymptotic theory for IV does not suffer from
reliability problems, see [7].

2. High order FIR models are well suited to provide a
full description of the true plant since the numbeof
parameters necessary to desciyg) can be determined

Fig. 3. The Grenoble transmission system. in real applications by simply inspecting the impulse
plant response.

N N
u(t) y@®

u(t) is the angular position of the first pulley, while the outpuf, finally recall that selecting to be large has no conse-

y(t_) is. the angular position of the thirq. pulley. The_ controlquence on the randomized procedure of Section IIl.
objective was to make the angular position of the third gulle

as close as possible, over a suitable bandwidth, to a given . .
reference signai(t) (tracking control problem). C. Nominal controller and detuning

In the simulation, we assumed to work with a sampled model g o minal controller we used a linear deadbeat controller

of the Grenoble transmission system, i.e. the input—outpwhich can be obtained from the identifiedto y nominal
dynamic behavior of the plant was described by the fOHOWingransfer functionB(z X-)/A(z X-) as follows:
Al 5 /] .

discrete-time linear transfer function (see [10]):
P(2) = Bp(2) 0.033z+0.054 AZA)

T Ae(z)  Z-2858+3722—2652+087 Ci(2) = BLAZ Bz A
Such transfer function is characterized by two pairs of T T
complex conjugate _stable pole_zs, _giving rise tq MO resonaiherek — 4 is the order ofA(z,Xi). If B(Z,Xi) — Bp(2) and
peaks. A zero outside the unit circle (non minimum phasg\(zji) — Ap(2) (i.e. the real planP(2) is exactly identified),
system) is also present. =

At the beginningP(z) was operated witto(2) — 0.05. Z22 the complementary sensitivity function obtained wi@&(w)

z—1' i ; ic E(7) — W 1
a (linear) P! controller which resulted in a stable but slow® connected wittP(2) is Fi(2) = B(z 4)/Bi(1, A)2', a FIR

closed-loop system. A 1-degree-of-freedom control schemsystem. This means that the reference signal is tracked in

where the controller is fed by the difference between thd finite number of steps (the controller is high-performing

reference and the actual output was adopted. n th?. nominal case When msteadD(z)_ 1S not correctly
identified,Ci(z) may even lead to instability.

B. Identification and uncertainty estimation The detuning was obtained with a well known technique in
As required by the iterative approach, identification waghe Internal Model Control (IMC) context (see e.g. [11]).

performed in closed-loop. A square wave with peribd= PreciselyCi(z y) was derived fronCi(z) as follows:

100 and amplitude equal to 1 was used as reference in- R

put, and data collection lasted = 3000 data points. In c B Az A)(1—y)k

addition, during the identification phase, the system dutpu (zy) = B(1 X-)(z— y)k—B(z X-)(l— y)k’

was corrupted by an additive noiskt) = -Z&e(t), where o o

e(t) = WGN(0,0.000) (WGN = White Gaussian Noise). wherey € [0,1). Note thatC(z,0) _G(2).

Note thatd(t) is a highly-correlated stochastic noise as if o F(zy) E)e the compleméntary sensitivity function ob-

is typical of many real applications. Its standard deviai® tained v:/herP(z) is operated Wit'Ci (z,y). Then, the follow-

0.026. ~ _ _ ing comments are in order. First, thegz, y) steady-state gain

The nominal modeM(A;) of reduced complexity was iden- ;o always 1. Second, when— 1, the poles of (z, y) tend to

tified in the following class of ARMAX(4,2,4) models: the poles opr(z)Bi(l,Xi)(z— v)%, which are stable provided

My = {y(t) _ B(Z,A)u( ) C(zA) (t)} that P(z) is stable, independently of the mismatch between
A(zA) A(ZA) ’ P(2) and the identified moderdbust stability. On the other
wheren(t) = WN(0,02) and A is the vector of the coeffi- hand, whery — 1, the dominant poles are those placeg;in
cients ofA,B,C. which means that the control system response is very slow.
As for the estimation off;(3), the following high-order Thus, altogethery plays the role of a detuning parameter:
model class?y was considered asy— 0, nominal performance are achieved, whergas 1

leads to a degradation of the performance but also guasantee
Py = {Y(t) =P(z,9)u(t) +V(t)}7 internal stability of the closed-loop system.



D. Simulation results

7392.

By applying the iterative controller design scheme of N€ detuning parametey® obtained at the first iteration
Section IV with the implementation choices described abov&!™Med out to be equal to.& Its large value indicates a

to the Grenoble system we achieved to the following result

The reduced ordeu to y transfer functiorB(z,)\l)/A(z,Xl)

estimated at the first iteration (i=1) is depicted in Figure 4

L
10" o

Fig. 4. Estimated nominal model at the first iterations and tteatBode
diagrams (continuous and dashed lines, respectively).
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Fig. 5. Uncertainty at the first iteration (FIR models).

As for the estimated probability density, Figure 5 représen
the Bode plot of some models extracted according; {6 ).
The uncertainty estimated at iteration 1 was quite large
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Fig. 7. y; at each iteration.

The randomized algorithms were applied with= 0.05,

£ =0.03 andd = 0.0001 while the parameter set of feasible

controllersI” = [0,1) was sampled inp = 30 points. By
applying formula (2), the resulting numbey of models
extracted according to the estimated probability densig w

gonservative choice which is justified by the high level of

uncertainty. The step-response of the corresponding dlose

loop system is depicted in Figure 6.

Carrying on the iterative procedure the identified nominal

model became a more and more accurate description of
the real plant, and, correspondingly, uncertainty tended t

concentrate around the true system. This led to the sefectio
of y°’s as indicated in Figure 7. Figure 6 shows that the

control performance rapidly improved through iterations,

preserving always the robust stability.

VI. CONCLUSIONS

In this paper, we introduced a new robust iterative con-
troller design scheme through which the controller perfor-
mance can be rapidly improved through iterations, without
experimental over-effort. Moreover, the robust stabilisy
always preserved. Many implementation issues have been
discussed, and in the simulation example the proposed meth-
ods provided good results.
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