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Abstract— Reportedly, robust control can lead to designs
that are overconservative because all emphasis is placed on
safe-guarding the designed closed-loop against all possible
doomy occurrences, and this is done at the price of sacrificing
performance. When 100%guarantee of robustness is required,
standard robust control is indeed the way to go. However, in
many applications, robustness in100%of the cases is not really
necessary and it is a fact that accepting a small compromise
in robustness guarantees (e.g. accepting a99% guarantee) can
often times lead to a huge improvement in performance.
At the present stage of knowledge, the real stumbling-block is
the lack of computationally-tractable algorithmic methods to
work out 99%-guaranteed solutions trading the remaining1%
of guarantee for performance. This paper aims at opening new
directions to solve this problem, and we show that this result
can be achieved through randomization.

I. I NTRODUCTION

Many robust control problems can be cast as optimization
programs where the figure of merit expresses performance
and the constraints (usually parameterized by the uncertain
plant parameters) represent the robustness requirements.In
many – albeit not all – cases, the program is convex (e.g.
all problems with LMI constraints), see [4], [5], [10]. This
note refers to this latter class of problems and the approach
presented herein applies under the assumption of convexity.

A. Robust programs

In general terms, a robust program for controller design is
as follows

RP : minα∈Rd cTα

subject to: fδ (α) ≤ 0, ∀δ ∈ ∆,
(1)

where α is the vector of the controller parameters, and
fδ (α) ≤ 0 is a family of convex constraints parameterized
by δ , the vector of uncertain parameters of the plant.
Requiring that fδ (α) ≤ 0,∀δ ∈ ∆, delivers full guarantee
that – whatever the plant is – the solution does not violate
the corresponding requirement. Note that linearity of the
objective function is without loss of generality since any
problem of the kind minα∈Rd c(α), wherec(α) is a convex
function, can be re-written as (hereq is a slack variable)
minq∈R,α∈Rd q, provided that constraintc(α) ≤ q is added
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to the other constraints.

Example 1 (feed-forward pole/zero cancellation):
Consider the discrete-time problem depicted in Figure 1,
where one is required to design a controller1+ αz−1 so

1+δ z -1
y(t )u( t )r( t )

1+α z -1
1

Fig. 1. A feed-forward compensation problem.

as to achieve a transfer function1+αz−1

1+δz−1 from r(t) to y(t)
as close as possible to the identity transfer function in the
2-norm sense.
The plant is uncertain in that the plant poleδ is only known
to belong to a certain set of feasibility:δ ∈ ∆ ⊆ R. Then,
the goal is to find a controller which minimizes the2-norm
in the worst case. In mathematical terms, this amounts to
solve the following robust program:

min
α∈R

max
δ∈∆

∥

∥

∥

∥

1+αz−1

1+δz−1 −1

∥

∥

∥

∥

2

2
=

min
α∈R

max
δ∈∆

1
2π

∫ π

−π

∣

∣

∣

∣

1+αe− jω

1+δe− jω −1

∣

∣

∣

∣

2

dω,

which, in turn, can be rewritten as anRP of the form(1):

min
q∈R,α∈R
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≤ q, ∀δ ∈ ∆. (2)

To see this, note that, given anα, the slack variable q
represents an upper bound on the min-max problem cost
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achieved whenδ ranges over the uncertainty

set ∆. By solving(2) we seek thatα which corresponds to
the smallest upper bound q.

One recognized drawback of robust convex programs is
that they tend to returnconservativesolutions, because the
solution is determined by a few “ill” plant instances in the
uncertain domain, [2], [13], [14], [16]. For instance, in the
setting of Example 1, if∆ = {−0.9}∪ [0.85,0.95] (i.e. all
possible plants have a positive pole located around 0.9 with
the sole exception of a single case where the pole is−0.9), no
high-performing compensator can be found according to (2),
although it is apparent that the controller 1+0.9z−1 attains
a good result in all cases except just one.



B. Randomized approach

Dealing with an infinite number of constraints (one constraint
for each δ ∈ ∆ where ∆ is usually a continuous domain
containing an infinite number of possibleδ occurrences)
is hard, [3], [6]. For this reason, a stream of literature has
recently sprung up where the infinite wealth of occurrences
in ∆ is tamed by only concentrating on a finite number of
possible situations, picked at random from the original set
∆, see [8]. The goal of these contributions is to get as close
as possible to the robust solution by following a randomized
route which is alternative to standard deterministic methods
and which can be pursued at a doable computational effort.
This paper is cast in this same line of research, but opens
up new horizons in the direction of enlightening procedures
for achieving a different objective: that of trading robustness
for performance.

Suppose thatN independent and identically distributed plant
parameter vectorsδ (1), δ (2), . . . , δ (N) are extracted from∆
according to some user-chosen probability Pr (sampling or
randomization of∆). Depending on the situation at hand,
Pr can have different interpretations. Sometimes, it is the
actual probability with which uncertainty parameters occur.
Other times, Pr simply describes the relative importance
we attribute to different uncertainty plant instances. In the
randomized approach of [8], it is suggested to concentrate
on the extractedδ (i)’s only and to perform optimization
with only the corresponding constraints in place:

RPN : minα∈Rd cTα

subject to: fδ (i)(α) ≤ 0, i = 1, . . . ,N.

This seemingly naive approach finds a solid mathematical
reason of being in a theory that provides guarantees about
the level of violation of the so constructed solution with
respect to all other unseen constraints in the∆ set (see [8],
Theorem 1).

In this paper we take a fundamental step forward with
respect to the approach of [8]. Along this latter, indeed,
after extractingδ (1), δ (2), . . . , δ (N), one is facing with a
finite optimization problem where allN constraints have to
be satisfied; again, as in the original robust problem RP,
just few constraints usually determine the solution and the
solution is on the conservative side. Breaking up with this
paradigm, we here allow the user to a-posteriori discard
some of the constraints, those that are more adverse to
the control objective. This way, the optimization cost is
improved, at times by a large quantity. The fundamental
fact established in this paper is that the so-found solution
is still robust to an extent that can be modulated by the
number of constraints that are actually discarded, in other
words the portion of constraints in the original∆ set that
are possibly violated by the solution is kept under control
by a new theory as introduced in this paper.

One additional remark of practical importance is that

the procedure according to which constraints are discarded
is totally arbitrary as far as the theoretical result about
violation is concerned. This is important because, normally,
discarding the constraints that at best improve the control
objective is not easy and it is in fact a hard combinatorial
problem. Here, the user is not required to discard the
constraints optimally, he/she is allowed to use his/her
favorite algorithm, perhaps a greedy one, and still the theory
remains valid.

II. V IOLATION RESULTS

Let k < N and let A be a constraints removal algorithm
through whichk constraints are discarded fromδ (1), . . . ,δ (N).
The output ofA is the setA (δ (1), . . . ,δ (N)) = {i1, . . . , iN−k}
of N−k indexes from{1, . . . ,N} representing the constraints
still in place. Consider then the following randomized pro-
gram wherek constraints are removed as indicated byA :

RPA
N,k : minα∈Rd cTα

subject to: fδ (i)(α) ≤ 0, i ∈ A (δ (1), . . . ,δ (N)).

A can e.g. be a greedy removal algorithm where one selects
in succession those constraints which – if removed one by
one – lead each time to the largest immediate improvement
in the objective function. This greedy approach has the great
advantage of being implementable at a low computational
effort.
Once the solution of RPAN,k, say αN,k, has been found, one
can inspect the incurred control objective valuecTαN,k

for satisfaction, while the following Theorem 1 provides
theoretical guarantees that the solution violates less than
a fraction γ of the total amount of constraints in∆ with
probability 1−β .

Theorem 1:Fix two real numbersγ ∈ (0,1) (violation
level) andβ ∈ (0,1) (confidence level). IfN andk are such
that N−k > d and

(

N
d

) k

∑
i=0

(

N−d
i

)

γ i(1− γ)N−d−i ≤ β , (3)

then, independently of the removal algorithmA , with prob-
ability at least 1−β , we have that

Pr{δ ∈ ∆ : fδ (αN,k) > 0} ≤ γ. (4)

Proof: see [9]. The proof is also available on request from
the authors.

Remark 1: In simple words, equation (4) says that the
designed controller corresponding toαN,k is robust up to
level γ, that is the robustness requirements are violated for
at most aγ-fraction of the plants.
As for probability 1− β , one should note thatαN,k is a
random element depending on the extractedδ (1), . . . ,δ (N).
Therefore, the violation probability Pr{δ ∈ ∆ : fδ (αN,k) > 0}
is a random variable too, and it can satisfy (4) for some
constraints extractions and not for others.β refers to the
probability of observing a “bad” multi-sampleδ (1), . . . ,δ (N)



such that (4) does not hold.

Remark 2:Formula (3) can be used to design an experi-
ment, where one wishes to a-priori fix desired levels forγ and
β , as well as the numberk of constraints one wants to remove
to a-posteriori improve the control cost, and then determine
the numberN of constraints necessary for achieving these
levels of violation and confidence. To this end,N satisfying
(3) is determined via numerical computation. For the purpose

β vs. γ 0.1 0.05 0.01
10−3

387 828 4647

10−6
476 1008 5541

10−9
560 1179 6398

TABLE I

N GIVEN BY (3) WHEN k = 10 AND d = 2.

of illustration, some values ofN returned by (3) withk = 10
and d = 2 for some typical values ofβ and γ are given in
Table I.
It is perhaps worth noticing that the dependence ofN on β is
logarithmic, so that small values ofβ (10−10 or even 10−20)
can be forced in without affecting too much the number of
constraints to be extracted. This means that, for practical
purposes,β has a very marginal relevance.

A. Comparison with chance-constrained optimization

Stronger results can be established when algorithmA is op-
timal (call it A

∗), that is, among the extractedδ (1), . . . ,δ (N),
the k constraints generating the largest improvement in the
objective function are left out. In this latter case, RPA

N,k
becomes the following program:

RPA
∗

N,k : minα∈Rd cTα
subject to: fδ (i)(α) ≤ 0 for at least

N−k constraints out of
the N extracted ones,

(5)

where optimization is intended to be performed not only
over α but also over thek constraints to be discarded.
That is, one is required to discard the constraints whose
removal achieves the largest improvement in performance
as compared to any other possible removal ofk constraints.

RPA
∗

N,k is the counterpart withfinite constraints of the
so-called chance-constrained optimization program CCPγ
associated to the RP in (1), see [12]:

CCPγ : minα∈Rd cTα

subject to: fδ (α) ≤ 0 with probability Pr≥ 1− γ.

(6)
Thus, CCPγ is an optimization program with infinite
constraints where however constraint violation is tolerated
in order to alleviate the conservatism of RP. The portion
of violated constraints, however, must be no larger thanγ,
and it has to be optimally chosen so as to achieve the best
improvement in the objective function.
Letting α∗

γ be the optimal solution of CCPγ , the optimal

objective valuecTα∗
γ is a decreasing function ofγ and

provides a quantification of the trade-off between robustness
and performance.

Theorem 1 establishes a fundamental link between the
chance-constrained program (6) and the randomized
program (5). Indeed, Theorem 1 says that the solutionα∗

N,k

of RPA
∗

N,k is feasible for CCPγ with large probability 1−β ,
provided that (3) holds. The following theorem further links
the two problems by relating their optimal cost.

Theorem 2:Fix two real numbersε ∈ (0,1) (accuracy
level) andβ ′ ∈ (0,1) (confidence level). IfN andk are such
that N−k > d and

N

∑
i=k+1

(

N
i

)

(γ − ε)i(1− γ + ε)N−i ≤ β ′
, (7)

then, with probability at least 1−β ′, we have that

cTα∗
N,k ≤ cTα∗

γ−ε .

Proof: see [9]. The proof is also available on request from
the authors.

Simply put, Theorem 2 says that the control cost achieved
by solving RPA

∗

N,k is no worse than the performance of
CCPγ−ε , whereε is a degradation margin.

Remark 3:The optimal removal ofk constraints among
the N initial ones is a nontrivial combinatorial problem.
Indeed, a brute-force approach (where one solves the op-
timization problems for all possible combinations ofN− k
constraints taken out from the initial set ofN constraints and
then choose that combination resulting in the lowest value
of the objective function) requires to solve

(N
k

)

optimization
problems, a truly large number in general.
In [11], [1] the point is made that constraints can be
removed sequentially by choosing each time among the so-
called support constraints only. A support constraint is a
constraint whose elimination improves the objective function
(see Appendix A for a formal definition). It has been proven
in [7], Theorem 2, that among a finite set of constraints at
mostd can be of support (d, we recall, is the dimensionality
of the optimization variableα). This observations reduces
the actual number of possible combinations of constraints to
be taken into account in the problem of optimally discarding
k constraints, resulting in an algorithm that require to solve
O(min{N ·dk,N ·kd}) optimization problems only.
Admittedly, however, even for relatively small values ofd
(say e.g.d = 10),N ·kd andN ·dk grow rapidly withk, and the
algorithm complexity becomes intractable even for simple
optimization problems (e.g. linear or quadratic programs)
for which efficient solvers are available, [5], [15]. This sets
practical limits to the use of the optimal algorithmA ∗.

III. S IMULATION RESULTS

We conclude the paper with a simple 1-dimensional example
which helps gain insight in the presented results.



Let us consider the problem:

minα∈R α

subject to:α ≥ δ , δ ∈ [0,1].

Here, fδ (α) = δ −α with δ ∈ ∆ = [0,1]. Suppose also that
Pr is uniform over∆.

For brevity, we henceforth letV(α) = Pr{δ ∈∆ : fδ (α) > 0}.

The CCPγ optimum is achieved by removing the set
[1− γ,1] from ∆, leading to the optimal solutionα∗

γ = 1− γ
and toV(α∗

γ ) = γ.

In this 1-dimensional setting, the greedy algorithm for
constraints removal is also the optimal algorithmA ∗

and given a multi-extractionδ (1), . . . ,δ (N), the optimal
solution is obtained by removing thek largestδ (i)’s and by
letting α∗

N,k to be equal to the(k+ 1)th δ (i) value. Also,
V(α∗

N,k) = 1−α∗
N,k and the optimal cost isα∗

N,k.

First, consider the casek = 0, i.e no constraints are
removed. Figure 2 depicts the probability distribution of
V(α∗

N,0), where we have preferred to display probability in
the x-axis, instead of in they-axis as it is more often done.
In this way, given an interval over thex-axis, its length
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Fig. 2. V(α∗
N,0) against probability forN = 10 (solid line),N = 30 (dashed

line), N = 200 (dashed-dotted line).

represents probability over the multi-extractions domain∆N

and the vertical values represent the correspondingV(α∗
N,0)

values.

Fix any γ, γ = 0.4 for example. As it appears, the
portion of multi-extractions for whichV(α∗

N,0) > γ rapidly
becomes smaller and smaller asN increases, i.e. feasibility
for CCPγ is attained with probability rapidly approaching 1.

On the other hand, however, whenV(α∗
N,0) ≤ γ, V(α∗

N,0) is
much lower thanγ for most multi-extractions. This means
that the violation ofα∗

N,0 will be much less than that for
α∗

γ with high probability, entailing that the objective value
of α∗

N,0 will be poor as compared to the chance-constrained
solution, where violationγ is allowed for. From this,
we see thatk = 0 (no constraint removal) is unsuitable,
and discarding constraints is necessary for simultaneously

securing constraint satisfaction and performance.

Consider now a fixedN, say N = 200, and let us
have a look at what happens fork 6= 0. As Figure 3 shows,
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Fig. 3. V(α∗
N,k) for N = 200 andk = 10,40,70.
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Fig. 4. V(α∗
N,k) for N = 200 andk = 70.

while k is let to increase the curve representingV(α∗
N,k)

gets flat at a vertical value that increases withk. For
k = 70, most multi-extractions have a violation probability
near γ = 0.4. Precisely, violation betweenγ − ε = 0.3 and
γ = 0.4 is achieved with probability 0.83 (see Figure 4
where a violation outside[0.3,0.4] occurs in Bi ∪ Bii ).
Correspondingly,cTα∗

N,k = 1−V(α∗
N,k)≤ 0.7= cTα∗

γ−ε with
high probability (inspect Figure 4 again wherecTα∗

N,k ≥ 0.7
in Bii only). This flatness behavior is at the basis of the
fact that feasibility and performance can be simultaneously
achieved by discarding constraints.

Thus, we have seen by direct inspection thatN = 200
andk = 70 suffice to simultaneously guarantee

V(α∗
N,k) ≤ 0.4

cTα∗
N,k ≤ cTα∗

0.3,
(8)

with probability 0.83.
By applying Theorem 1 and Theorem 2 withd = 1, γ = 0.4,
ε = 0.1, we find thatN = 592 andk = 196 lead toβ = 0.13
andβ ′ = 0.04 so that result in (8) is guaranteed to hold with
probability 1−β −β ′ = 0.83 as before. While there is a gap
between the actualN and k and those given by Theorem 1
and Theorem 2, the strength of these theorems is that they
are valid for every convex optimization problem.
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APPENDIX

A. Support constraints

Consider a generic optimization problem with a finite number
of constraints:

P : minα∈Rd cTα

subject to: fi(α) ≤ 0, i = 1, . . . ,N.

Let ᾱ be the optimal solution (existence and uniqueness
of ᾱ, as well as of the solution of all other problems, are
assumed here for granted).

Definition 1 (support constraint):The r − th constraint
fr(x)≤ 0 is asupport constraintfor P if cT ᾱr < cT ᾱ , where
ᾱr is the optimal solution of the program Pr obtained from
P by removing ther − th constraint, namely:

Pr : minα∈Rd cTα

subject to: fi(α) ≤ 0, i = 1, . . . , r −1, r +1, . . . ,N.

¤

The following theorem has been proved in [7], Theorem 2.

Theorem 3:If fi(α), i = 1, . . . ,N, are convex functions,
then the number of support constraints for Pr is at mostd,
the size ofα.


