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Abstract— In this paper, we consider one of the most classical problem. As is well known, even P(6) is described by a
estimation problem, that of identifying an unknown parameter  |inear model, this is a nonlinear estimation problem due to
in a given model from measurements of input/output data. e introduction of the additional state equation.

We present a new method named thetwo-stage approach Both EKF and UKF are based on the application of the
which provides efficient estimates. The method is based on the . . ; .
preliminary generation of artificial data, and it is fully non-  classical Bayes linear estimator formula. The difference
Bayesian. In this way, it is possible to avoid the well known relies in the updating rule of the filter gain. Such a
difficulties encountered when resorting to Kalman filtering  gain is computed on the basis of the output variance
techniques in parameter estimation. matrix and of output-state the cross-variance by means
|. INTRODUCTION of the Bayes estimator formula. In EKF these ingredients

gre (recursively) evaluated via system linearization by
computing the Jacobians of the state and output equations
F&r&und the current state estimate. In UKF, instead, the
variance matrices are evaluated by means of their sample
aﬁounterparts. These counterparts are computed by letieng t
system equations evolve for one step starting from a cloud
glf a few points suitably generated around the current state
estimate. In this way no system linearization is required an
ot the estimated variance matrices suffer from a lower degree
l of approximation.

(1) Apart from the way in which the variance matrices are
P®) —— computed, both EKF and UKF are based on the same
rationale, that is the iterated re-computation of the linea
Bayes estimator around the current state estimate. This
introduces a sort of adaptation of the filters which should
hopefully cope with the system nonlinearities so as to
guarantee the convergence of the state estimate to the true
state value.

Consider the problem of estimating the parameters of
given plant from observed data, [2], [3], [5], [11], [15]. To
be precise, suppose that data are generated by a dynam
system (continuous time or discrete time, linear or nowline
noise free or subject to disturbances) depending on a gert
parameter vectof € RY. The system is denoted B3(6) as
in Figure 1. We suppose that, while a mathematical mod

u(t)
E—

Fig. 1. The data generating system.

for P(0) is available, the current value of parameteris
unknown (white-box identification, [3]). For simplicityni
the sequel we will focus on discrete time models only. . :
In order to estimate6 from data, we assume that theThe ques_tl_on O_f convergence, however, is a well
system behavior is observed for a certain time intervéinown eritical Issue of EKF. Indee_d, there are

over which a numbeN of input and output observations gelebrated (yet simple) examples showing t.he possible
DN — (¥(1),0(1),...,¥IN),G(N)} are collected. The issue is q|vergence/nonconvergence of EKF depending on the

then how to exploit the information contained in the data iﬁr}'t'al'z"’llttlon Ofl thel filter (see e.g. [iO]).lg)eSEge algumtl;e
order to obtain a fair estimate of the uncertain paraméter of results on local convergence ([4], [10], [13], [16]), the

In the situation described above, a common approazﬂﬁgaltciﬂvegger:clf of lEI;F IS fStt”r: an otf]en p:(r)]blem.lAs_forf
consists in resorting to Extended Kalman Filter (EKF) o » 10 the best knowledge of the authors, the analysis o

to its Unscented (UKF) version, [1], [5], [6], [7], [8], [9], convergence is not yet so developed due to its relatively

ecent introduction.
[12], [14], [17], [18], [19]. In these KF methods, parametetI . X . . .
0 is seen as a state variable by introducing an addition Ele: point rl';':used ml this fpapgr lsfthatlbotth EKF atlnd
state equation of the typed(k+ 1) = 8(k), or, better, of - may e poorly periorming for plant parameter
the type:8(k+ 1) = O(k) +w(k), wherew(k) is white noise estimation, especially when the system dynamics is subject

with zero mean value and variance matk¥ introduced Eﬁ S;JbSt%Tt'al vgnat:or(;s %ependm% on éht? valuttra]eoin_
for increasing the reactivity of the algorithm. In this way, € Teasible region. Indeed, in such conditions, there 1 no

the estimation problem is reformulated as a state predictitgu""r‘r’mtee that the estimate returned by the EKF and UKF
converges to the correct parameter vector. Furthermoee, th
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Bayesian setting. representation. In Figure 2 the function= arctar{3x)

In this paper, we propose a new estimation methods plotted. For a certain value ofl, the corresponding
named thetwo-stageapproach, which is fully developed parameterf is obviously the abscissa of the function for
in a non-Bayesian framework. With such method, goog = d. The sequence of estimates obtained by applying (1)
estimates of the uncertain parameter are obtained in a wideeasily interpreted. Indeed, by noting t% is the
variety of situations. Its basic rationale is to recondtrucderivative of arcta(Bx), it is easy to recognize thatk+ 1)
off-line the relationship linking the data to paramet®r s nothing but the projection of the observed datytk) on
through simulation trials via an intermediary step leadinghe tangent of arctdBx) at the previous estimate val&ék)

to a set ofartificial data Thus, the procedure develops(linearization around the previous estimate). As apparent
in two phases: the first one transfers the information

contained in the original data into the artificial data, whil : ‘ ‘ ‘ /

the second one enables establishing the link between these

last data and paramete®. The two-stage method does

not suffer from any convergence issues and its range of :
applicability looks much wider than that of other approache

Y(D)=y(2)=d

The paper is organized as follows. EKF and UKF are

discussed in Section I, where by means of simple examples
we spot out their flaws. Our new non-Bayesian approach is
introduced in Section lll, and then tested in Section IV by
simulation. E E A EOR : :

II. A DISCUSSION ONEKF AND UKF Fig. 2. EKF behavior.

In this section, the drawbacks of EKF and UKF are
spotted out by means of two simple examples.

Example 1. Consider the problem of estimating an i _
unknown paramete from the observatior = arctar{30). e e |
This problem can be trivially solved by inversion and does
not require implementing neither EKF nor UKF. However,
the link between data and the unknown is so elementary
that the behavior of EKF and UKF is well explicated in this
example. !
Rewrite the problem as a state estimation problem according N
to the usual rationale of seeing the parameter as a state L »‘-d)sfef)‘mz:x () ]
variable:

Fig. 3. EKF behavior.
xk+1) = x(K ig ehavior
x0) = 6 from Figure 2 the sequence of estimates starting fRomO
y(k) = arctar{3x(k)). converges to the actual value of paramedet 1.
The adaptation introduced by the re-computation of the
linearization at each step is fundamental for the convergen

output measurements up to tirke . of the algorithm. However, even in such a simple example,
The EKF update equations (see e.g. [14]) of the state e’limal,\ ergence is not always guaranteed. For instance, the

in this case are as follows where the 1-step ahead predictigRy ence of estimates diverges when the initial guess is
of x(k) is denoted by(k): %—2. See Figure 3.

Estimating® from d is equivalent to estimate’k+ 1) given

14 (3?(k))2 Turn now to UKF. The estimate equations in this case are
Kk+1) = XK+ 3 (y(k)—arctan(B?(k))) too complex to be reported here; in particular, note that
%0) = x L when resorting to UKF a Riccati equation is necessary even

in this simple example (the interested reader is referred
Here X is the mean of the initial state, namely, the initialagain to [14]). Yet, the interpretation of UKF is again siepl
guess for the value d¥. Note that, due to the peculiarity of and intuitive.
the example, the filter gain does not depend on the varian&milarly to EKF, the estimate is a projection of the current
P(k) of the estimation error at tim&, so that no Riccati observed outputy(k) = d. However, the approximating
equation for the update d¥(k) is needed for implementing straight lines to be considered are no more the tangents.
the EKF algorithm. Rather, they are obtained by interpolating ar¢8i over an
We will now study the evolution of EKF by a graphical interval centered aroungik) and whose size is determined



on the basis of the value taken by the estimation erraewritten as:
varianceP(k) at the previous step, obtained by the auxiliary

Riccati equation. Figure 4 graphically shows the first step xa(k+1) = xa(k)-x1(k) +vaa(k)
xo(k+1) = xi(K)+xa( ) x2(K) +vi2(k)
A x3(k+1) x3(k) +w(k)
| ] y(k) = x3(k)-xa(K) +x2(K) + va(K),

y()=(2)=d

x(oﬁx ! if“)

4
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wherexz is an additional state variable representing param-
etera. Herein, we will report the simulation results obtained
by taking asw(k) a W GN(0,1079).

In all our experiments, system (2) was initialized with
x1(0) = 0 = x»(0). We then extracted 1000 values for the
parametera uniformly in the interval[—0.9,0.9]. For each
extracted valuea was estimated as the 1-step ahead predic-
tion of x3 when 1000 values of the outputwere observed,
i.e. 8= X3(10011000. In such a computation, both EKF

Fig. 4. EKF behavior.

of the UKF algorithm when8 = 1, x =0, and the Riccati
equation is initialized withP(0) =P =5.

From these considerations, it is apparent that an adaptatio
mechanism is also present in UKF, concerning the full
position of the interpolating line. Also in this case, hoegv
there is no guarantee that such adaptation leads to com¢erge it
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estimates. Indeed, the case of Figure95<(1,

YD)=yQ2)=d

Fig. 5. EKF behavior.

leads to divergence.

Example 2. We considered the following data-generation

Xx=2,P=5)

0.6 0.8
True parameter a

Fig. 6. Estimates ofa via EKF (large initial variance).
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Fig. 7. Estimates ofa via UKF (large initial variance).

mechanism:
and UKF were applied (the reader is referred to the liteeatur
xi(k+1) = a-xg(k)+viz(k) (2a) for the update equations of EKF and UKF, see [1], [5], [6],
_ [71, [9], [14]).
Xe(k+1) = )+a Xo(k) +vaa(k) (2b) Figures 6-9 display the result obtained in different opecat
yk) = a-xi(k) +xa(k) +va(k), (2€)  conditions by plotting the estimates versus the parameter

actual values. In other words, for each point in the figure,

where a is an unknown real parameter in the rangehe x-coordinate is the extracted value fay while they-
[—0.9,0.9] andvi1 ~WGN(0, 1), vi2 ~WGN(0,1), andvs ~
W GN(0,0.01) (WGN = White Gaussian Noise) are mutuallyused filter. Clearly a good estimator should return points
uncorrelated noise signals. The objective was to retribee t concentrating around the bisector of the first and third
value of parametea from N = 1000 observations of the quadrant.

output variabley.

coordinate is the corresponding estimatsupplied by the

As for the filter operating conditions, Figures 6 and 7 depict

In order to apply both EKF and UKF, system (2) washe results obtained when EKF and UKF, respectively, were



used with the following initializationx;(0) = X2(0) = 1, parameter is assumed to be located near the initial guess
X3(0) = —0.4, and with which the filter is initialized. As a result, the filters
have an acceptable behavior only when the true pararaeter

P(0) = 100 1% 8 3) is in a relatively small neighborhood ef0.4. When instead
B 0 0 2 a is far from —0.4, neither EKF nor UKF guarantee the

convergence of the estimate to the actual value.of
(P(0) is the initial covariance of the estimation error). Perhaps it is worth noticing that further simulations were
Figures 8 and 9, instead, display the results obtained wheperformed by changing the initialization &(0) (precisely,
to —0.8, 0.4, and 08), but such simulations are not reported

10 O S
PO)=| 0 1 0 ) here due to space limitations. The results, however, were
N 0 0 102 ' similar to those previously presented, and the conclusions

drawn above remain still valid.
As it appears, the behavior of EKF and UKF is quite
As it appears,S both EKF and UKF suffer from a
major drawback, the non-convergence of the estimate to the
true parameter value. Non-convergence occurs especially
when the parameter to be estimated is subject to a large
uncertainty and is away from its initial guess (a condition,
unfortunately, often encountered in application problems
Furthermore, the behavior of EKF and UKF strongly
depends on the choice 6{0) and P(0). In the Bayesian
framework on which KF’s rely on, these quantities should
be selected as the mean and the variance matrix of the
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G w5 04 42 0 02 04 Trgfpmgiw extended system state. However, in parameter estimation
problems, 8 is not a random variable in general, and the
Fig. 8. Estimates ofa via EKF (small initial variance). choice of its mean and variance is largely arbitrary and

often obtained through heuristic trial and error procedure
Summing up, the simulations above reported show that both
EKF and UKF may be unsuitable for the estimation of an
unknown parameter.

Ill. THE TWO-STAGE APPROACH

Parameter estimate &

Given the discussion in Section Il, a new approach to the
problem of estimating an unknown parameter is introduced
herein. This new method, called thwo-stage approach
reconstructs through off-line intensive simulation sidahe
relationship between the input/output data and the unknown

-0.5F

0% 05 04 w2 0 02 03 To‘s 0 parameter. The method is fully developed in a non-Bayesian
Tue parameter a . . H
setting and it does not suffer from the convergence issue
Fig. 9. Estimates ofa via UKF (small initial variance). affecting EKF and UKF.

Suppose for a while that the actual system is fully accessibl
different from the optimal expected one. Indeed, in manjor experiments. In other words, it is possible to collect
instances the estimate does not converge to the true valn@ut/output data in a number of different experimental
of parametem. conditions each of which is associated with a certain chosen
As it can be seen from Figures 6 and 7, whe(D) is value of 6. In this way, one can colledd measurements
“large” as in (3) (i.e. parametea is assumed to be highly D) = {y}(1),u}(1),...,y*(N),u}(N)} for 6 = 6;, N mea-
uncertain),& can even converge to many different valuessurementD = {y?(1),u?(1),...,y?(N),u?(N)} for 6 = 6,
depending on the current realization of disturbangesvi,, and so on and so forth. By repeated experiments, one can
V2. This was already pointed out in [10] for EKF. Somewhatvork out a set of, sagn, pairs{6,DN} as depicted in Table I.
more surprising is the fact that UKF suffers from the sam@®f course, one may object that performing such a number
drawback too. of experiments on the true system may be unaffordable in
When P(0) is “small” as in (4), the estimates obtained viamany practical situations. In many instances, the unknown
EKF (Figure 8) are still rather spread whereas UKF providegarameter of a given plant is fixed and by no means modifi-
estimates which are more concentrated in a small regioable; in other case$) may be modified but the repetition of
However, as it is apparent from Figure 9 the estimatioexperiments with differen8’s is over-expensive. However,
error can be quite large for positive valuesanfAs a matter nowadays, any plant is usually accompanied by a very
of fact, selecting a “small” variance matrix means that thaccurate simulator. Hence, the set of experiments can be



8 [ DY = 00D,y (. (N)] 6 T Bl (ol .ol
6, | DY ={A(1),w*(D),...,y*(N), '*(N)} 6, | DI ={a2, . a?
Bn | DN = "0 U"(D), .y (N), U (N} 6 | DL (ol .o}
TABLE | TABLE I
THE OBSERVATIONS CHART AS THE STARTING POINT OF THE THE ARTIFICIAL OBSERVATIONS CHART.

0-STAG oD. I = .
TWO-STAGE METHOD The artificial data vectoD!' can be obtained from the

virtually performed by intensive simulation trials. original DN by resorting to a standard identification method.
Summing up, our starting point is the set of observation$o be precise, one can fit a simple model to each sequence
{6,DN} of Table I, being it obtained by repeated experiDN = {y'(1),u'(1),...,y'(N),u'(N)}. The parameters of this
ments on the real plant or by simulations trials on the planhode| sayay, ab, . .,al, are seen as the neartificial

simulator. data i.e. D' = {aj,...,a}}.

The basic problem is then to find a (nonlinear) map Example 1:To be concrete, for each= 1,...,m, the
R?N — RY capturing the relationship between obser&s  data sequenc®) = {y'(1),u'(1),...,y'(N),u'(N )} can be
and sequences gfu data. That is, concisely described by an ARX model:

ﬂ—ﬁ}iﬂ%iiH&—f(}/i(l),ui(l),...,))(N),ui(N))"z, ) Y(t) = aiy(t—1)+---apy(t—ny)+

czr,i1y+1ui t—1 4+ c:!,i1y+nuui (t—ny),

Plainly, shouldf be available, then thé corresponding to  with a total number of parametens= ny+n,. The artificial
the actual measuremerﬁ:s“ = {y(1),u(1),..., Y(N),u(N)} dataal,...,al can be computed through the least squares

can be unveiled a8 = f(y(1),a(1),..., ¥(N),a(N)). algorithm ([11], [15]):
Solving Problem (5) requires the preliminary choice of

a suitable class of functions# within which performing al LN

optimization. This is indeed a critical issue, due to thehhig Zld) O] Z¢'(t)y‘(t), (6)
dimensionality of the problem (functioh depends uponi t=

variables, normally a very large number if compared to the :

numberm of experiments). IfZ is a class of low-complexity ¢'(t) = [y (t —1)--y(t—ny) u(t—1)---u(t—ny)]".

functions, it is difficult to replicate the whole relationgsh ~ Remark 1:Notice that the artificial dat:D“ ={aj,...

linking DN to 6 (bias error). On the opposite, i¥ is a o} have no physical meaning. They play a purely inter-
class of high-complexity functions, then the over-fittingmediary role in the process of enlightening the relatiopshi
issue arises (variance error). As is well known, the bias vdetween the unknown parameter and the original collected

variance error trade off in high dimensional problems iglata. U
the bane of system identification theorists and practitmne To summarize, the first step aims at finding a function
[11], [15]. g: RN — R" in order to transform the original dai into

In order to achieve a sensible compromise between bigle new artificial dateD!. Functiong is implicitly defined
and variance error, the two-stage approach is proposed. b the chosen identification algorithm.

this method, the selection of the family of functiods is

split in two steps. The objective of the first step is to reduc&econd step.Once the artificial observations chart in
the dimensionality of the estimation problem, leadingrio Table Il is worked out, problem (5) becomes that of
new artificial observations each of which is constituted by§inding a maph : R" — R% which fits the set of artificial
a limited numbem of samples 1f < N). In the second step, observations, i.e.

the map between the artificial observations and paranteter R qm _ _
is identified. By combining the results of the two steps, the h— min= ZIHQ —h(ag,...,ap) @)
. ) - ; h m.&
sought relationship between the original data andf is 1=
finally unveiled. Function minimization in (7) is reminiscent of the original

minimization problem in (5). However, being small,
First step. The first step consists in a compressiorthe bias vs. variance error trade-off is not an issue and
of the information conveyed by measured input/outputhe new optimization problem can be tackled by suitably
sequenceQ)N in order to obtain data sequencé‘z’fn of parameterizingh with a Neural Network ([2]) or with
reduced dimensionality. While in the original daﬂ)@‘ the another class of linear or nonlinear functions.
information on the unknown parametér is scattered in a Perhaps it is worth noticing that a computationally
long sequence oN samples, in the new artificial da@d! cheap (but possibly loose) parametrization of is
such information is compressed in a very short sequenoe oh(ai, ,al) = qal + ... +cpal, ie. h is linear in
samplestf < N). This leads to a new atrtificial observatlonsal, a,ﬁ. In this way, the identification from the artificial
chart constituted by the pa|r$6.7D”} i=1,....,m see m observations can be easily performed through the least
Table II. squares algorithm, [11], [15], at a low computational



cost. Notice that, in spite of the linear dependence ot a linear parametrizationh(= cla‘1+...+c5a‘5)), with
ay,...,an, the final estimator of6 is nonlinear with coefficientscy,...,cs estimated again by the least squares
respect to the system input/output observations. As a mati@gorithm. As an alternativéy was also derived by resorting
of fact, the artificial dataai,...,a!, nonlinearly depend to a neural network (to be precise, we considered an Elman
upon Yy (1),u'(1),...,y'(N),u'(N) (see e.g. equation (6)). neural network with 2 layers, 10 neurons in the first layer and
In some cases, such nonlinearity suffices for capturingne neuron in the second one; the network was trained with
the relationship betweei® and y(1),u(1),...,y(N),u(N). the 500 artificial observations by the usual back-propagati
In other cases, instead, using a nonlineanay be advisable. algorithm).

The performance of the obtained estimator was tested by
Use of the method.Once functiong has been chosen validation. To this purpose, 1000 new values g0+ a were
and functionh has been identified, the link between theextracted in(—0.9,0.9). For each of thesé's, a sequence
original data and the unknowr® is given by h(g(-)). of N=1000 outputs was generated from equation (2). The
When an actual input/ouput sequence is observed, spyeviously obtained estimator was used for each of these
DN = {y(1),0(2),...,y(N), u(N)}, the corresponding sequences. The performance of the obtained estimates can
unknown parameter is estimated By= h(g(DV))). be appreciate in Figure 1& (inearly parameterized) and in
As previously discussed, viewing this daldunction as the Figure 11 b parameterized via neural networks).
composition ofg andh is the key to transform a numerically As can be seen, the two-stage estimator works much better
intractable problem into an affordable one. than EKF and UKF.
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