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Abstract: A main problem encountered in control engineering is the estimation of unknown parameters
appearing in the plant equations. In this paper, a new off-line method to perform such estimation is
proposed. The method is based on the use of the plant simulator and on the generation ofartificial
data from which the relationship between the unknown parameter vector and available measurements
is estimated. A simple example is used to illustrate how effective the method is in comparison to those
methods based on the Kalman filtering techniques (Extended Kalman Filter and Unscented Kalman
filter).

1. INTRODUCTION AND PROBLEM POSITION

In control engineering, a common experience of any designer
is that, at the end of the plant modeling phase, a further stepis
required, that of assigning the value to a number of model pa-
rameters. Often, the physical meaning of the uncertain param-
eters is well known, but their precise value is difficult to state.
The basic idea is then to resort to experimental data to tune the
model and identify the parameter values (grey-box identifica-
tion, Bohlin [2006], Blanke and Knudsen [2006], Walter and
Pronzato [1996, 1997]. In this context, Kalman Filter (KF) is
often used. As is well known, KF has been originally conceived
to estimate the state of a linear dynamical system based on
measurements of input and output variables. In principle, the
method can be used to estimate the unknown plant parameters
too, by introducing in the model additional state variablesto
represent the parameters (fake state variables). However, this
procedure leads to a nonlinear system, for which state esti-
mation is still open to research studies. The basic method is
the celebrated Extended Kalman filter (EKF) where the origi-
nal setting of Kalman approach is recovered by recursive lin-
earizations around the current estimate of the state. Alterna-
tively, one can resort to other Montecarlo-based approaches
where the variances and covariances appearing in the formula
for the Kalman filter gain are evaluated by means of sample
counterparts suitably constructed. This leads to a number of
nonlinear KF variants, in particular to the Unscented Kalman
Filter (UKF). There is a huge literature on linear and non-linear
estimation covering the range of some decades; we will quote
here a few main references: Anderson and Moore [1979], Gelb
et al. [1974], Grewal and Andrews [2001], Julier et al. [2000],
Julier and Uhlmann [2004], Kailath et al. [2000], Morall and
Grizzle [1995], Simon [2006], Su and Kamen [1999], Sun et al.
[1993], Walter and Pronzato [1997], Wan and van der Merwe
[2001].

The nonlinear KF approaches (EKF and UKF) are indeed the
methods we have mostly adopted in the plant modeling prob-
lems which were posed to us through industrial cooperations.
However, we have encountered difficulties, mainly due to the
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fact that the convergence of the parameter estimate is very
sensitive to the tuning of the filter equations. In particular, the
tuning of the initial covariance matrix of the estimation error, a
basic ingredient of Kalman filtering, is critical and is usually the
result of a number of trial and error attempts. In some sense,this
way of proceeding is like sweeping the dust under the rug. One
simply forgets about the problem of estimating the unknown
parameters in the model to convert it into the equally difficult
problem of estimating the covariance matrix of the fake state of
the extended system. Anyhow, there are no guarantees that the
accuracy of the obtained estimate of the unknown parametersis
satisfactory.

Motivated by these experiences, we have worked out a novel
off-line methodology in the last couple of years. The new
method is based on an extensive use of the the plant simulator,
as worked out from the mathematical model. Thanks to the
simulator, it is possible to generate a number of input-output
simulated data sequences, each sequence being associated with
a specific value of the plant parameters. This enables construct-
ing thesimulated data chart, namely a map leading from the
value of the parameters to a corresponding data sequence. In
principle, once such chart has been constructed, the estimation
problem could be tackled as the inverse problem of searching
that value of the plant parameters for which the corresponding
simulated data are "as close as possible" to the measured se-
quence of input-output data. This optimization problem, how-
ever, is hardly affordable due to the high dimensionality ofthe
data sequences. We suggest therefore a two-stage procedureto
reduce the complexity of the optimization problem to an accept-
able level. To be precise, the information contained in all data
sequences is compressed in short sequences ofartificial data.
This compression procedure is applied not only to the original
data set of plant measurements, but also to all sequences of
datagenerated by means of the plant simulator. In this way one
can construct thecompressed artificial data chart, assigning
a sequence of compressed artificial data to each value of the
plant parameters. Thanks to the limited dimensionality of the
compressed artificial data sequences, the inverse problem of
assigning a value of the parameters to each compressed artificial
data sequence can be tackled. Thus, the parameter estimation
problem can eventually be faced by associating to the sequence



of compressed artificial data generated from the original mea-
sured data the corresponding value of the parameters as indi-
cated by the inverse of thecompressed artificial data chart.
This methodology, referred to astwo-stage method, provided
much more satisfactory results, and we believe it is advisable to
bring it to the attention of the community of control engineers.
To better clarify the rationale of the method, we have chosen
a simple example of a second order state space model with
a single unknown parameter, for which we will compare the
performance of our method with that achievable via EKF and
UKF.

1.1 Formal problem position

The problem we deal with is precisely the following one.
Consider a dynamical system depending on a parameter vector
θ ∈ R

q. The system is denoted byP(θ) as in Figure 1. For

P(θ)
y(t)

e(t)

u(t)

Fig. 1.The data generating system.

simplicity, in the sequel, we will focus on discrete time models
only, with scalar input and output.
We suppose that the mathematical model forP(θ) is available,
together with the associated simulator. The only unknown is
the value of the parameter vectorθ . The problem is that of
estimatingθ based on measurements from the plant.
To this purpose, we assume that the input and output of the plant
are collected over a certain time interval so that a sequenceof N
input and output snapshots̄DN = {ȳ(1), ū(1), . . . , ȳ(N), ū(N)}
is available. The issue is then how to exploit the information
here contained in order to obtain a fair estimate of the uncertain
parameterθ .

1.2 Structure of the paper

The paper is organized as follows. In Section 2, we preliminary
study the mechanism of functioning of EKF and UKF as
parameter estimators. By means of a simple example we will
see that the estimation error may be remarkably spread. The
new two-stage approach is introduced in Section 3, and then
tested in the same example used to probe the applicability of
Kalman filtering methods.
We anticipate that in this paper we propose the new method
and test its effectiveness by simulations. As for EKF and other
Kalman estimation techniques, we expect that the theoretical
analysis is a nontrivial task. We do believe, however, that
our approach can be a powerful and innovative tool to solve
parameter estimation problems in physical models.

2. PARAMETER ESTIMATION WITH UKF AND EKF

Before introducing the new method, we are well advised to
re-visit the issue of parameter estimation via Kalman filtering
techniques. As is well known, the idea of EKF is to enlarge the
state of the given model by considering the unknown param-
eter as an additional state variable, by means of the equation:
θ(k+1) = θ(k). Actually, to increase the responsiveness of the
algorithm, the equation:θ(k + 1) = θ(k) + w(k) is normally

preferred, wherew(k) is white noise with zero mean value and
variance matrixW. We refer to such additional state compo-
nents as thefake state variables. The state of the extended
system can be then estimated by means of the Kalman filter,
so obtaining also the estimate of the fake variables, i.e. ofthe
parameter vectorθ .

The main problems are: (i) the extended system is nonlinear,
while the KF theory has been conceived for linear systems;
(ii) the KF is a recursive estimation algorithm, and as such it
requires an initialization; in particular, the value of theinitial
estimation error covariance matrix must be specified.

Point (i) is a main issue. Indeed, for linear systems, the analysis
of the standard Riccati equation guarantees the stability of the
KF along with the convergence of the estimation error covari-
ance, provided that appropriate stabilizability and detectability
conditions hold, see Bittanti et al. [1991].
When instead the system is nonlinear, the Kalman filtering
equations can be used at the price of some approximation, and
the general convergence results in the linear case do not hold
anymore.
To be precise, both EKF and UKF are based on the same
rationale, that is the iterated re-computation of the linear Bayes
estimator around the current state estimate (as is well known,
in Kalman filtering, the filter gain is given by the general Bayes
estimator formula applied to the state estimation problem). The
basic ingredients of the Bayes estimator are the cross variance
between the output and the state and the variance of the output
observations. In EKF these ingredients are (recursively) eval-
uated via system linearization by computing the Jacobians of
the state and output equations around the current state estimate.
In UKF, instead, the variance matrices are evaluated by means
of sample counterparts. These counterparts are computed by
letting the system equations evolve for one step starting from
a cloud of a few points suitably generated around the current
state estimate. In this way no system linearization is required
and the estimated variance matrices suffer from a lower degree
of approximation. In any case, both in EKF and UKF, the
continuous re-computation of the filter gain introduces a sort
of adaptation of the filter which should hopefully cope with
the system nonlinearities. This could lead to the convergence
of the state estimate notwithstanding the non-linearity ofthe
underlying equations.
The question of convergence, however, is a well known crit-
ical issue of EKF. Indeed, there are celebrated (yet simple)
examples showing the possible divergence/nonconvergenceof
EKF depending on the initialization of the filter (see e.g. Ljung
[1979]). Despite many results on local convergence (Boutayeb
et al. [1997], Ljung [1979], Reif and Unbehauen [1999], Song
and Grizzle [1995], Zhou and Blanke [1989]), the global con-
vergence of EKF is still an open problem. As for UKF, to the
best knowledge of the authors, no analysis of convergence is
available. In the following simple example we will show that
UKF may provide unsatisfactory estimation performances too.

2.1 Example

Consider the time seriesy generated by the system:

x1(k+1) = a·x1(k)+v11(k) (1a)

x2(k+1) = x1(k)+a2 ·x2(k)+v12(k) (1b)

y(k) = a·x1(k)+x2(k)+v2(k), (1c)



wherea is an unknown real parameter in the range[−0.9,0.9]
whilev11∼WGN(0,1), v12∼WGN(0,1), andv2∼WGN(0,0.01)
(WGN = White Gaussian Noise) are mutually uncorrelated
noise signals.
For parameter estimation, system (1) is rewritten as:

x1(k+1) = x3(k) ·x1(k)+v11(k)

x2(k+1) = x1(k)+x3(k)
2 ·x2(k)+v12(k)

x3(k+1) = x3(k)+w(k)

y(k) = x3(k) ·x1(k)+x2(k)+v2(k),

wherex3 is the additional fake state variable representing pa-
rametera. As for the fake state noisew(k) we make the as-
sumption that it is modeled as a further White Gaussian Noise
uncorrelated with all other disturbances. The tuning of itsvari-
ance is a rather complex issue, usually faced by a trial and
error procedure; we have studied various cases but, for the
sake of conciseness, we will only report the results obtained
for a WGN(0,10−6). In all our experiments, system (1) was
initialized withx1(0) = 0 andx2(0) = 0.
To probe the performance of EKF and UKF, we extracted 1000
values for the parametera uniformly distributed in the interval
[−0.9,0.9]. For each extracted value,N = 1000 samples of
the output signaly have been generated and used to estimate
a by means of the 1-step ahead Kalman predictor ofx3, i.e.
â = x̂3(1001|1000). Both EKF and UKF were applied for such
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Fig. 2.Estimates ofa via EKF (large initial variance).
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Fig. 3.Estimates ofa via UKF (large initial variance).

estimation problem (the reader is referred to the literature for
the updating equations of EKF and UKF, see Anderson and
Moore [1979], Gelb et al. [1974], Grewal and Andrews [2001],
Kailath et al. [2000], Simon [2006]).
Figures 2-5 display the result obtained in different operating

conditions by plotting the obtained estimate versus the actual
value of the parameter. In other words, for each point in the
figure, thex-coordinate is the extracted value fora, while they-
coordinate is the corresponding estimateâ supplied by the used
filter. Clearly a good estimator should return points concentrat-
ing around the bisector of the first and third quadrant.
As for the filter operating conditions, Figures 2 and 3 depictthe
results obtained when EKF and UKF, respectively, were initial-
ized with x̂1(0) = 1, x̂2(0) = 1 andx̂3(0) =−0.4. Moreover:

P(0) =

[
10 0 0
0 10 0
0 0 2

]
(2)

was taken as initial covariance matrix of the estimation error.
Figures 4 and 5, instead, display the results obtained when

P(0) =




1 0 0
0 1 0
0 0 10−2


 . (3)

As it appears, in many instances the estimate does not converge
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Fig. 4.Estimates ofa via EKF (small initial variance).
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Fig. 5.Estimates ofa via UKF (small initial variance).

to the true value of parametera.
As it can be seen from Figures 2 and 3, whenP(0) is “large”
as in the choice (2),̂a form a large cloud. This means that,
depending on the current realization of disturbancesv11, v12, v2,
the estimate can converge to a variety of different values. This
was already pointed out in Ljung [1979] for EKF. Somewhat
more surprising is the fact that UKF suffers from the same
drawback too.
When insteadP(0) is “small” as in the choice (3), the estimates
obtained via EKF (Figure 4) are still rather spread whereas UKF
provides estimates which are more concentrated. However, as it
is apparent from Figure 5 the estimation error can be quite large
for positive values ofa. As a matter of fact, selecting a “small”



variance matrix means that parametera is assumed to be lo-
cated near the initial guess assumed in the filter initialization.
In conclusion, the filters produce an acceptable estimate only
when the true parametera is in a relatively small neighborhood
of −0.4. When insteada is far from−0.4, neither EKF nor
UKF provide fair estimates of the actual value ofa.
Further simulations were performed by changing the initializa-
tion of x̂3(0) (precisely, to−0.8, 0.4, and 0.8). The results were
similar to those previously presented.

2.2 Final comments on UKF and EKF

As it appears from the simulations in Section 2.1 both EKF
and UKF suffer from a major drawback, the possible non-
convergence of the estimate to the true parameter value. Non-
convergence occurs especially when the parameter to be esti-
mated is subject to a large uncertainty and the correct valueis
away from its initial guess (a condition often encountered in
application problems).
Furthermore, the behavior of EKF and UKF strongly depends
on the choice of̂x(0) andP(0). In the Bayesian framework of
Kalman filtering methods, these quantities should be selected as
the mean and the variance matrix of the extended system state.
However, in parameter estimation problems,θ is not a random
variable in general, and the choice of its mean and variance is
largely arbitrary and often obtained through heuristic trial and
error procedures.
Summing up, the simulations above reported show that both
EKF and UKF may be unsuitable for the estimation of an
unknown parameter.

3. THE TWO-STAGE APPROACH

The new parameter estimation method is an off-line method
fully developed in a non-Bayesian setting. The basic rationale is
to resort to the plant simulator and to perform off-line intensive
simulation trials in order to construct the relationship between
the input/output data and the unknown parameter.
To be precise, we use thesimulator to generate input/output
data for a number of different values of the unknown parameter
θ . That is, we collectN measurements

DN
1 = {y1(1),u1(1), . . . ,y1(N),u1(N)}

for θ = θ1; N measurements

DN
2 = {y2(1),u2(1), . . . ,y2(N),u2(N)}

for θ = θ2; and so on and so forth. By repeated simulation
experiments one can work out a set of, saym, pairs{θi ,DN

i }
as summarized in Table 1. Such set of data is referred to as the
simulated data chart.

θ1 DN
1 = {y1(1),u1(1), . . . ,y1(N),u1(N)}

θ2 DN
2 = {y2(1),u2(1), . . . ,y2(N),u2(N)}

...
...

θm DN
m = {ym(1),um(1), . . . ,ym(N),um(N)}

Table 1.The simulated data chart as the starting point of the
two-stage method.

Suppose for a moment that, from such set of data, one can find
the (nonlinear) map̂f : R

2N→R
q associating to each sequence

of data a corresponding parameter vector as follows:

f̂ ←min
f

1
m

m

∑
i=1

∥∥∥θi− f (yi(1),ui(1), . . . ,yi(N),ui(N))
∥∥∥

2
. (4)

Function f̂ can be seen as an appropriate estimator of the un-
known parameter vector. Should̂f be available, then theθ cor-
responding to the actual measurementsD̄N = {ȳ(1), ū(1), . . . ,
ȳ(N), ū(N)} could be estimated as

θ̂ = f̂ (ȳ(1), ū(1), . . . , ȳ(N), ū(N)).

Solving Problem (4) requires the preliminary choice of a suit-
able class of functionsF within which performing optimiza-
tion. This is indeed a critical issue, due to the high dimen-
sionality of the problem. Indeedf depends upon 2N variables,
normally a very large number if compared to the numberm of
experiments. IfF is a class of low-complexity functions, then
it is difficult to replicate the relationship linkingDN to θ for all
values ofθ (bias error). On the opposite, ifF is a class of high-
complexity functions, then the over-fitting issue arises (variance
error), see Ljung [1999], Söderström and Stoica [1989].

In order to achieve a sensible compromise between bias and
variance error, the two-stage approach is proposed. In this
method, the selection of the family of functionsF is split
in two steps. The objective of the first step is to reduce the
dimensionality of the estimation problem, by generating a new
data chart composed again ofm sequences; however each
sequence is constituted by a limited numbern of samples
(n≪N). We will call such sequencescompressed artificial data
sequencesand the corresponding chart thecompressed artificial
data chart.
In the second step, the map between the compressed artificial
observations and parameterθ is identified. By combining the
results of the two steps, the relationship between the original
y-u data andθ is finally unveiled.
We now will give more details on each of the two stages.

First stage. The first step consists in a compression of the
information conveyed by measured input/output sequencesDN

i

in order to obtain data sequencesD̃n
i of reduced dimensionality.

While in the dataDN
i the information on the unknown parame-

ter θi is scattered in a long sequence ofN samples, in the new
compressed artificial datãDn

i such information is compressed
in a short sequence ofn samples (n≪ N).

θ1 D̃n
1 = {α1

1 , . . . ,α1
n}

θ2 D̃n
2 = {α2

1 , . . . ,α2
n}

...
...

θm D̃n
m = {αm

1 , . . . ,αm
n }

Table 2.The compressed artificial data chart.

This leads to a new compressed artificial data chart constituted
by the pairs{θi , D̃n

i }, i = 1, . . . ,m, see Table 2.
The compressed artificial data sequenceD̃n

i can be derived
from DN

i by resorting to a standard identification method. To
be precise, one can fit a simple model to each sequenceDN

i =
{yi(1),ui(1), . . . ,yi(N),ui(N)} and then adopts the parameters
of this model, sayα i

1,α
i
2, . . . ,α

i
n, as compressed artificial data,

i.e. D̃n
i = {α i

1, . . . ,α
i
n}.

To fix ideas, we suggest the following as a typical method
for the generation of compressed artificial data. For eachi =
1,2, . . . ,m, the data sequence

DN
i = {yi(1),ui(1), . . . ,yi(N),ui(N)}

can be concisely described by an ARX model:



yi(t) = α i
1yi(t−1)+ · · ·α i

ny
yi(t−ny)+

α i
ny+1ui(t−1)+ · · ·+α i

ny+nu
ui(t−nu),

with a total number of parametersn = ny +nu. The parameters
α i

1, . . . ,α
i
n of this model can be worked out by means of the

least squares algorithm (Ljung [1999], Söderström and Stoica
[1989]): 


α i

1
...

α i
n


 =

[ N

∑
t=1

ϕ i(t)ϕ i(t)T]−1
·

N

∑
t=1

ϕ i(t)yi(t), (5)

ϕ i(t) = [yi(t−1) · · ·yi(t−ny) ui(t−1) · · ·ui(t−nu)]
T .

Remark 1.(Physical interpretation of the artificial data). While
the original systemP(θ) has a physical meaning, the simple
model class selected to produce the compressed artificial data
does not need to have any physical interpretation; this class
plays a purely instrumental and intermediary role in the pro-
cess of bringing into light the hidden relationship betweenthe
unknown parameter and the original collected data.
In this connection, we observe that the choice of the ARX
model order is not a critical issue. Anyhow, one can resort to
the complexity selection criteria such as FPE or AIC. �

In conclusion, the first stage of the method aims at finding a
function ĝ : R

2N → R
n transforming each simulated data se-

quenceDN
i into the a new sequence of compressed artificial

dataD̃n
i conveying the same information onθi . As compressed

artificial data we take the parameters of a simple model, iden-
tified from DN

i . In this way, function̂g is implicitly defined by
the class of simple models and the corresponding identification
algorithm.

Second stage.Once the compressed artificial data chart in
Table 2 has been worked out, problem (4) becomes that of
finding a map̂h : R

n→ R
q which fits the set ofm compressed

artificial observations, i.e.

ĥ←min
h

1
m

m

∑
i=1

∥∥∥θi−h(α i
1, . . . ,α

i
n)

∥∥∥
2
. (6)

Function minimization in (6) is reminiscent of the original
minimization problem in (4). However, beingn small, the bias
versus variance error trade-off is no more an issue.
As for the choice ofh one can select a linear function:
h(α i

1, . . . ,α
i
n) = c1α i

1+ . . .+cnα i
n, ci ∈R

q, i.e. each component
of h is just a linear combination of the compressed artificial
dataα i

1, . . . ,α
i
n. As in any linear regression, the parametersci

appearing here can be easily computed via least squares, at
a low computational cost. Of course such a way of parame-
terizing h is computationally cheap but possibly loose. Better
results are expected by choosing a class of nonlinear functions,
such as Neural Networks or NARX models. The minimization
in (6) can be performed by resorting to the back-propagation
algorithm or to other standard algorithms developed for these
classes of nonlinear functions.

Remark 2.(The functionŝg andĥ). The two-stage methods is
based on two functions:̂g andĥ. The former is thecompression
function, transforming simulated data into compressed artificial
data. The latter is thefitting functionproviding the map from the
compressed artificial data to the unknown parameter. Whileĝ is
chosen by the designer,ĥ is identified by fitting the parameter
values to the corresponding compressed artificial data. �

Use of the two-stage method.Once functionĝ has been
chosen and function̂h has been identified, the link between
the original data andθ is given by ĥ(ĝ(·)), see Figure 6.
When an actual input/ouput sequence is observed, sayD̄N =

goriginal

data

artificial

data
θ

h

Fig. 6.The estimator function composition.

{ȳ(1), ū(1), . . . , ȳ(N), ū(N)}, the corresponding unknown pa-
rameter can then be estimated as:θ̂ = ĥ(ĝ(D̄N)).

As previously discussed, viewing this data-θ function as the
composition ofĝ and ĥ is the key to transform a numerically
intractable problem into an affordable one.

Remark 3.(Nonlinearity in estimation). Suppose that both in
the first stage and in the second one, a linear parametrization
is used. In other words: in the first stage, the simple class
of models is the ARX one and in the second stage a linear
regression of the compressed artificial data sequences is used
to fit θ . Even in such case, the final estimation rule is nonlinear.
Indeed, the generation of the compressed artificial data in the
first stage requires the use of the LS algorithm applied to the
simulated data sequencesDN

i , and this is by itself a nonlinear
manipulation of data, see (5). Hence only the second stage is
actually linear.
As a matter of fact, in some cases, such nonlinearity lim-
ited to the first stage of elaboration suffices for captur-
ing the relationship between the unknownθ and the data
y(1),u(1), . . . ,y(N),u(N). In other cases, instead, introducing
also a nonlinearity in the second stage (namely, takingh as a
nonlinearly parameterized function of the compressed artificial
data) is advisable and leads to better global results. �

3.1 Example - continued

The two-stage approach was applied to the time series gen-
erated by system (1) so as to compare the performances in
estimation with those achieved by EKF and UKF. To be precise,
m = 500 values forθ = a were extracted uniformly from the
interval [−0.9,0.9]. Correspondingly, for eachθ among this
500 extractions a simulated data sequence of 1000 output values
was collected. Summing up, the simulated data chart consisted
of 500 rows. Each row is associated to a value ofθ and contains
the corresponding sequence of 1000 snapshots.
For each sequenceyi(1), . . . ,yi(1000), the coefficientsα i

1, . . . ,α
i
5

of an AR(5) model (yi(t) = α i
1y(t − 1) + · · · + α i

5y(t − 5))
were identified by the least squares algorithm. We considered
α i

1, . . . ,α
i
5 for i = 1,2, . . . ,500 as compressed data. In other

words, we replaced the 500 sequences of 1000 data each with
another set of 500 sequences of 5 data each.
As for the second stage of the method, we have considered
two possibilities. First, we have taken as functionh a linear
regressionh = c1α i

1 + . . . + c5α i
5, with coefficientsc1, . . . ,c5

obtained by the least squares algorithm. The second choice was
to resort to a neural network (to be precise, we considered an
Elman neural network with 2 layers, 10 neurons in the first layer
and one neuron in the second one; the network was trained
with the 500 compressed artificial observations composed by
5 samples each, by the usual back-propagation algorithm).



By composing the results of the two stages, the parameter esti-
matorĥ(α i

1, . . . ,α
i
5) was eventually obtained. The performance

of such estimator was tested by cross-validation. To this pur-
pose, 1000newvalues ofθ = a were extracted in[−0.9,0.9].
For each of theseθ ’s, a sequence ofN = 1000 outputs was
generated from equation (1). The previously obtained estimator
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Fig. 7.Estimates ofa (h linearly parameterized).
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Fig. 8.Estimates ofa (h parameterized via neural networks).

was used for each of thesenewsequences. The performance of
the obtained estimates can be appreciate in Figure 7 (h linearly
parameterized) and in Figure 8 (h parameterized via neural
networks).
As can be seen, the two stage estimator works much better than
EKF and UKF.

REFERENCES

B.D.O. Anderson and J.B. Moore.Optimal Filtering. Prentice
Hall, 1979.

S. Bittanti, A.J. Laub, and J.C. Willems, editors.The Riccati
equation, volume 338 ofCommunications and Control Engi-
neering Series. Springer-Verlag, Berlin, Gemrany, 1991.

M. Blanke and M. Knudsen. Efficient parameterization for
grey-box model identification of complex physical systems.
In Proceedings of the 14th IFAC Symposium on System
Identification (SYSID), Newcastle, Australia, 2006.

T. Bohlin. Practical grey-box identification: theory and appli-
cations. Springer-Verlag, London, UK, 2006.

M. Boutayeb, H. Rafaralay, and M. Darouch. Convergence
analysis of the extended Kalman filter used as an observer
for nonlinear deterministic discrete-time systems.IEEE
Transaction on Automatic Control, 42(4):581–586, 1997.

A. Gelb, Jr. J.F. Kasper, Jr. R.A. Nash, C.F. Price, and Jr.
A.A. Sutherland.Applied Optimal Estimation. MIT press,
1974.

M.S. Grewal and A.P. Andrews.Kalman Filtering - theory and
practice using MATLAB. John Wiley & Sons, 2001.

S.J. Julier and J.K. Uhlmann. Unscented filtering and nonlinear
estimation.Proceedingds of the IEEE, 92(3):401–402, 2004.

S.J. Julier, J.K. Uhlmann, and H.F. Durrant-Whyte. A new
method for the nonlinear transformation of means andco-
variances in filters and estimators.IEEE Transaction on
Automatic Control, 45(3):477–482, 2000.

T. Kailath, A.H. Sayed, and B. Hassabi.Linear Estimation.
Prentice-Hall, 2000.

L. Ljung. Asymptotic behavior of the extended Kalman filter as
a parameter estimator for linear systems.IEEE Transaction
on Automatic Control, 24(1):36–50, 1979.

L. Ljung. System Identification: Theory for the User. Prentice-
Hall, Upper Saddle River, NJ, 1999.

P.E. Morall and J.W. Grizzle. Observer design for nonlinear
systems with discrete-time measurements.IEEE Transaction
on Automatic Control, 40(3):395–404, 1995.

K. Reif and R. Unbehauen. The extended Kalman filter as an
exponential observer for nonlinear systems.IEEE Transac-
tion on Signal Processing, 47(8):2324–2328, 1999.

D. Simon. Optimal state estimation. John Wiley & Sons,
Hoboken, NJ, 2006.

T. Söderström and P. Stoica.System Identification. Prentice-
Hall, Englewood Cliffs, NJ, 1989.

Y. Song and J.W. Grizzle. The extended Kalman filter as a local
asymptotic observer for nonlinear discrete-time systems.J.
Math. Systems Estim. Contr., 5(1):59–78, 1995.

J.K. Su and E.W. Kamen.Introduction to Optimal Estimation.
Springer, Englewood Cliffs, NJ, 1999.

W. Sun, K.M. Nagpal, and P.P. Khargonekar. H∞ control and
filtering for sampled-datasystems.IEEE Transaction on
Automatic Control, 38(8):1162–1175, 1993.

E. Walter and L. Pronzato. On the identifiability and distin-
guishability of nonlinear parametric models.Mathematics
and computers in simulation, 32:125–134, 1996.

E. Walter and L. Pronzato.Identification of parametric models
from experimental data. Springer, Englewood Cliffs, NJ,
1997.

E.A. Wan and R. van der Merwe. The unscented Kalman filter.
In S. Haykin, editor,Kalman filtering and Neural Networks,
New York, NY, USA, 2001. John Wiley & Sons.

W.W. Zhou and M. Blanke. Identification of a class of nonlinear
state space models using RPE techniques.IEEE Transactions
on Automatic Control, 34:312–316, 1989.


