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Abstract— In this paper, we consider one of the most classical
estimation problem, that of identifying an unknown parameter
in a given model from measurements of input/output data.
We present a new method named thetwo-stage approach
which provides efficient estimates. The method is based on the
preliminary generation of artificial data, and it is fully non-
Bayesian. In this way, it is possible to avoid the well known
difficulties encountered when resorting to Kalman filtering
techniques in parameter estimation.

I. I NTRODUCTION

Consider the problem of estimating the parameters of a
given plant from observed data, [2], [3], [5], [11], [15]. To
be precise, suppose that data are generated by a dynamical
system (continuous time or discrete time, linear or nonlinear,
noise free or subject to disturbances) depending on a certain
parameter vectorθ ∈ R

q. The system is denoted byP(θ) as
in Figure 1. We suppose that, while a mathematical model

P(θ)
y(t)

e(t)

u(t)

Fig. 1. The data generating system.

for P(θ) is available, the current value of parameterθ is
unknown (white-box identification, [3]). For simplicity, in
the sequel we will focus on discrete time models only.
In order to estimateθ from data, we assume that the
system behavior is observed for a certain time interval
over which a numberN of input and output observations
D̄N = {ȳ(1), ū(1), . . . , ȳ(N), ū(N)} are collected. The issue is
then how to exploit the information contained in the data in
order to obtain a fair estimate of the uncertain parameterθ .
In the situation described above, a common approach
consists in resorting to Extended Kalman Filter (EKF) or
to its Unscented (UKF) version, [1], [5], [6], [7], [8], [9],
[12], [14], [17], [18], [19]. In these KF methods, parameter
θ is seen as a state variable by introducing an additional
state equation of the type:θ(k+ 1) = θ(k), or, better, of
the type:θ(k+1) = θ(k)+w(k), wherew(k) is white noise
with zero mean value and variance matrixW, introduced
for increasing the reactivity of the algorithm. In this way,
the estimation problem is reformulated as a state prediction
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problem. As is well known, even ifP(θ) is described by a
linear model, this is a nonlinear estimation problem due to
the introduction of the additional state equation.
Both EKF and UKF are based on the application of the
classical Bayes linear estimator formula. The difference
relies in the updating rule of the filter gain. Such a
gain is computed on the basis of the output variance
matrix and of output-state the cross-variance by means
of the Bayes estimator formula. In EKF these ingredients
are (recursively) evaluated via system linearization by
computing the Jacobians of the state and output equations
around the current state estimate. In UKF, instead, the
variance matrices are evaluated by means of their sample
counterparts. These counterparts are computed by letting the
system equations evolve for one step starting from a cloud
of a few points suitably generated around the current state
estimate. In this way no system linearization is required and
the estimated variance matrices suffer from a lower degree
of approximation.
Apart from the way in which the variance matrices are
computed, both EKF and UKF are based on the same
rationale, that is the iterated re-computation of the linear
Bayes estimator around the current state estimate. This
introduces a sort of adaptation of the filters which should
hopefully cope with the system nonlinearities so as to
guarantee the convergence of the state estimate to the true
state value.
The question of convergence, however, is a well
known critical issue of EKF. Indeed, there are
celebrated (yet simple) examples showing the possible
divergence/nonconvergence of EKF depending on the
initialization of the filter (see e.g. [10]). Despite a number
of results on local convergence ([4], [10], [13], [16]), the
global convergence of EKF is still an open problem. As for
UKF, to the best knowledge of the authors, the analysis of
convergence is not yet so developed due to its relatively
recent introduction.
One point raised in this paper is that both EKF and
UKF may be poorly performing for plant parameter
estimation, especially when the system dynamics is subject
to substantial variations depending on the value ofθ in
the feasible region. Indeed, in such conditions, there is no
guarantee that the estimate returned by the EKF and UKF
converges to the correct parameter vector. Furthermore, the
returned estimate turns out to be extremely sensitive to
the algorithm initialization (in particular to the tuning of
the covariance matrix ofθ ). This is a consequence of the
fact that a parameter estimation problem is forced into a



Bayesian setting.
In this paper, we propose a new estimation method,
named thetwo-stageapproach, which is fully developed
in a non-Bayesian framework. With such method, good
estimates of the uncertain parameter are obtained in a wide
variety of situations. Its basic rationale is to reconstruct
off-line the relationship linking the data to parameterθ
through simulation trials via an intermediary step leading
to a set of artificial data. Thus, the procedure develops
in two phases: the first one transfers the information
contained in the original data into the artificial data, while
the second one enables establishing the link between these
last data and parameterθ . The two-stage method does
not suffer from any convergence issues and its range of
applicability looks much wider than that of other approaches.

The paper is organized as follows. EKF and UKF are
discussed in Section II, where by means of simple examples
we spot out their flaws. Our new non-Bayesian approach is
introduced in Section III, and then tested in Section IV by
simulation.

II. A DISCUSSION ONEKF AND UKF

In this section, the drawbacks of EKF and UKF are
spotted out by means of two simple examples.

Example 1. Consider the problem of estimating an
unknown parameterθ from the observationd = arctan(3θ).
This problem can be trivially solved by inversion and does
not require implementing neither EKF nor UKF. However,
the link between data and the unknown is so elementary
that the behavior of EKF and UKF is well explicated in this
example.
Rewrite the problem as a state estimation problem according
to the usual rationale of seeing the parameter as a state
variable:

x(k+1) = x(k)

x(0) = θ
y(k) = arctan(3x(k)).

Estimatingθ from d is equivalent to estimatex(k+1) given
output measurements up to timek.
The EKF update equations (see e.g. [14]) of the state estimate
in this case are as follows where the 1-step ahead prediction
of x(k) is denoted bŷx(k):

x̂(k+1) = x̂(k)+
1+

(
3x̂(k)

)2

3

(
y(k)−arctan

(
3x̂(k)

))

x̂(0) = x. (1)

Here x is the mean of the initial state, namely, the initial
guess for the value ofθ . Note that, due to the peculiarity of
the example, the filter gain does not depend on the variance
P(k) of the estimation error at timek, so that no Riccati
equation for the update ofP(k) is needed for implementing
the EKF algorithm.
We will now study the evolution of EKF by a graphical

representation. In Figure 2 the functiony = arctan(3x)
is plotted. For a certain value ofd, the corresponding
parameterθ is obviously the abscissa of the function for
y = d. The sequence of estimates obtained by applying (1)
is easily interpreted. Indeed, by noting that 3

1+(3x)2 is the
derivative of arctan(3x), it is easy to recognize that̂x(k+1)
is nothing but the projection of the observed datumy(k) on
the tangent of arctan(3x) at the previous estimate valuêx(k)
(linearization around the previous estimate). As apparent
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Fig. 2. EKF behavior.
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Fig. 3. EKF behavior.

from Figure 2 the sequence of estimates starting fromx = 0
converges to the actual value of parameterθ = 1.
The adaptation introduced by the re-computation of the
linearization at each step is fundamental for the convergence
of the algorithm. However, even in such a simple example,
convergence is not always guaranteed. For instance, the
sequence of estimates diverges when the initial guess is
x = 2. See Figure 3.
Turn now to UKF. The estimate equations in this case are
too complex to be reported here; in particular, note that
when resorting to UKF a Riccati equation is necessary even
in this simple example (the interested reader is referred
again to [14]). Yet, the interpretation of UKF is again simple
and intuitive.
Similarly to EKF, the estimate is a projection of the current
observed outputy(k) = d. However, the approximating
straight lines to be considered are no more the tangents.
Rather, they are obtained by interpolating arctan(3x) over an
interval centered around̂x(k) and whose size is determined



on the basis of the value taken by the estimation error
varianceP(k) at the previous step, obtained by the auxiliary
Riccati equation. Figure 4 graphically shows the first step
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Fig. 4. EKF behavior.

of the UKF algorithm whenθ = 1, x = 0, and the Riccati
equation is initialized withP(0) = P = 5.
From these considerations, it is apparent that an adaptation
mechanism is also present in UKF, concerning the full
position of the interpolating line. Also in this case, however,
there is no guarantee that such adaptation leads to convergent
estimates. Indeed, the case of Figure 5 (θ = 1, x= 2, P= 5)
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Fig. 5. EKF behavior.

leads to divergence.

Example 2. We considered the following data-generation
mechanism:

x1(k+1) = a·x1(k)+v11(k) (2a)

x2(k+1) = x1(k)+a2 ·x2(k)+v12(k) (2b)

y(k) = a·x1(k)+x2(k)+v2(k), (2c)

where a is an unknown real parameter in the range
[−0.9,0.9] andv11∼WGN(0,1), v12∼WGN(0,1), andv2 ∼
WGN(0,0.01) (WGN= White Gaussian Noise) are mutually
uncorrelated noise signals. The objective was to retrieve the
value of parametera from N = 1000 observations of the
output variabley.
In order to apply both EKF and UKF, system (2) was

rewritten as:

x1(k+1) = x3(k) ·x1(k)+v11(k)

x2(k+1) = x1(k)+x3(k)
2 ·x2(k)+v12(k)

x3(k+1) = x3(k)+w(k)

y(k) = x3(k) ·x1(k)+x2(k)+v2(k),

wherex3 is an additional state variable representing param-
etera. Herein, we will report the simulation results obtained
by taking asw(k) a WGN(0,10−6).
In all our experiments, system (2) was initialized with
x1(0) = 0 = x2(0). We then extracted 1000 values for the
parametera uniformly in the interval[−0.9,0.9]. For each
extracted value,a was estimated as the 1-step ahead predic-
tion of x3 when 1000 values of the outputy were observed,
i.e. â = x̂3(1001|1000). In such a computation, both EKF
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Fig. 6. Estimates ofa via EKF (large initial variance).
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Fig. 7. Estimates ofa via UKF (large initial variance).

and UKF were applied (the reader is referred to the literature
for the update equations of EKF and UKF, see [1], [5], [6],
[7], [9], [14]).
Figures 6-9 display the result obtained in different operating
conditions by plotting the estimates versus the parameter
actual values. In other words, for each point in the figure,
the x-coordinate is the extracted value fora, while the y-
coordinate is the corresponding estimateâ supplied by the
used filter. Clearly a good estimator should return points
concentrating around the bisector of the first and third
quadrant.
As for the filter operating conditions, Figures 6 and 7 depict
the results obtained when EKF and UKF, respectively, were



used with the following initialization:̂x1(0) = x̂2(0) = 1,
x̂3(0) = −0.4, and

P(0) =




10 0 0
0 10 0
0 0 2


 (3)

(P(0) is the initial covariance of the estimation error).
Figures 8 and 9, instead, display the results obtained when

P(0) =




1 0 0
0 1 0
0 0 10−2




. (4)

As it appears, the behavior of EKF and UKF is quite
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Fig. 8. Estimates ofa via EKF (small initial variance).
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Fig. 9. Estimates ofa via UKF (small initial variance).

different from the optimal expected one. Indeed, in many
instances the estimate does not converge to the true value
of parametera.
As it can be seen from Figures 6 and 7, whenP(0) is
“large” as in (3) (i.e. parametera is assumed to be highly
uncertain),â can even converge to many different values,
depending on the current realization of disturbancesv11, v12,
v2. This was already pointed out in [10] for EKF. Somewhat
more surprising is the fact that UKF suffers from the same
drawback too.
When P(0) is “small” as in (4), the estimates obtained via
EKF (Figure 8) are still rather spread whereas UKF provides
estimates which are more concentrated in a small region.
However, as it is apparent from Figure 9 the estimation
error can be quite large for positive values ofa. As a matter
of fact, selecting a “small” variance matrix means that the

parametera is assumed to be located near the initial guess
with which the filter is initialized. As a result, the filters
have an acceptable behavior only when the true parametera
is in a relatively small neighborhood of−0.4. When instead
a is far from −0.4, neither EKF nor UKF guarantee the
convergence of the estimate to the actual value ofa.
Perhaps it is worth noticing that further simulations were
performed by changing the initialization of̂x3(0) (precisely,
to −0.8, 0.4, and 0.8), but such simulations are not reported
here due to space limitations. The results, however, were
similar to those previously presented, and the conclusions
drawn above remain still valid.

As it appears,S both EKF and UKF suffer from a
major drawback, the non-convergence of the estimate to the
true parameter value. Non-convergence occurs especially
when the parameter to be estimated is subject to a large
uncertainty and is away from its initial guess (a condition,
unfortunately, often encountered in application problems).
Furthermore, the behavior of EKF and UKF strongly
depends on the choice of̂x(0) and P(0). In the Bayesian
framework on which KF’s rely on, these quantities should
be selected as the mean and the variance matrix of the
extended system state. However, in parameter estimation
problems,θ is not a random variable in general, and the
choice of its mean and variance is largely arbitrary and
often obtained through heuristic trial and error procedures.
Summing up, the simulations above reported show that both
EKF and UKF may be unsuitable for the estimation of an
unknown parameter.

III. T HE TWO-STAGE APPROACH

Given the discussion in Section II, a new approach to the
problem of estimating an unknown parameter is introduced
herein. This new method, called thetwo-stage approach,
reconstructs through off-line intensive simulation trials the
relationship between the input/output data and the unknown
parameter. The method is fully developed in a non-Bayesian
setting and it does not suffer from the convergence issue
affecting EKF and UKF.
Suppose for a while that the actual system is fully accessible
for experiments. In other words, it is possible to collect
input/output data in a number of different experimental
conditions each of which is associated with a certain chosen
value of θ . In this way, one can collectN measurements
DN

1 = {y1(1),u1(1), . . . ,y1(N),u1(N)} for θ = θ1, N mea-
surementsDN

2 = {y2(1),u2(1), . . . ,y2(N),u2(N)} for θ = θ2

and so on and so forth. By repeated experiments, one can
work out a set of, saym, pairs{θi ,DN

i } as depicted in Table I.
Of course, one may object that performing such a number
of experiments on the true system may be unaffordable in
many practical situations. In many instances, the unknown
parameter of a given plant is fixed and by no means modifi-
able; in other cases,θ may be modified but the repetition of
experiments with differentθ ’s is over-expensive. However,
nowadays, any plant is usually accompanied by a very
accurate simulator. Hence, the set of experiments can be



θ1 DN
1 = {y1(1),u1(1), . . . ,y1(N),u1(N)}

θ2 DN
2 = {y2(1),u2(1), . . . ,y2(N),u2(N)}

...
...

θm DN
m = {ym(1),um(1), . . . ,ym(N),um(N)}

TABLE I

THE OBSERVATIONS CHART AS THE STARTING POINT OF THE

TWO-STAGE METHOD.

virtually performed by intensive simulation trials.
Summing up, our starting point is the set of observations
{θi ,DN

i } of Table I, being it obtained by repeated experi-
ments on the real plant or by simulations trials on the plant
simulator.
The basic problem is then to find a (nonlinear) mapf :
R

2N → R
q capturing the relationship between observedθ ’s

and sequences ofy-u data. That is,

f̂ ← min
f

1
m

m

∑
i=1

∥∥∥θi − f (yi(1),ui(1), . . . ,yi(N),ui(N))
∥∥∥

2
. (5)

Plainly, should f̂ be available, then theθ corresponding to
the actual measurements̄DN = {ȳ(1), ū(1), . . . , ȳ(N), ū(N)}
can be unveiled aŝθ = f̂ (ȳ(1), ū(1), . . . , ȳ(N), ū(N)).
Solving Problem (5) requires the preliminary choice of
a suitable class of functionsF within which performing
optimization. This is indeed a critical issue, due to the high
dimensionality of the problem (functionf depends upon 2N
variables, normally a very large number if compared to the
numberm of experiments). IfF is a class of low-complexity
functions, it is difficult to replicate the whole relationship
linking DN to θ (bias error). On the opposite, ifF is a
class of high-complexity functions, then the over-fitting
issue arises (variance error). As is well known, the bias vs.
variance error trade off in high dimensional problems is
the bane of system identification theorists and practitioners,
[11], [15].
In order to achieve a sensible compromise between bias
and variance error, the two-stage approach is proposed. In
this method, the selection of the family of functionsF is
split in two steps. The objective of the first step is to reduce
the dimensionality of the estimation problem, leading tom
new artificial observations each of which is constituted by
a limited numbern of samples (n≪ N). In the second step,
the map between the artificial observations and parameterθ
is identified. By combining the results of the two steps, the
sought relationship between the originaly-u data andθ is
finally unveiled.

First step. The first step consists in a compression
of the information conveyed by measured input/output
sequencesDN

i in order to obtain data sequences̃Dn
i of

reduced dimensionality. While in the original dataDN
i the

information on the unknown parameterθi is scattered in a
long sequence ofN samples, in the new artificial datãDn

i
such information is compressed in a very short sequence ofn
samples (n≪ N). This leads to a new artificial observations
chart constituted by the pairs{θi , D̃n

i }, i = 1, . . . ,m, see
Table II.

θ1 D̃n
1 = {α1

1 , . . . ,α1
n}

θ2 D̃n
2 = {α2

1 , . . . ,α2
n}

...
...

θm D̃n
m = {αm

1 , . . . ,αm
n }

TABLE II

THE ARTIFICIAL OBSERVATIONS CHART.

The artificial data vectorD̃n
i can be obtained from the

original DN
i by resorting to a standard identification method.

To be precise, one can fit a simple model to each sequence
DN

i = {yi(1),ui(1), . . . ,yi(N),ui(N)}. The parameters of this
model, sayα i

1,α
i
2, . . . ,α

i
n, are seen as the newartificial

data, i.e. D̃n
i = {α i

1, . . . ,α
i
n}.

Example 1:To be concrete, for eachi = 1, . . . ,m, the
data sequenceDN

i = {yi(1),ui(1), . . . ,yi(N),ui(N)} can be
concisely described by an ARX model:

yi(t) = α i
1yi(t −1)+ · · ·α i

ny
yi(t −ny)+

α i
ny+1ui(t −1)+ · · ·+α i

ny+nu
ui(t −nu),

with a total number of parametersn = ny +nu. The artificial
data α i

1, . . . ,α
i
n can be computed through the least squares

algorithm ([11], [15]):



α i
1
...

α i
n


 =

[ N

∑
t=1

ϕ i(t)ϕ i(t)T]−1
·

N

∑
t=1

ϕ i(t)yi(t), (6)

ϕ i(t) = [yi(t −1) · · ·yi(t −ny) ui(t −1) · · ·ui(t −nu)]
T .

Remark 1:Notice that the artificial datãDn
i = {α i

1, . . . ,

α i
n} have no physical meaning. They play a purely inter-

mediary role in the process of enlightening the relationship
between the unknown parameter and the original collected
data. ¤

To summarize, the first step aims at finding a function
g : R

2N → R
n in order to transform the original dataDN

i into
the new artificial datãDn

i . Functiong is implicitly defined
by the chosen identification algorithm.

Second step. Once the artificial observations chart in
Table II is worked out, problem (5) becomes that of
finding a maph : R

n → R
q which fits the set of artificial

observations, i.e.

ĥ← min
h

1
m

m

∑
i=1

∥∥∥θi −h(α i
1, . . . ,α

i
n)

∥∥∥
2
. (7)

Function minimization in (7) is reminiscent of the original
minimization problem in (5). However, beingn small,
the bias vs. variance error trade-off is not an issue and
the new optimization problem can be tackled by suitably
parameterizingh with a Neural Network ([2]) or with
another class of linear or nonlinear functions.
Perhaps it is worth noticing that a computationally
cheap (but possibly loose) parametrization ofh is
h(α i

1, . . . ,α
i
n) = c1α i

1 + . . . + cnα i
n, i.e. h is linear in

α i
1, . . . ,α

i
n. In this way, the identification from the artificial

m observations can be easily performed through the least
squares algorithm, [11], [15], at a low computational



cost. Notice that, in spite of the linear dependence on
α i

1, . . . ,α
i
n, the final estimator ofθ is nonlinear with

respect to the system input/output observations. As a matter
of fact, the artificial dataα i

1, . . . ,α
i
n nonlinearly depend

upon yi(1),ui(1), . . . ,yi(N),ui(N) (see e.g. equation (6)).
In some cases, such nonlinearity suffices for capturing
the relationship betweenθ and y(1),u(1), . . . ,y(N),u(N).
In other cases, instead, using a nonlinearh may be advisable.

Use of the method. Once functiong has been chosen
and function ĥ has been identified, the link between the
original data and the unknownθ is given by ĥ(g(·)).
When an actual input/ouput sequence is observed, say
D̄N = {ȳ(1), ū(1), . . . , ȳ(N), ū(N)}, the corresponding
unknown parameter is estimated byθ̂ = ĥ(g(D̄N))).
As previously discussed, viewing this data-θ function as the
composition ofg andĥ is the key to transform a numerically
intractable problem into an affordable one.

IV. SIMULATION EXAMPLE

The two-stage approach was applied to system (2). Pre-
cisely, m= 500 values forθ = a were extracted uniformly
from the interval[−0.9,0.9]. Correspondingly 500 sequences
of 1000 output values were collected.
For each sequenceyi(1), . . . ,yi(1000), an artificial data se-
quence was obtained by identifying through the least squares
algorithm the coefficientsα i

1, . . . ,α
i
5 of an AR(5) model

(yi(t) = α i
1y(t − 1) + · · ·+ α i

5y(t − 5)). The final estimator
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Fig. 10. Estimates ofa (h linearly parameterized).
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Fig. 11. Estimates ofa (h parameterized via neural networks).

ĥ(α i
1, . . . ,α

i
5), instead, was computed by resorting, first,

to a linear parametrization (h = c1α i
1 + . . . + c5α i

5)), with
coefficientsc1, . . . ,c5 estimated again by the least squares
algorithm. As an alternative,̂h was also derived by resorting
to a neural network (to be precise, we considered an Elman
neural network with 2 layers, 10 neurons in the first layer and
one neuron in the second one; the network was trained with
the 500 artificial observations by the usual back-propagation
algorithm).
The performance of the obtained estimator was tested by
validation. To this purpose, 1000 new values forθ = a were
extracted in(−0.9,0.9). For each of theseθ ’s, a sequence
of N = 1000 outputs was generated from equation (2). The
previously obtained estimator was used for each of these
sequences. The performance of the obtained estimates can
be appreciate in Figure 10 (h linearly parameterized) and in
Figure 11 (h parameterized via neural networks).
As can be seen, the two-stage estimator works much better
than EKF and UKF.
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