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Abstract: A main problem encountered in control engineering is thienggion of unknown parameters
appearing in the plant equations. In this paper, a new oé-fnethod to perform such estimation is
proposed. The method is based on the use of the plant simalatbon the generation @frtificial
datafrom which the relationship between the unknown parametetor and available measurements
is estimated. A simple example is used to illustrate howcéffe the method is in comparison to those
methods based on the Kalman filtering techniques (Extenddth&h Filter and Unscented Kalman
filter).

1. INTRODUCTION AND PROBLEM POSITION fact that the convergence of the parameter estimate is very
sensitive to the tuning of the filter equations. In particulae

In control engineering, a common experience of any designgming of the initial covariance matrix of the estimatiomcer a
is that, at the end of the plant modeling phase, a furtheristepbasic ingredient of Kalman filtering, is critical and is uyighe
required, that of assigning the value to a number of model peaesult of a number of trial and error attempts. In some sehise,
rameters. Often, the physical meaning of the uncertainnparaway of proceeding is like sweeping the dust under the rug. One
eters is well known, but their precise value is difficult tatst simply forgets about the problem of estimating the unknown
The basic idea is then to resort to experimental data to tume tparameters in the model to convert it into the equally difficu
model and identify the parameter values (grey-box ideatific problem of estimating the covariance matrix of the fakeestéit
tion, Bohlin [2006], Blanke and Knudsen [2006], Walter andhe extended system. Anyhow, there are no guarantees #hat th
Pronzato [1996, 1997]. In this context, Kalman Filter (KE) i accuracy of the obtained estimate of the unknown paramisters
often used. As is well known, KF has been originally concgivesatisfactory.
to estimate the state of a linear dynamical system based
measurements of input and output variables. In principle, t
method can be used to estimate the unknown plant parame

Ezg}ebsyemt;ﬁgug;;grrl]r:a'[tgreralr(neos?g:easg;ti;}t;}?s)St?-;[gvx\//:\;:frm:ﬁs as WIO rked out from_btlhe mathematical mogel. 'I;h_anks to the
. B ’ mulator, it is possible to generate a number of input-outp

procedure leads to a nonlinear system, for which state esli- ' :

mation is still open to research studies. The basic method gnulated data sequences, each sequence being assodtated w

the celebrated Extended Kalman filter (EKF) where the origi SPECHfic value of the plant parameters. This enables eanstr

nal setting of Kalman approach is recovered by recursive Ii@;futg%?'tmhglat:gr?]aeﬁrcshgtgag;?rlgsa ggz?nlezg'tgg sféoz]e;hcee In
earizations around the current estimate of the state. ster P P 9 9 '

tively, one can resort to other Montecarlo-based apprcachérmc'ple’ once such chart has been constructed, the datima

Ribtivated by these experiences, we have worked out a novel
tﬁ?‘-line methodology in the last couple of years. The new
thod is based on an extensive use of the the plant simulator

where the variances and covariances appearing in the farm rgtb\lgm(:%?l?hge Ifﬁtklezgaarﬁé?;s'%frvsvﬁigaot?llgrgoﬁ:essearcgi'ng
for the Kalman filter gain are evaluated by means of samp P b ran

counterparts suitably constructed. This leads to a number ?ngﬂlséegf ?r?tﬁt-aorﬁt ‘3? g;c:;e.rﬁ Spgsﬁ:,gs atEg nthei O@Eﬁﬁd S€-
nonlinear KF variants, in particular to the Unscented Kaima P P ) P P ’

Filter (UKF). There is a huge literature on linear and noredir ever, is hardly affordable due to the high dimensionalityhef

estimation covering the range of some decades; we will quo ga sequences. We suggest therefore a two-stage pro¢edure

here a few main references: Anderson and Moore [1979], Ge{lj1 duce the complexity of the optimization problem to an ptce

; le level. To be precise, the information contained in athd
etal. [1974], Grewal and Andrews [2001], Julier et al. [2D00 sequences is compressed in short sequencasififial data.

Julier and Uhlmann [2004], Kailath et al. [2000], Morall and=, : . ; :
. ; This compression procedure is applied not only to the oaigin
Grizzle [1995], Simon [2006], Su and Kamen [1999], Sun et aj ata set of plant measurements, but also to all sequences of

[1993], Walter and Pronzato [1997], Wan and van der Merw atagenerated by means of the plant simulator. In this way one

[2001]. can construct theompressed artificial data charassigning
The nonlinear KF approaches (EKF and UKF) are indeed the sequence of compressed artificial data to each value of the
methods we have mostly adopted in the plant modeling proptant parameters. Thanks to the limited dimensionalityhef t
lems which were posed to us through industrial cooperationsompressed artificial data sequences, the inverse problem o
However, we have encountered difficulties, mainly due to thassigning a value of the parameters to each compressedalrtifi
data sequence can be tackled. Thus, the parameter estimatio
problem can eventually be faced by associating to the seguen
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of compressed artificial data generated from the origina-mepreferred, wherev(k) is white noise with zero mean value and
sured data the corresponding value of the parameters as ingiriance matridVv. We refer to such additional state compo-
cated by the inverse of theompressed artificial data chart nents as thdake state variablesThe state of the extended
This methodology, referred to @&o-stage methqdprovided system can be then estimated by means of the Kalman filter,
much more satisfactory results, and we believe itis adlesab so obtaining also the estimate of the fake variables, i.¢hef
bring it to the attention of the community of control engireee parameter vecto8.

To better clarify the rationale of the method, we have chos . . . .
fy eifhe main problems are: (i) the extended system is nonlinear,

a simple example of a second order state space model wi hile the KE th has b ved for i )
a single unknown parameter, for which we will compare th lle the theory has been conceived for linear systems;

performance of our method with that achievable via EKF an ji) the KF is_ a _repurs_ive (_astima_tion algorithm, and as .SUCh i
UKF requires an initialization; in particular, the value of timéial

estimation error covariance matrix must be specified.

1.1 Formal problem position Point (i) is a main issue. Indeed, for linear systems, théyaisa

of the standard Riccati equation guarantees the stabfiitiyeo
The problem we deal with is precisely the following oneKF along with the convergence of the estimation error cevari
Consider a dynamical system depending on a parameter vecémce, provided that appropriate stabilizability and deteitity
6 € RY. The system is denoted B(0) as in Figure 1. For conditions hold, see Bittanti et al. [1991].

When instead the system is nonlinear, the Kalman filtering

le(t) equations can be used at the price of some approximation, and
the general convergence results in the linear case do ndt hol
u(t) y() anymore.
P(0) To be precise, both EKF and UKF are based on the same

rationale, that is the iterated re-computation of the lirkayes
estimator around the current state estimate (as is well kRhow
in Kalman filtering, the filter gain is given by the general Bay
simplicity, in the sequel, we will focus on discrete time retsd ~ estimator formula applied to the state estimation problding
only, with scalar input and output. basic ingredients of the Bayes estimator are _the crossneria
We suppose that the mathematical modelH¢t#) is available, between the output and the state and the variance of thetoutpu
together with the associated simulator. The only unknown RpPservations. In EKF these ingredients are (recursivelg)-e
the value of the parameter vectér The problem is that of uated via system linearization by computing the Jacobidns o
estimatingd based on measurements from the plant. the state and output equations around the current stateagsti

To this purpose, we assume that the input and output of time p|dn UKEF, instead, the variance matrices are evaluated by mean
are collected over a certain time interval so that a sequefiide  Of sample counterparts. These counterparts are computed by
input and output snapshoBN = {y(1),0(1),...,y(N),u(N)} letting the system equations evolve for one step startiog fr

is available. The issue is then how to exploit the infornmatio@ cloud of a few points suitably generated around the current
here contained in order to obtain a fair estimate of the uairer State estimate. In this way no system linearization is requi

Fig. 1. The data generating system.

paramete®. and the estimated variance matrices suffer from a loweredegr
of approximation. In any case, both in EKF and UKF, the
1.2 Structure of the paper continuous re-computation of the filter gain introduces @ so

of adaptation of the filter which should hopefully cope with

; ; ; . the system nonlinearities. This could lead to the convargen
The paper is organized as follows. In Section 2, we prelingina h . ; . .
stud)F/) tFr)1e mec%anism of functioning of EKF ancﬁ) Ug a§’f the state estimate notwithstanding the non-linearityhef
parameter estimators. By means of a simple example we Wﬂgderlymg_ equa;tlons. H _ I k .
see that the estimation error may be remarkably spread. THEE guestion of convergence, however, Is a well known crit-

new two-stage approach is introduced in Section 3, and thit! issué of EKF. Indeed, there are celebrated (yet simple)
amples showing the possible divergence/nonconvergaice

E:rrigr:r}iIttgiir?grr?]itﬁ)é?j?ple used to probe the applicability ET(F depending on the initialization of the filter (see e.qing
. &1979]). Despite many results on local convergence (Baliay

We anticipate that in this paper we propose the new meth . :
and test its effectiveness by simulations. As for EKF aneoth €t &l [1997], Ljung [1979], Reif and Unbehauen [1999], Song

Kalman estimation techniques, we expect that the theateticd Grizzlef [éa?f] Zhl?u and Blank%|[1985'3a]\), fthe g:(()':bal c?]n—
analysis is a nontrivial task. We do believe, however, th rgence o Is still an open problem. As for UKF, to the

our approach can be a powerful and innovative tool to sol est knowledge of the authors, no analysis of convergence is

parameter estimation problems in physical models available. In the following simple example we will show that
' UKF may provide unsatisfactory estimation performances to

2. PARAMETER ESTIMATION WITH UKF AND EKF
2.1 Example

Before introducing the new method, we are well advised to ) )
re-visit the issue of parameter estimation via Kalman fitger Consider the time serigsgenerated by the system:
techniques. As is well known, the idea of EKF is to enlarge the
state of the given model by considering the unknown param- x1(K+1) =a-x1 (k) +vi1(k) (1a)
eter as an additional state variable, by means of the equiatio _ 2
6(k+1) = 6(k). Actually, to increase the responsiveness of the X2(k+ 1) = x1 (k) +a“ - x2(K) 4+ v12(k) (1b)
algorithm, the equationd(k+ 1) = 8(k) +w(k) is normally y(k) =a-x1(k) +x2(k) + va(k), (1c)



wherea is an unknown real parameter in the rarjg®.9,0.9]

conditions by plotting the obtained estimate versus thaahct

whilevi; ~WGN(0, 1), vio ~WGN(0, 1), andv, ~W GN(0,0.01) value of the parameter. In other words, for each point in the
(WGN = White Gaussian Noise) are mutually uncorrelatedigure, thex-coordinate is the extracted value ywhile they-

noise signals.
For parameter estimation, system (1) is rewritten as:

X1(k+ 1) = X3(|() . X]_(k) +V11(k)
X2(k+ 1) = x1(K) 4 x3(K)? - X2(K) + v12(K)
x3(k+ 1) = x3(k) +w(k)

Y(K) = xa(k) - xa(k) +X2(K) +V2(K),
wherexz is the additional fake state variable representing pa-
rametera. As for the fake state nois&(k) we make the as-
sumption that it is modeled as a further White Gaussian Noi
uncorrelated with all other disturbances. The tuning o¥éts-
ance is a rather complex issue, usually faced by a trial and
error procedure; we have studied various cases but, for the

PO)=| 0 100

was taken as initial covariance matrix
gé'gures 4 and 5, instead, display the results obtained when

10 0 ]
PO)=({01 0 |.
00107 |
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coordinate is the corresponding estimatipplied by the used
filter. Clearly a good estimator should return points comedn
ing around the bisector of the first and third quadrant.

As for the filter operating conditions, Figures 2 and 3 deffiet
results obtained when EKF and UKF, respectively, weredhiti
ized withx;(0) = 1, %2(0) = 1 andxz(0) = —0.4. Moreover:

()

of the estimatioorerr

sake of conciseness, we will only report the results obthin

initialized with x,(0) = 0 andx,(0) = 0.

To probe the performance of EKF and UKF, we extracted 1000

values for the parameteruniformly distributed in the interval
[-0.9,0.9]. For each extracted valu®y = 1000 samples of

the output signay have been generated and used to estimate

a by means of the 1-step ahead Kalman predictorfi.e.
a=%3(10011000. Both EKF and UKF were applied for such

Parameter estimate @
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Fig. 2. Estimates of via EKF (large initial variance).
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Fig. 3. Estimates of1via UKF (large initial variance).

estimation problem (the reader is referred to the litesafor

Kailath et al. [2000], Simon [2006]).
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X s it appears, in many instances the estimate does not ver
for aWGN(0,10°6). In all our experiments, system (1) was PP ' y el

As it can be seen from Figures 2 and 3, wh#®0) is “large”

as in the choice (2)a form a large cloud. This means that,
depending on the current realization of disturbangesvi2, vz,

the estimate can converge to a variety of different valubgs T
was already pointed out in Ljung [1979] for EKF. Somewhat
more surprising is the fact that UKF suffers from the same

drawback too.

When insteadP(0) is “small” as in the choice (3), the estimates
the updating equations of EKF and UKF, see Anderson arabtained via EKF (Figure 4) are still rather spread wherdéis U
Moore [1979], Gelb et al. [1974], Grewal and Andrews [2001]provides estimates which are more concentrated. Howevér, a
is apparent from Figure 5 the estimation error can be quigela
Figures 2-5 display the result obtained in different opgagat for positive values ofi. As a matter of fact, selecting a “small”



variance matrix means that paramegeis assumed to be lo- Fynction f can be seen as an appropriate estimator of the un-

cated near the initial guess assumed in the filter initibra. | 0 parameter vector. Shoufcbe available, then thé cor-
In conclusion, the filters produce an acceptable estimalie Or}esponding to the actua.l measurements — {’)7(1) L)
when the true parametaris in a relatively small neighborhood y(N),U(N)} could be estimated as

of —0.4. When insteadh is far from —0.4, neither EKF nor L
UKF provide fair estimates of the actual valuesof 6 = f(y(1),u(),...,y(N),u(N)).

Further simulations were performed by changing the inigal

tion of X3(0) (precisely, to—0.8, 0.4, and 08). The results were Solving Problem (4) requires the preliminary choice of &-sui

similar to those previously presented. able class of functions# within which performing optimiza-
tion. This is indeed a critical issue, due to the high dimen-
2.2 Final comments on UKF and EKF sionality of the problem. Indeeti depends uponi variables,

normally a very large number if compared to the numineof

As it appears from the simulations in Section 2.1 both EKEXPeriments. If7 is a class of low-complexity functions, then
and UKF suffer from a major drawback, the possible nonit is difficult to replicate the relationship linking" to @ for all
convergence of the estimate to the true parameter value. Nofdlues ofé (bias error). On the opposite, # is a class of high-
convergence occurs especially when the parameter to be e§g@mplexity functions, then the over-fitting issue arisesignce
mated is subject to a large uncertainty and the correct value€or), see Ljung [1999], Séderstrom and Stoica [1989).

away from its initial guess (a condition often encountened i|n order to achieve a sensible compromise between bias and
application problems). variance error, the two-stage approach is proposed. In this
Furthermore, the behavior of EKF and UKF strongly dependgethod, the selection of the family of function® is split

on the choice ok(0) andP(0). In the Bayesian framework of iy two steps. The objective of the first step is to reduce the
Kalman filtering methods, these quantities should be sedes  gimensionality of the estimation problem, by generatinga n

the mean and the variance matrix of the extended system stgj§g§ta chart composed again of sequences; however each
However, in parameter estimatio_n proplerﬁsis notarandpm sequence is constituted by a limited numireof samples
variable in general, and the choice of its mean and variaicej, < N). We will call such sequencesmpressed artificial data
largely arbitrary and often obtained through heuristialtand  sequenceand the corresponding chart ttempressed artificial
error procedures. data chart

Summing up, the simulations above reported show that boff the second step, the map between the compressed artificial
EKF and UKF may be unsuitable for the estimation of ajpservations and paramet@ris identified. By combining the

unknown parameter. results of the two steps, the relationship between the raigi
y-u data and is finally unveiled.
3. THE TWO-STAGE APPROACH We now will give more details on each of the two stages.

The new parameter estimation method is an off-line meth(ﬁrSt stage. The first step consists_in a compression of the
fully developed in a non-Bayesian setting. The basic rafieis  '"formation conveyed by measured input/output sequedfes
to resort to the plant simulator and to perform off-line irgive  in order to obtain data sequendsof reduced dimensionality.
simulation trials in order to construct the relationshigvimen  While in the dateD) the information on the unknown parame-
the input/output data and the unknown parameter. ter 6 is scattered in a long sequenceMsamples, in the new
To be precise, we use ttemulatorto generate input/output compressed artificial da@ such information is compressed
data for a number of different values of the unknown parameté a short sequence afsamplesif < N).
6. That is, we collecN measurements

DY = {y*(1),u}(1),....y (N),u*(N)} 6, | D7 ={of, 03]
for 6 = 6;; N measurements 62 | D3={af,....af}

DIZ\I :{yz(l)vuz(l)’“-ayz(N)vuz(N)} . -
for 8 = 6,; and so on and so forth. By repeated simulation Om | Dh={af"....an}
experiments one can work out a set of, mypairs{G.,DiN} Table 2.The compressed artificial data chart.
as summarized in Table 1. Such set of data is referred to as the

simulated data chart This leads to a new compressed artificial data chart cotestitu
6 | DY ={y'(1),u"(1),...,y* (N),u’(N)} by the pairs{8,D"},i =1,...,m, see Table 2.

6 | Dy ={Y@).r@)...y(N).wN)} The compressed artificial data sequerizie can be derived

: ' from DiN by resorting to a standard identification method. To

Om | Di = {y"(1).u"(D).....y"(N).u™(N)} be precise, one can fit a simple model to each sequBfice
Table 1.The simulated data chart as the starting point of the {yl (1), ul (1)7 . ,yi (N), ul (N)} and then adopts the parameters
two-stage method. of this model, saya}, ab, ..., al, as compressed artificial data,

i.e.DP = {al,...,a}}.
Suppose for a moment that, from such set of data, one can fild fix ideas, we suggest the following as a typical method
the (nonlinear) mapiA: R2N _, R9 associating to each sequencefor the generation of compressed artificial data. For gaeh
of data a corresponding parameter vector as follows: 1,2,...,m, the data sequence

~ 1nm s i i 2 DN = {y/(1),u'(1),....y (N),u'(N)}
fHmfmﬁi;HQ'*f(y(l)’u(l)""’y(N)’u(N»H' @ can be concisely described by an ARX model:



y'(t) =aly (t—1)+---a§}yyi (t—ny)+ Use of the two-stage methodOnce functiong has been

a (=14 ah o (t—ng) chosen and functiom has been identified, the link between
ny+1 My +Nu s the original data and is given by h(g(-)), see Figure 6.

with a total number of parametens= ny + ny. The parameters When an actual input/ouput sequence is observedDSay-

ai,...,al of this model can be worked out by means of the
least squares algorithm (Ljung [1999], Sdderstrom andc&toi o S Iy A
[1989)): Zgllimal 8 ZZZZCMI

il N . N
ARISXICLICR D XAC GO

ari1 = = {y(1),u(1),...,y(N), u(N)}, theAcorrAespo_nding unknown pa-
) =yt—1)--y(t—n)ut—21)--ut—ny). rameter can then be estimated @s: h(g(DV)).

a
Fig. 6. The estimator function composition.

Remark 1(Physical interpretation of the artificial data). WhileAs previously discussed, viewing this dalafunction as the
the original systenP(6) has a physical meaning, the simplecomposition ofg andh is the key to transform a numerically
model class selected to produce the compressed artifidial dgtractable problem into an affordable one.

does not need to have any physical interpretation; thissclas

plays a purely instrumental and intermediary role in the-pr
cess of bringing into light the hidden relationship betwéen
unknown parameter and the original collected data.

In this connection, we observe that the choice of the AR
model order is not a critical issue. Anyhow, one can resort t
the complexity selection criteria such as FPE or AIC. [

Remark 3(Nonlinearity in estimation). Suppose that both in

the first stage and in the second one, a linear parametrizatio
)i<s used. In other words: in the first stage, the simple class
f models is the ARX one and in the second stage a linear
egression of the compressed artificial data sequence®ds us
to fit 8. Even in such case, the final estimation rule is nonlinear.

In conclusion, the first stage of the method aims at finding ideed, the generation of the compressed artificial dataen t

function § : RN — R" transforming each simulated data sefirst stage requires the use of the LS algorithm applied to the

quenceD! into the a new sequence of compressed artificigimulated data sequencBf', and this is by itself a nonlinear

dataB! conveying the same information @ As compressed manipulation of data, see (5). Hence only the second stage is
I

b . .~ _actually linear.
artificial data we take the parameters of a simple model,—ldeg&S a matter of fact in some cases. such nonlinearity lim-
tified from DN. In this way, functiong is implicitly defined by ' ! y

. L 2 ited to the first stage of elaboration suffices for captur-
g;g(;ocrli?r?;m simple models and the corresponding identiat ing the relationship between the unknovéhand the data

y(1),u(1),...,y(N),u(N). In other cases, instead, introducing
Second stageOnce the compressed artificial data chart irlso a nonlinearity in the second stage (namely, takimg a
Table 2 has been worked out, problem (4) becomes that pénlinearly parameterized function of the compresseficati
finding a maph : R" — RY which fits the set ofn compressed data) is advisable and leads to better global results. O
artificial observations, i.e.

~ .1 m ; SN2 3.1 Example - continued
hHmr:anHG.—h(a'l,...,ar']) P
i=

(6)

Function minimization in (6) is reminiscent of the original
minimization problem in (4). However, beimgsmall, the bias
versus variance error trade-off is no more an issue.

As for the choice ofh one can select a linear function:
h(aj,...,an) =cia]+...+cnap, 6 € RY, i.e. each component

3;{; "fi Just gi Ilr';gairncacl)? t}:ﬂgg?? GOfr ;2; (fr? Tﬁéesszm%rgg as collected. Summing up, the simulated data chart ceaksist
a ealr’ir.]. : ’hgfe can beyeasil cogr]n uted ,via IeF;st S uaresOf ?OO rows. Each row is associated to a valué ahd contains
PP 9 y b q 1HE corresponding sequence of 1000 shapshots.

a low computational cost. Of course such a way of parame- - i - i i
terizing h is computationally cheap but possibly loose. Bette?oreach sequen@é(l),_...,y‘(looq, the coefiicientsr, .., ds

results are expected by choosing a class of nonlinear hmmgti ©f @1 AR(S) model §(t) = ajy(t —1) + - + agy(t —5))
such as Neural Networks or NARX models. The minimizatiofVe'® identified by the least squares algorithm. We consiblere

: : ; ...,at for i =1,2,...,500 as compressed data. In other
in (6) can be performed by resorting to the back-propagatidfit:- -+ 95 S0 _
algorithm or to other standard algorithms developed fosehe WOrds. we replaced the 500 sequences of 1000 data each with
classes of nonlinear functions. another set of 500 sequences of 5 data each.

As for the second stage of the method, we have considered

R ~ . two possibilities. First, we have taken as functiora linear
Remark 2(The functiong anAdh). The two-stage methods is regressionh — Clail + “._’_Csais’ with coefficientscy, ..., cs
based on two functiongiandh. The former is th€ompression optained by the least squares algorithm. The second chaise w
function transforming simulated data into Compressed artificiqb resort to a neural network (to be precise’ we considered an
data. The latter is thigtting functionproviding the map from the  Eiman neural network with 2 layers, 10 neurons in the firsttay
compressed artificial data to the unknown parameter. V@tile and one neuron in the second one; the network was trained
chosen by the designdr,is identified by fitting the parameter with the 500 compressed artificial observations composed by
values to the corresponding compressed artificial data. [1 5 samples each, by the usual back-propagation algorithm).

The two-stage approach was applied to the time series gen-
erated by system (1) so as to compare the performances in
estimation with those achieved by EKF and UKF. To be precise,
m = 500 values for8 = a were extracted uniformly from the
interval [—0.9,0.9]. Correspondingly, for eacB among this

00 extractions a simulated data sequence of 1000 outpueval
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