Revisiting the basic issue of parameter estimation in syste
identification - a new approach for multi-value estimation
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Abstract— In this paper, we consider one of the basic esti- course, the above setting applies also in a purely timeseri

mation problem, that of identifying an unknown parameter  framework where no input signal is present. In that case,
in a given model from measurements of input/output data. DN — {y(1),...,yIN)}.

The existing methods have been conceived for the estimation This basi bl has b dd d i in th
of the value taken by the parameter in a given functioning IS basic problem has been addressed many tumes in the

condition. However, there are situations where one has to literature, [4], [5], [8], [14], [19], but still there aretsiations
provide an estimator equally valid for different values of the pa- where a satisfactory solution is not available. In partcul
rameter associated with various functioning conditions (nalti- problems are often encountered when the parameter v@ctor
value estimation problem). The application of the availabé .5, cover a wide range of values corresponding to different
techniques lead then to poor accuracy in estimation. In this . . . . .
paper we propose a novel approach, the two-stage approach, dynamics of the pIanP: In those situations, the esumauon
tailored to the multi-value estimation problem. We compare Method should be designed so as to be equally valid for all
its performances with those achievable with other paramete possible values taken . We will refer to such a problem
estimation techniques such as Prediction Error and Kalman gsmulti-valueestimation problem.

Filter based methods. By means of a benchmark example, we |, orqer to apply currently available estimation algorithta

spot out advantages and drawbacks of each method, by also lti-val bl it to adapt the “albarit
discussing their domain of applicability. It tums that the wo  Multi-value problems, it is necessary to adapt the “algani

Stage approach offers Significant improvements_ tuning knObS” to the current Situation associated W|th the
Index Terms— System identification, Parameter estimation, unknown value taken byg. This means that a human-
White box identification, Extended Kalman filter methods. supervised tuning is required from time to time. However,

in many application frameworks such a human-supervision
|. INTRODUCTION is not possible and the estimation process should be fully

This paper focuses on the basic problem of estimatingutomatic, able to properly work independently of the value
unknown parameters in a given plant from observed datt@ken by the unknowrf. To be more concrete, this is
To be precise, suppose that data are generated by a digstrated in the following example.

namical system (continuous time or discrete time, linear or Example 1 (Pacejka’s model parameters estimation):

nonlinear, finite or infinite .dimensional, npise free or @] The determination of the lateral force generated by a tyre
to disturbances) depending on a certain parameter Veclly acting on a car can be made by resorting to the so-called

6 € RY. The system is denoted by(6) as in Figure 1. paceiva's magic formula which supplies the lateral force
While a mathematical model (and a corresponding simulatoLk 5 function of the steering angle, [16]. As is well known

such a formula is a non-linear function depending on five

i“(f) parameters. Hence the problem of determining the lateral

u(t) 0 force is _indeed that of e§timating .the.se parameters. o
— P(O) —— Depending on the tyre in use, with its own characteristics
in term of size, constitutive material, inflation pressure,

deterioration, etc., the Pacejka’s parameters may cover a
Fig. 1. The data generating system. wide variety of values. The issue is to set-up an estimation
algorithm of these parameters supplying a reliable esémat
for P(6) is available, the current value of parametlis  of the lateral force for any tyre operating conditions.
unknown and it has to be retrieved based on an experimedfearly, if the estimation algorithm has to be embedded
on the plant (white-box identification, [5]). The systemin a device installed in the car, no human-supervision is
behavior is thus observed for a certain time interval ovejjlowed, and furthermore the estimation algorithm should
which a numbeiN of input and output observation3" =  ork in absence of any information on the specific tyre

{¥(1),u(2),....y(N),u(N)} are collected. The issue is thencharacteristics, so as to obtain fair estimates notwitittey
how to exploit the information contained in the data in ordethe tyre changes during the life of the car. O

to obtain a fair estimate of the uncertain paraméeOf ] o
In this paper, we propose a new estimation method, named

Paper supported by the MIUR national project “Identificatand adap- the two-stageapproach, which is suitably tailored toulti-

tive control of industrial systems” and by CNR - IEEIT = value estimation. Its basic rationale is to reconstruct off-line
S. Bittanti and S. Garatti are with the Dipartimento di Elatica ed

Informazione, Politecnico di Milano, p.zza L. da Vinci 3133 Milano, the rel?'tionslhip Iinll<in_g the_ data to parame@'_’thrOUQh.
Italy. E-mail: {bi ttanti,sgaratti}@let.polim.it simulation trials. This is achieved thanks to an intermedia



step aiming at the generation of a setasfificial data. The B. Maximum likelihood

procedure develops in two phases: the first one transfers therne maximum likelihood (ML) approach [7], [3], [2] is
information contained in the original data into the artdici another well known estimation method taken from statistics
data, while the second one enables establishing the lifkconsists in computing the likelihood of possible valués o
between these last data and paraméter 0 given the observed data; then, the estimaté & defined
The two-stage method has a range of applicability whichs the value maximizing the likelihood.
looks much wider than that of other approaches today case of complex systems, ML suffers from major draw-
available. backs since it requires the full knowledge of the probapilit
) ) ) ~ distribution of the disturbances in order to construct the
The paper is organized as follows. First, traditionahopapility density of data as a function of the unknown
approaches to parameter estimation are briefly summarizggyameter. Furthermore, the calculation and maximizaifon
in Section Il and their advantages and drawbacks are spottgg |ikelihood raises all the computational complexityiss

out. The new two-stage approach is then discussed jfentioned before for the prediction error approaches.
Section lll, while Section IV presents a benchmark example

allowing the comparison between different techniques. ~ C. Kalman filter based approaches

Il. TRADITIONAL APPROACHES IN MULTI-VALUE In Kalman filter based methods, [1], [8], [9], [10], [11],

ESTIMATION [12], [15], [18], [21], [22], [23], parameteB is seen as a
. . . state variable by introducing an additional state equatibn
Conceptually, a parameter estimator is nothing but a fun?ﬁ . : T
e TN . : e type:O8(k+1) = 6(k) or 8(t) =0, depending if time
tion f: R*" — R which maps the measured observatlon.'lss discrete or continuods Then, the estimation problem is
DN = {y(1),0(1),...,¥(N),G(N)} into a value forf. The ! b

; : A reformulated as a state prediction problem. In this way, the
design of an estimator consists in finding such a map so th L : ) . oo e
. : . unction f mapping the data into the estimate is implicitly
the returned estimate is as close as possible to the true.val

Normally, f is deduced by exploiting the model equationsHe}tl.ned by the Kalman fll_ter equations. .
S . As is well known, even ifP(0) were a linear model, the
for P(0), and turns out to be implicitly given through some i dicti bl Id b i d h
optimization procedure resulting prediction problem would be nonlinear due to the
. introduction of the additional state equation. Thus, tagic

Three widely used methods are now outlined. one has to resort to nonlinear Kalman filtering, for which

A. Prediction Error approaches the two most common approaches are the so-called Extended
In this approach, a prediction error loss function Kalman Filter (EKF), or the Unscented Kalman Filter (UKF).
N There is a huge literature on KF methods, see e.g. [1], [8],
V(6) = Zl(y(i)_y(i,e)))2 [9], [10], [12], [18], to which we refer the reader for the
i= EKF and UKF equations.

is considered, wherg(i,6) is a predictor of the system Apart from the difficulties one can encounter when the
output derived through the model equation R{). Then, system is continuous-time and/or infinite dimensional, the
the estimate oB is obtained by minimizing/(6), i.e. actual critical issue of EKF and UKF is that, being settled in
~ . Bayesian framework, an initial guess for the estimatioorerr
6 =argminv(9). ; : :
N mean and covariance matrix must be supplied. However, the
Here, the functiorf mapping observations into an estimatectonvergence of the parameter estimate is very sensitive to
value is implicitly defined by this optimization procedure. the tuning of this mean and covariance matrix, and there
Although very intuitive, this approach suffers from severare celebrated (yet simple) examples showing the possible
drawbacks as reported in the literature, see e.g. [5]. Firdivergence/nonconvergence depending on the initiatimati
of all, the derivation ofy(i,8) may not be easy when the (see e.g. [13]). In multi-value estimation problems, théyon
modelP(8) is complex (nonlinear, infinite dimensional, etc.).possibility to obtain reasonable estimates is the re-wnin
Moreover, when the predictof(i, 8) is not perfectly tuned, of mean and covariance for the current value @®fin
the method is highly sensitive to disturbances, especédlly each operating condition. Indeed only local convergence is
low frequencies, see e.g. [5]. achievable, as shown in [6], [13], [17], [20]). Normally,
On top of that, one cannot neglect the computational burderwever, no a-priori information is available on the cutren
required by these methods. Inde&g) is typically a non 9 and the re-initialization can be performed only by data
convex function and its minimization may be tough. If onemanipulation with trial and error empirical attempts and
resorts to simple gradient-based methods, the obnoxiogaestionable findings.
problem of local minima cannot be avoided. Alternativelyjn conclusion, it appears that there is no way of making
one can consider gridding methods, but then “simulatiothe estimation process via KF methods fully automatic
would require supercomputers, and optimization an order @idependent of a human-operator supervision. This prevent
magnitude more”, [5].
All these difficulties make it impossible the efficient use of ‘Perhaps it is worth noticing that many times an additionalaéiqn of
. the type 8(k+1) = 6(k) +w(k) or 6(t) = w(t) wherew is white noise
these methods when parame&alcan cover a multitude of with suitable variance is preferred in order to increaseréaetivity of the
values as required in multi-value estimation problems.  algorithm.



the use of these approaches in many problems encounter#dand, in turn, to obtain a good estimatbr

in practice. To be more precise, the objective of the first step is to

reduce the dimensionality of the estimation problem, by

generating a new data chart: the new chart is composed
In this section we propose a new parameter estimatiqfyain ofm sequences; however, each sequence is constituted

method Wh|Ch iS Suitably tailored fOI’ the multi'VaIUe eS-lHTI by a ||m|ted numbem Of Samp|es m < N) We W|” Ca”

tion problem. such sequencemmpressed artificial data sequenaesl the

The basic rationale is to resort to the plant simulator angorresponding Chart thmmpressed artiﬁcia' data Chartn

to perform off-line interlsive simulation trials in order tOthe second Step’ the map between the Compressed artificial

reconstruct the functiorf mapping measured input/output opservations and parametis identified. By combining the

data into an estimate for the paramefer results of the two steps, the mdpis finally unveiled.

To be precise, we use ti®mulatorto generate input/output we now will give more details on each of the two stages.
data for a number of different values of the unknown

IIl. THE TWO-STAGE APPROACH

paramete. That is, we collecN measurements First stage. The first step consists in a compression of the
N L L L L information conveyed by measured input/output sequences
Dy ={y (1),u"(1),...,y" (N),u"(N)} DN in order to obtain data sequencB$ of reduced di-

mensionality. While in the dat®N the information on the
unknown parametef is scattered in a long sequence of
DY = {y?(1),u?(1),...,y*(N),u(N)} N samples, in the new compressed artificial dBfasuch
information is compressed in a short sequenca sdmples

rzn < N). This leads to a new compressed artificial data chart

for 8 = 6;; N measurements

for 6 = 6,; and so on and so forth. By repeated simulatio

6, [ DY ={y(1).u(1)
1

YR (N),UT(N)
6 | DY ={y’(1),0?(1),...

n__ 1 1
e Ao e

Bm [ Dh={y"(1),u"(@),....y"(N).u"(N)}
TABLE |

THE SIMULATED DATA CHART AS THE STARTING POINT OF THE

TWO-STAGE METHOD.

experiments one can work out a set of, saypairs{6,DN} ~ constituted by the pairg, D'}, i =1,...,m, see Table II.

as summarized in Table I. Such set of data is referred to d§¢ compressed artificial data sequeidiecan be derived

the simulated data chart from DN by resorting to a standard identification method.
From the simulated data chaft; R2N — R is reconstructed 10 be precise, one can fit a simple model to each sequence

as that map minimizing the estimate error over simulateB = {¥(1),u'(1),....¥/(N),u'(N)} and then adopts the
data, i.e. parameters of this model, say,,a5,...,ay, as compressed

~ L o _ _ ) artificial data, i.eD! = {al,...,al}.

f—min= ZlHe' - f(y'(l),u'(l),...,y'(N),u'(N))H . (1) To fix ideas, we suggest the following as a typical method
fomis for the generation of compressed artificial data. For each

i=12,...,m the data sequence

6m | Dp=A{af",...,a"}
TABLE Il
THE COMPRESSED ARTIFICIAL DATA CHART

Shouldf be found, then th® corresponding to actual mea-

surementON = {y(1),0(1),..., Y(N),a(N)} is estimated as DN = {y'(1),u'(1),...,y'(N),u' (N)}
6 = f(y(1),0(1),...,¥IN),u(N)). can be concisely described by an ARX model:
As is clear, solving Problem (1) requires the preliminary y(t) = ayt—1)+---a yi(t—ny)+
4

choice of a suitable class of functiong within which U1 i i
performing optimization. This is indeed a critical issuagd Q42U (T = 1) 4+ Oy, U (T =),
to the hlgh dimensionality of the problem. Indeéaﬂepends with a total number of parametens= Ny + Ny. The param-

upon AN variables, normally a very large number if compare@tersai, ..., aj, of this model can be worked out by means
to the numbem of experiments. I£7 is a class of low- of the least squares algorithm ([14], [19]):

complexity functions, then it is difficult to replicate the

relationship linkingDN to 8 for all values of@ (bias error). ay N . LN

On the opposite, ifZ is a class of high-complexity functions, = Zfﬁ' ') 21¢|(t)YI ®, @
then the over-fitting issue arises (variance error), se¢ [14 al = =

[19].

In order to achieve a sensible compromise between bias afidt) = [Y (t = 1)yt —ny) u'(t—=1)---u'(t —nu)] "

variance error, the two-stage approach is proposed. In thisRemark 1 (Physical interpretation of the artificial data):
method, the selection of the family of function® is split While P(6) is a mathematical description of a real plant,

in two steps. This splitting is the key to select a properslaghe simple model class selected to produce the compressed



—~ ~

artificial data does not need to have any physical meaning; original & _ artificial h ~

this class plays a purely instrumental and intermediarg rol data data 0
in the process of bringing into light the hidden relatiopshi . _ _ N
between the unknown parameter and the original collected Fig. 2. The estimator function composition.

data. In this connection, we observe that the choice of the N . _
ARX model order is not a critical issue. Anyhow, one carfomposition ofg andh is the key to transform a numerically
resort to the available complexity selection criteria sash intractable problem into an affordable one.

FPE or AIC. U Remark 3 (Nonlinearity in estimationSBuppose that

In conclusion, the first stage of the method aims at findingmh in the first stage and in the second one, a linear

a functiong: R2N — R" transforming each simulated data arametrization is used. In other words: in the first stage,

sequenc®! into the a new sequence of compressed artificid'€ Simple class of models is the ARX one and in the
dataDP conveying the information or§. As compressed second stage a linear regression of the compressed attificia
: g ata sequences is used todit Even in such case, the final

artificial data we take the parameters of a simple mode(fl, o . ) .
identified from DN. In this way, functiong is implicitly estimation rule is nonlinear. Indeed, the generation of the
i '

defined by the chosen class of simple models together wi mpressed ar_tificial daf[a in the firgt stage requires the use
the corresponding identification algorithm. oNt.he LS aI_gqnthm gpplled to the S|mulat¢d dat.a sequences
D"i, and this is by itself a nonlinear manipulation of data,

Second stage.Once the compressed artificial data chartee (2). Hence only the second stage is actually linear.
in Table Il has been worked out, problem (1) becomess a matter of fact, in some cases, such nonlinearity
that of finding a maph : R" — RY which fits the set of Jimited to the first stage of elaboration suffices for
m compressed artificial observations to the correspondingipturing the relationship between the unkno@nand
parameter vectors, i.e. the datay(1),u(1),...,y(N),u(N). In other cases, instead,

~ 1 m _ 2 introducing also a nonlinearity in the second stage (namely

h— min= Zl"e.—h(a'l,...,a},)

h™ m&

(3) taking h as a nonlinearly parameterized function of the
compressed artificial data) is advisable and leads to better
Function minimization in (3) is reminiscent of the originalglobal results. O
minimization problem in (1). However, being small, the ~ Remark 4 (Two-stage and multi-value estimatioAk it
bias versus variance error trade-off is no more an issue. appears the two-stage approach relies on intensive simula-
As for the choice ofh one can select a linear function:tions of the plant model and this fact can be computation-
h(ay,...,an) = c1a; +... +cnay, G € RY, i.e. each com- ally demanding. Yet, differently from other approaches, al
ponent ofh is just a linear combination of the compressedhese simulations have to performed once for all, through a
artificial dataay,...,ap. As in any linear regression, the single laboratory experiment. The result then is an explici
parameters; appearing here can be easily computed via leagkpression forf (i.e. f =h(g(-)) which can be easily applied
squares, at a low computational cost. Of course such a way @fer and over, for estimating all possible valueafithout
parameterizing is computationally cheap but possibly loose any supervision from an human-operator. Thus, the twoestag
Better results are expected by choosing a class of nonlinegproach is well-suited for multi-value estimation. [
functions, such as Neural Networks or NARX models. The
minimization in (3) can be performed by resorting to the IV. A BENCHMARK-EXAMPLE
back-propagation algorithm or to other standard algorithm Consider the following data-generation mechanism:
developed for these classes of nonlinear functions.
Remark 2 (The functiong andﬁ): The two-stage meth- xak+1) = e'xl(k)tvll(k) (42)
ods is based on two functiong and h. The former is Xo(k+1) = x(k)+6%-x2(K) +Viz(K) (4b)
the compression functigriransforming simulated data into y(k) = 0-x1(k) +x2(K) +v2(K), (4c)
compressed artificial data. The latter is thiing function . .
providing the map from the compressed artificial data to thwhere 0 is an unknown real parameter in the range
12 10 1E 0.9,0.9] andvis ~WGN(0, 1), vio ~WGN(0, 1), andvy ~

ynknpyvn parameter. Whilg is chosen by the designérs . WGN(0,0.01) (WGN = White Gaussian Noise) are mutually
identified by fitting the parameter values to the correspogdi : . .

gy uncorrelated noise signals. In all our experiments, sygem
compressed artificial data. o )

was initialized withx; (0) = 0 = x»(0).

Use of the two-stage methodOnce functiong has been In order to test the behavior of various approaches in a
chosen and functiorh has been identified, the function multi-value estimation problem, we extracted 800 values
f mapping input/output data into the estimate féris for the paramete® uniformly in the interval[—0.9,0.9]
given byh(g(-)), see Figure 2. When an actual input/ouputind, for each extracted value 6f we generatedN = 1000
sequence is observed, s@Y = {y(1),0(1),...,y(N), G(N)}, observations of the output variabje Each time, theN =
the corresponding unknown parameter can then be estimats200 observations were made available to the considered
as: 6 = h(g(DV)). estimation algorithms which returned an estimate of the
As previously discussed, viewing this daldunction as the correspondingd. Thus, for each estimation algorithm, we



obtained 800 estimatéwhich then was compared with the
corresponding 800 true values 6f

s o o o
> >

[

A. Prediction Error approaches

Parameter estimate 6

The system output can be written as an ARMA process or

of the typé: o

B N(z,0) 2 s

y(k) = 5— 01002+ gae(k), e(k) ~WN(0,A%), B
where the numerataN(z, 6) is a second order polynomial e e

whose coefficients depends éhin a complex way.

Even in this simple case, due to the complexity of
N(z 6), an explicit expression fo(k|6) is difficult to  Figures 4-5 display the result obtained in different ogagat

find and, moreover the minimization of the loss functiorconditions. Precisely, Figure 4 depicts the results obthin

yN. (y(i) - ¥(i,8)) is extremely hard. Yet, the ARMA rep- when EKF was used with the following initializatioR;(0) =

resentation suggests thétcan be estimated by: 1. modeling,(0) = 1, %3(0) = —0.4, and

the system output as

Fig. 3. Estimates of@ (h linearly parameterized).

10 0 O
Z+caz+c 2 PO=| 0 10 O (5)
y(k) = me(k)a e(k) ~WN(0,A9), 0 0 2

where all numerator and denominator coefficients are free; @(0) is the initial covariance of the estimation error).

using the Prediction Error approach to identify the nun@rat Figure 5, instead, displays the results obtained when
and denominator coefficient, €, a1, ay; 3. retrieving an

estimate for@ according to the expressioh= /@, (note P(0) — Cl) (1) 8 6
that if the true values were exactly identified tr@n= 6°%). 0)= 0 0 102 ' ©)

The obtained results are displayed in Figure 3 by plotting
the estimates versus the parameter actual values. In othés it appears, the filter behavior is quite different from
words, for each point in the figure, thecoordinate is

the extracted value fol, while the y-coordinate is the
corresponding estima@ supplied by the used filter. Clearly

a good estimator should return points concentrating around
the bisector of the first and third quadrant.

As it appears the returned estimates are rather spread show-
ing that this approach is not suitable for parameter estima-
tion.

Parameter estimate 6
I w

B. Kalman filters

In order to apply both EKF and UKF, system (4) was B S
rewritten as:
Fig. 4. Estimates off via EKF (large initial variance).

xa(k+1) x3(K) - xq(K) +v11(K)
xo(k+1) = xq(k)+x3(k)%Xa(K) + (k) i
X3(k+ 1) = X3(k) ( ) il

s 2 2 b4
=

[

yk) = x3(K)-xa(K) +x2(K) +va(K),

wherexs is an additional state variable representing param-
etera. Herein, we will report the simulation results obtained

Parameter estimate 8

by taking asw(k) a W GN(0,107). Y

For each extracted valu@,was estimated as the 1-step ahead osf 5

prediction of x3 when 1000 values of the outpyt were T e
observed, i.e.8 = %3(10011000. In such a computation, frue parameter &

both EKF and UKF were applied, but since the obtained
results were quite similar, here the results for EKF are

reported only. the optimal expected one. In many instances the estimate

2 . . . , . _does not converge to the true value @&f Furthermore, the
Note that the ARMA model is fed by a single white noise, while .

system (4) is affected by three exogenous disturbancesisthiade possible filter behavior Stror_‘gly depends _On_ the ch0|cex(3®) .a_nd
by the well known spectral factorization theorem, [12]. P(0). Such a selection, however, is in general non trivial and

Fig. 5. Estimates ofd via EKF (small initial variance).



an human-operator supervision is needed to achieve sensibkquences used also to test the other estimation approaches

results. This makes Kalman filters ill-suited for multival The returned 800 estimate8 were compared with the

estimation problems.

corresponding 800 values & 3. The performance of the

Perhaps it is worth noticing that further simulations wer@btained estimates can be appreciate in Figurk énhéarly

performed by changing the initialization &(0) (precisely,

parameterized) and in Figure B parameterized via neural

to —0.8, 0.4, and 08), but such simulations are not reportedchetworks).
here due to space limitations. The results, however, wers can be seen, the two-stage estimator works much better
similar to those previously presented, and the conclusioisan other methods.

drawn above remain still valid.

C. The two-stage approach

(1]
In order to apply the two-stage approach to system (4)[2]
m = 500 new values of 8 were extracted uniformly from
the interval[—0.9,0.9] and correspondingly 500 sequences|3]
of 1000 output values were simulated so as to construct the
simulated data chart _ 4
For each sequencg(1),...,y'(1000), i = 1,...,500, the
compressed artificial data sequence was obtained by ider[15-]
tifying through the least squares algorithm the coeffigent
al,...,aL of an AR(5) model ¥(t) = aly(t—1)+---+ 6]
aly(t—5)). The final estimatoh(al,...,al), instead, was

(7]
(8]
El
[10]

Parameter estimate 6

(11]

08 -06 -04 -02 0 0.2 0.4 0.6 0.8
True parameter 6

[12]

Fig. 6. Estimates ofg (h linearly parameterized). (13]

[14]

Parameter estimate 6

b4
=

[15]

=
>

=
=

[16]
[17]

=
i

(18]

[19]

-08 06 -04 -02 0 0.2 0.4 0.6 0.8
True parameter 6

[20]

Fig. 7. Estimates ofd (h parameterized via neural networks). [21]
computed by resorting, first, to a linear parametrizatiopsz)
(h=c10]+...4+csa5)), with coefficientscy, . . ., cs estimated
again by the least squares algorithm. As an alterndtivegs (23
also derived by resorting to a neural network (to be precise,
we considered an Elman neural network with 2 layers, 10
neurons in the first layer and one neuron in the second one;
the network was trained with the 500 artificial observations
by the usual back-propagation algorithm).

REFERENCES

B.D.O. Anderson and J.B. MooreOptimal Filtering Prentice Hall,

1979.

K.J. Astrom. Maximum likelihood and prediction error theds.

Automatica 16:551-574, 1980.

K.J. Astrém and T. Bohlin. Numerical identification ofkar dynamic
systems from normal operating records. IFAC symposium on self-
adaptive systemd 965.

] S. Bittanti and G. Picci, editorsldentification, adpatation, learning

— the science of learning models from datpringer-Verlag, Berlin,
Gemrany, 1996.

T. Bohlin. Practical grey-box identification: theory and applicat®n
Springer-Verlag, London, UK, 2006.

M. Boutayeb, H. Rafaralay, and M. Darouch. Convergencalysis
of the extended kalman filter used as an observer for nomlinea
deterministic discrete-time systemHEEE Transaction on Automatic
Control, 42(4):581-586, 1997.

R.A. Fisher. On an absolute criterion for fitting freqegncurves.
Mess. Math. 41:155, 1910.

A. Gelb, Jr. J.F. Kasper, Jr. R.A. Nash, C.F. Price, anéJx. Suther-
land. Applied Optimal EstimationMIT press, 1974.

M.S. Grewal and A.P. Andrews. Kalman Filtering - theory and
practice using MATLABJohn Wiley & Sons, 2001.

S.J. Julier and J.K. Uhimann. Unscented filtering andhlinear
estimation. Proceedingds of the IEEP2(3):401-402, 2004.

S.J. Julier, J.K. Uhlmann, and H.F. Durrant-Whyte. Avnmaethod for
the nonlinear transformation of means andcovariances tergfiland
estimators. IEEE Transaction on Automatic Contro#5(3):477-482,
2000.

T. Kailath, A.H. Sayed, and B. Hassaliiinear Estimation Prentice-
Hall, 2000.

L. Ljung. Asymptotic behavior of the extended kalmartefil as
a parameter estimator for linear systemdEEE Transaction on
Automatic Contral 24(1):36-50, 1979.

L. Ljung. System Identification: Theory for the UsdPrentice-Hall,
Upper Saddle River, NJ, 1999.

P.E. Morall and J.W. Grizzle. Observer design for noedir systems
with discrete-time measurementdEEE Transaction on Automatic
Control, 40(3):395-404, 1995.

H.B. Pacejka.Tire and Vehicle DynamicsSAE International, 2005.
K. Reif and R. Unbehauen. The extended kalman filter as an
exponential observer for nonlinear system#EEE Transaction on
Signal Processing47(8):2324—2328, 1999.

D. Simon. Optimal state estimationJohn Wiley & Sons, Hoboken,
NJ, 2006.

T. Soderstrom and P. StoicaSystem ldentification Prentice-Hall,
Englewood Cliffs, NJ, 1989.

Y. Song and J.W. Grizzle. The extended kalman filter a®aall
asymptotic observer for nonlinear discrete-time systends.Math.
Systems Estim. Cont5(1):59-78, 1995.

J.K. Su and E.W. Kamen. Introduction to Optimal Estimatian
Springer, Englewood Cliffs, NJ, 1999.

W. Sun, K.M. Nagpal, and P.P. Khargonekar, Ebntrol and filtering
for sampled-datasystemslEEE Transaction on Automatic Control
38(8):1162-1175, 1993.

] E.A. Wan and R. van der Merwe. The unscented kalman filter

S. Haykin, editor,Kalman filtering and Neural NetworkdNew York,
NY, USA, 2001. John Wiley & Sons.

Sperhaps it is worth noticing that the validation was thusqueted by
using parameters and observations different from those insthe training

The obtained estimator was then applied to the 800 dapaase of the two-stage approach.



