Modulating robustness in robust control:
making it easy through randomization
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Abstract— Reportedly, robust control can lead to designs to the other constraints.
that are overconservative because all emphasis is placed on

safe-guarding the designed closed-loop against all possible Example 1 feed-forward pole/zero cancellation
doomy occurrences, and this is done at the price of sacrificing

performance. When 100% guarantee of robustness is required, Consider th_e dlscrgte-tlme prpblem depicted in Figure 1,
standard robust control is indeed the way to go. However, in Where one is required to design a controllér+ az = so
many applications, robustness inL00%of the cases is not really

necessary and it is a fact that accepting a small compromise

in robustness guarantees (e.g. accepting @% guarantee) can u(t) - 1
often times lead to a huge improvement in performance. ”
At the present stage of knowledge, the real stumbling-block is
the lack of computationally-tractable algorithmic methods to
work out 99%guaranteed solutions trading the remaining1% Fig. 1. A feed-forward compensation problem.
of guarantee for performance. This paper aims at opening new
directions to solve this problem, and we show that this result
can be achieved through randomization.
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as to achieve a transfer functio ig;j from r(t) to y(t)
as close as possible to the identity transfer function in the

. INTRODUCTION 2-norm sense.

... The plant is uncertain in that the plant pofeis only known
Many robust control problems can be cast as optimization : -

! . 10 belong to a certain set of feasibilityd € A C R. Then,
programs where the figure of merit expresses performanﬁqe

. ; e goal is to find a controller which minimizes tBenorm
and the constraints (usually parameterized by the uncertal : ;
; In the worst case. In mathematical terms, this amounts to
plant parameters) represent the robustness requirenients. ; ]
. . solve the following robust program:
many — albeit not all — cases, the program is convex (e.g.

all problems with LMI constraints), see [4], [5], [10]. This _ +azl 2

note refers to this latter class of problems and the approach mmax| 1 571 =
presented herein applies under the assumption of convexity S 5

A. Robust programs O%II(KJ?&XZTLH m_l dow,

In general terms, a robust program for controller design ihich, in turn, can be rewritten as aRP of the form(1):
as follows _
. T ]g“aneR
RP: min,gaC O aex,
1)

subject to:fs(a) <0, V€A, subject to:
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where a is the vector of the controller parameters, and ] ) )
f5(a) <0 is a family of convex constraints parameterized© Se€ this, note that, given am, the slack variable q

by &, the vector of uncertain parameters of the planf€Presents an upper bound on the min-max problem cost
Requiring thatfs(a) < 0,¥d € A, delivers full guarantee l&ig;i —1” achieved wherd ranges over the uncertainty
that — whatever the plant is — the solution does not violateet A. By solving(2) we seek thatr which corresponds to
the corresponding requirement. Note that linearity of théne smallest upper bound q.

objective function is without loss of generality since any
problem of the kind mip_ga c(a), Wwherec(a) is a convex One recognized drawback of robust convex programs is
function, can be re-written as (hergis a slack variable) that they tend to retureonservativesolutions, because the
MiNger qera 0, Provided that constraint(a) < g is added solution is determined by a few “ill” plant instances in the
uncertain domain, [2], [13], [14], [16]. For instance, ineth
Paper supported by the MIUR national project “Identificatand adap- setting of Example 1. ifA = {_0.9} U [0.85 0.95] (i.e. all
tive control of industrial systems” ible ol h ’ .. e | ’ d h
M.C. Campi is with the Dipartimento di Elettronica per I'’Automiane, possible p ams_ ave a posmve pole locate arouﬁd_ vt
Universita di Brescia, via Branze 38, 25123 Brescia, Itali&-mail: the sole exception of a single case where the poledi9), no
canpi @ng. uni bs.it _ _ _ high-performing compensator can be found according to (2),
S. Garatti is with the Dipartimento di Elettronica ed Inforrcee, Ith hiti h h ller-D.97-1 .
Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milanoal}. E-mail: although it Is apparent that the controlles-.9z"" attains

sgaratti @let.polim.it a good result in all cases except just one.




B. Randomized approach the procedure according to which constraints are discarded

Dealing with an infinite number of constraints (one constrai is totally arbitrary as far as the theoretical result about
for each € A where A is usually a continuous domain violation is concerned. This is important because, noynall

containing an infinite number of possibi® occurrences) discarding the constraints that at best improve the control

is hard, [3], [6]. For this reason, a stream of literature hagbjective is not easy and it_ Is in fact a hard combinatorial
recently sprung up where the infinite wealth of occurrencd¥©Plém. Here, ‘the ‘user is not required to discard the
in A is tamed by only concentrating on a finite number ofonstraints optimally, he/she is allowed to use his/her

possible situations, picked at random from the original ségvorite algorithm, perhaps a greedy one, and still theheo

A, see [8]. The goal of these contributions is to get as clod§Mains valid.

as possible to the robust solution by following a randomized [1. VIOLATION RESULTS

route which is alternative to standard deterministic mésho Let k< N and let< be aconstraints removal algorithm
and which can be pursued at a doable computational eﬁofﬁrough whichk constraints are discarded frogft) . ™).
This paper is cast in this same line of research, but OpeR$,q output ofe/ is the SEW(5<1) 6('\‘)) — (i1 7... ’iN o
up new horizons in the direction of enlightening procedure&c o P
for achieving a different objective: that of trading romess
for performance.

N —kindexes from{1,...,N} representing the constraints
still in place. Consider then the following randomized pro-
gram wherek constraints are removed as indicated.dzy

Suppose thal independgnt and identically distributed plant RP,ﬁfk: MiNgcga €T O

parameter vector', 5@, ..., 5" are extracted fron subject to:f5 (@) <0, i € #(5D),...,5M).
according to some user-chosen probability Pr (sampling or
randomization ofA). Depending on the situation at hand,« can e.g. be a greedy removal algorithm where one selects
Pr can have different interpretations. Sometimes, it is th@ succession those constraints which — if removed one by
actual probability with which uncertainty parameters gccuone — lead each time to the largest immediate improvement
Other times, Pr simply describes the relative importancé the objective function. This greedy approach has thetgrea
we attribute to different uncertainty plant instances. He t advantage of being implementable at a low computational
randomized approach of [8], it is suggested to concentragsfort.

on the extractedd)’'s only and to perform optimization Once the solution of R§,, say ank, has been found, one
with only the corresponding constraints in place: can inspect the incurred control objective valokay k

for satisfaction, while the following Theorem 1 provides
theoretical guarantees that the solution violates less tha
subject to:f5i(a) <0, i=1,...,N. a fraction y of the total amount of constraints i with

. . : ) . ._probability 1— 3.
This seemingly naive approach finds a solid mathematical

reason of being in a theory that provides guarantees about-l-heorem 1:Fix two real numbersy € (0,1)
the level of violation of the so constructed solution Withlevel) andg € (0,1) X
respect to all other unseen constraints in theet (see [8], thatN —k > d ar;d

RPN : minggaCla

(violation
(confidence level). IN andk are such

Theorem 1). .
N N—d\ ; N—d—i

. 1- <B, 3
In this paper we take a fundamental step forward with (d)%( i )V( V) =P )
respect to the approach of [8]. Along this latter, indee . : . )
after extractingd, 5@, ..., 3™, one is facing with a q;ﬂbe"?tylg(:(?gae;dle_n ;I;y \?V];tr;]ea\;gThogtal algorithun, with prob
finite optimization problem where aN constraints have to '
be satisfied; again, as in the original robust problem RP, Pr{d cA: fs(anyx) >0} <. 4)

just few constraints usually determine the solution and the

solution is on the conservative side. Breaking up with thi®roof: see [9]. The proof is also available on request from

paradigm, we here allow the user to a-posteriori discarthe authors.

some of the constraints, those that are more adverse to

the control objective. This way, the optimization cost is Remark 1:In simple words, equation (4) says that the

improved, at times by a large quantity. The fundamentalesigned controller corresponding ta  is robust up to

fact established in this paper is that the so-found solutidevel y, that is the robustness requirements are violated for

is still robust to an extent that can be modulated by that most ay-fraction of the plants.

number of constraints that are actually discarded, in othéys for probability 1— 3, one should note thatiyy is a

words the portion of constraints in the original set that random element depending on the extracd,...,6(N).

are possibly violated by the solution is kept under controTherefore, the violation probability Pd € A: f5(ank) > 0}

by a new theory as introduced in this paper. is a random variable too, and it can satisfy (4) for some
constraints extractions and not for othefs.refers to the

One additional remark of practical importance is thaprobability of observing a “bad” multi-samp&®, ..., ™)



such that (4) does not hold. objective vaIuecTa;j is a decreasing function of and

provides a quantification of the trade-off between robustne
Remark 2:Formula (3) can be used to design an experiand performance.

ment, where one wishes to a-priori fix desired levelsyfand

B, as well as the numbdrof constraints one wants to removeTheorem 1 establishes a fundamental link between the

to a-posteriori improve the control cost, and then deteeminchance-constrained program (6) and the randomized

the numberN of constraints necessary for achieving thesgrogram (5). Indeed, Theorem 1 says that the solutigp

levels of violation and confidence. To this el satisfying of Rp,ff’k is feasible for CCP with large probability -3,

(3) is determined via numerical computation. For the pueposprovided that (3) holds. The following theorem further knk

the two problems by relating their optimal cost.

Bvs.y | 01 | 005 | 001

103 | 387 | 828 | 4647 -
10° 276 | 1008 | 5841 Theorem 2:Fix two real numberse € (0,1) (accuracy

109 | 560 | 1179 | 6398 level) andB’ € (0,1) (confidence level). IN andk are such
thatN —k > d and

TABLE |

N GIVEN BY (3) WHENk=10AND d = 2. S <N> (V_ E)i(l—y—l—S)N*i <B/ (7
i=%—1 ! B

of illustration, some values dfl returned by (3) wittk =10 then, with probability at least 4 ', we have that
andd = 2 for some typical values g8 andy are given in
Table 1.
Itis perhaps worth noticing that the dep(i(r;dencelan‘nﬁz(l)s Proof: see [9]. The proof is also available on request from
logarithmic, so that small values @f (10~ or even 10<°) the authors.
can be forced in without affecting too much the number of

constraints to be extracted.' This means that, for practicglimmy put, Theorem 2 says that the control cost achieved
purposesf has a very marginal relevance. by solving RR/, is no worse than the performance of
CCPR,_¢, wheree is a degradation margin.

clagx<clay ..

A. Comparison with chance-constrained optimization

Stronger rgsul}ﬁs can be established when Zilg:jlc))rht?hﬁs (?\S' Remark 3: The optimal removal ok constraints among
timal (call it &7*), that is, among the extractéd™,....0™",  the N initial ones is a nontrivial combinatorial problem.

the k constraints generating the largest improvement in thﬁ]deed, a brute-force approach (where one solves the op-

objective function are left out. In this latter case,{RP gimization problems for all possible combinations Nf- k
becomes the following program:

constraints taken out from the initial setfconstraints and

RP,(;: Ming o T a then chopse_ that cor_nbination resulting in the .IO\_/ves.t value
subject to: f50(a) <0 for at least ) of the objective function) requires to sol\(é) optimization
N — k constraints out of problems, a truly Iarge r_1umber in general. _
the N extracted ones, In [11], [1] the point is made that constraints can be

removed sequentially by choosing each time among the so-
where optimization is intended to be performed not onlyajled support constraints only. A support constraint is a
over a but also over thek constraints to be discarded. constraint whose elimination improves the objective fiorct
That is, one is required to discard the constraints whoggee Appendix A for a formal definition). It has been proven
removal achieves the largest improvement in performangg 7], Theorem 2, that among a finite set of constraints at
as compared to any other possible removak @bnstraints. mostd can be of supportd, we recall, is the dimensionality
. of the optimization variablex). This observations reduces
RP{, is the counterpart withfinite constraints of the the actual number of possible combinations of constramts t
so-called chance-constrained optimization program CCRye taken into account in the problem of optimally discarding
associated to the RP in (1), see [12]: k constraints, resulting in an algorithm that require to solv
CCR,: min, e O(min{N-d*,N-k’}) optimization problems only.
) ) N Admittedly, however, even for relatively small values af
subject to:fs(a) <0 with probability Pr>1—y.  (say e.gd = 10),N-k? andN - d* grow rapidly withk, and the
. o L ( ' algorithm complexity becomes intractable even for simple
Thus, .CCB IS an optimization program .W'th infinite optimization problems (e.g. linear or quadratic programs)
constraints where however constraint violation is tokslat for which efficient solvers are available, [5], [15]. Thigtse
in order to alleviate the conservatism of RP. The portiorﬂyractical limits to the use of the optimai alg'orithm*.
of violated constraints, however, must be no larger than
and it has to be optimally chosen so as to achieve the best IIl. SIMULATION RESULTS
improvement in the objective function. We conclude the paper with a simple 1-dimensional example
Letting a, be the optimal solution of CGP the optimal which helps gain insight in the presented results.



Let us consider the problem: securing constraint satisfaction and performance.

06 -

MiNacr O Consider now a fixedN, say N = 200, and let us

subject to:a > 5, < [0,1]. have a look at what happens for 0. As Figure 3 shows,
Here, f5(a) = 6 — a with € A=0,1]. Suppose also that . . )
Pr is uniform overA. o_g,v(aN,k) [
08 - H
For brevity, we henceforth 1&t(a) =Pr{d € A: f5(a) > 0}. 07} ;
i

The CCR optimum is achieved by removing the set 0s
[1—y,1] from A, leading to the optimal solutiony =1—y o
and toV (ay) = y. o

02

0.1

In this 1-dimensional setting, the greedy algorithm for .
constraints removal is also the optimal algorithm™ ? !
and given a multi-extractiondV,...,3N), the optimal

solution is obtained by removing tHelargestd()’s and by Fig. 3. V(ay) for N =200 andk=10,40,70.
letting ay, to be equal to thek+ 1)" 5@ value. Also,
V(ag k) =1—ayy and the optimal cost isy .

[V

First, consider the cas& = 0, i.e no constraints are Z:
removed. Figure 2 depicts the probability distribution of o,
V(ay o). where we have preferred to display probability in 06
the x-axis, instead of in thg-axis as it is more often done. 05
In this way, given an interval over the-axis, its length 04
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Fig. 4. V(ay ) for N=200 andk = 70.
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while k is let to increase the curve representivday )
gets flat at a vertical value that increases wih For
k = 70, most multi-extractions have a violation probability
neary = 0.4. Precisely, violation betweep— ¢ = 0.3 and
y = 0.4 is achieved with probability .83 (see Figure 4
Fig. 2. V(ag, o) against probability foN = 10 (solid line),N = 30 (dashed Where a violation outsidg0.3,0.4] ‘occurs in B; U B;).
line), N =200 (dashed-dotted line). Correspondinglye” oaNk=1-V(ay,) <0.7= cT _¢ With
high probability (mspect Figure 4 again WherEa > 07
represents probability over the multi-extractions domalih in B; only). This flatness behavior is at the baS|s of the
and the vertical values represent the correspon¥ifay, ;) fact that feasibility and performance can be simultangous!
values. achieved by discarding constraints.

03

02

0.1

0

Fix any y, y = 04 for example. As it appears, the Thus, we have seen by direct inspection tit= 200

portion of multi-extractions for whiclV (ay, o) > y rapidly  andk = 70 suffice to simultaneously guarantee
becomes smaller and smaller Msincreases, i.e. feasibility .
V(aN"k) <04

for CCR, is attained with probability rapidly approaching 1. T T (8)

C ayx=C Qg3
On the other hand, however, whefiay o) <y, V(ay o) is  with probability Q83.
much lower thany for most multi- extractions. This means By applying Theorem 1 and Theorem 2 wih=1, y= 0.4,
that the violation ofay o will be much less than that for £ =0.1, we find thatN = 592 andk = 196 lead to3 = 0.13
ay with high probablllty entailing that the objective valueand’ = 0.04 so that result in (8) is guaranteed to hold with
of ay o will be poor as compared to the chance-constrainegrobability 1— 3 — B’ = 0.83 as before. While there is a gap
solution, where violationy is allowed for. From this, between the actudll andk and those given by Theorem 1
we see thatk = 0 (no constraint removal) is unsuitable,and Theorem 2, the strength of these theorems is that they
and discarding constraints is necessary for simultangousre valid for every convex optimization problem.
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APPENDIX

A. Support constraints

Theorem 3:If fi(a), i=1,...,N, are convex functions,
then the number of support constraints forif at mostd,
the size ofa.

Consider a generic optimization problem with a finite number
of constraints:

P: mincpec’a

subject to:fi(a) <0, i=1,...,N.

Let a be the optimal solution (existence and uniqueness
of a, as well as of the solution of all other problems, are
assumed here for granted).

Definition 1 (support constraint)The r — th constraint
fr(x) < 0 is asupport constrainfor P if c"a; < c"a, where
a;, is the optimal solution of the program Bbtained from
P by removing the —th constraint, namely:

P

MiNgga C' o
subject to:fi(a) <0, i=1,....r—1r+1... N.
O

The following theorem has been proved in [7], Theorem 2.



