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Abstract: Linear System Identification yields a nominal model parameter, which minimizes a specific
criterion based on the single input-output data set. Here we investigate the utility of various methods
for estimating the probability distribution of this nominal parameter using only the data from this
single experiment. The results are compared to the actual parameter distribution generated by many
Monte-Carlo runs of the data-collection experiment. The methods considered are collectively known as
resampling schemes, which include sub-sampling and the Bootstrap. The broad aim is to generate an
empirical parameter distribution function via the construction of a large number of new data records
from the original single set of data and then to run the parameter estimator on each of these new records
to develop the distribution function. The performance of these schemes is evaluated on a difficult, almost
unidentifiable system, and compared to the standard results based on asymptotic normality.
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1. INTRODUCTION

Robust model-based control requires quantification of plant
model uncertainty, Ninness and Goodwin [1995]. System iden-
tification methods can be ill-equipped to provide a measure of
parameter uncertainty other than that based on asymptotic-in-
data variance formulæ derived from the Central Limit Theory,
which in turn is based on a Taylor expansion of the empirical
identification cost function about the correct parameter value
(Ljung [1999], Söderström and Stoica [1989]). Recent studies
(in under-excited systems, Garatti et al. [2004, 2006]) have
shown that cases can be found when the cost function is non-
convex and can have separated local minima. In these cases,
the uncertainty characterization from asymptotic theory can be
misleading.
Here we seek to develop an approach to the empirical calcu-
lation of the underlying distribution function of the parameter
estimate, which is equally valid when the cost function is non-
convex and which, asymptotically as the number of data points
tends to infinity, fully characterizes the finite-data parameter
distribution and, in the fixed-length case, yields a quantification
of the error between the empirical distribution and the true
underlying (and unknown) distribution. The approach is based
on resampling ideas of the Bootstrap and Sub-sampling, Politis
[1998], Zoubir and Boashash [1998]. Our aim is to use the data
to develop an approximation of the actual distribution function
of the parameter estimate, based on the assumption that the data
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set is representative of the underlying stochastic processes.

We assume:

- We have N input-output pairs of data X N = {xi =
[ui yi]T , i = 1, . . . ,N}, where ui ∈ Rp and yi ∈ Rq.

- These data are stationary and generated by a stable ARMA
process

A(z)
[

ut
yt

]
= B(z)ηt , (1)

where ηt are i.i.d. The process above encompasses open-
loop as well as closed-loop configurations.

- We seek to fit a fixed-order fixed-structure model parame-
trized by θ to the N-data set and to characterize the un-
certainty in this parameter value. Specifically, we choose
an empirical cost function V (θ ,X N) = 1

N ∑
N
i=1(yi −

ŷi|i−1(θ))2, where ŷi|i−1(θ) is the optimal predictor based
on the model corresponding to θ . If the data set which the
cost function refers to is clear from the context, we shall
write VN(θ) in place of V (θ ,X N).
The minimizer of V (θ ,X N) (assuming it is unique) is
indicated by θ̂N . Our goal is to reconstruct its probability
distribution, hereafter indicated by F

θ̂N
(θ).

1.1 Structure of the paper

First, an example showing the limitations of the asymptotic
theory of system identification is presented in Section 2.
Then, some resampling strategies (namely; Mont-Carlo, sub-
sampling, and Bootstrapping) are briefly recalled in Section 3,
with particular emphasis to their application to the system iden-
tification setting. The analysis of resampling techniques is given
in Sections 4 and 5, while Section 6 provides a comparison
based on the same example where asymptotic theory failed.



2. ASYMPTOTIC THEORY AND ITS LIMITATIONS –
THE SMS EXAMPLE

The following example is taken from Garatti et al. [2004], with
its eponym created as an acronym of the authors’ first names.
It shows a (somewhat contrived) situation where the blind use
of the asymptotic theory of system identification as in Ljung
[1999], Söderström and Stoica [1989], leads to an unreliable
estimate of uncertainty unless the number of data is exceedingly
large.
Consider the following data generating system:

yt =
b0z−1

1+a0z−1 ut +(1+h0z−1)et , (2)

where θ0 = [a0 b0 h0]T = [−0.7 0.3 0.5]T and et ∼WGN(0,1)
(i.e. white gaussian noise with zero mean and unity variance.)
The system is operated in closed loop with the feedback law
ut = rt − yt , and with reference signal rt ∼WGN(0,10−4) in-
dependent of et . The resulting closed-loop system is asymp-
totically stable. Note also that the variance of rt is very small
compared to the noise variance, so the system is poorly excited.
The identification experiment is as follows: N = 2000 (u,y)
data points are collected, and a full order model of the type

yt =
bz−1

1+az−1 ut +(1+hz−1)et

is identified by minimizing the empirical cost, i.e. θ̂N =
argminVN(θ), where θ = [a b h]T .
According to the asymptotic (N→ ∞) theory of system identi-
fication, the empirical estimation of the probability distribution
of θ̂N ,

√
N(θ̂N − θ0), is asymptotically distributed as a Gaus-

sian random variable with zero mean and covariance Pθ = λ0 ·[
Eψt(θ0)ψT

t (θ0)
]−1, with λ0 = Ee2

t and ψt(θ) = d
dθ

ŷt|t−1(θ).
Based on this theoretical result then, θ̂N is typically (and heuris-
tically) presumed to be Gaussian distributed too, with mean
θ0 and covariance 1

N Pθ . Such values θ0 and Pθ are replaced
by their empirical counterparts (typically, θ̂N and ∑

N
i=1(yi −

ŷi|i−1(θ̂N))2×
[

∑
N
i=1 ψi(θ̂N)ψT

i (θ̂N)
]−1) so as to obtain an em-

pirical estimate of the probability distribution of θ̂N based on
available data only.
Though commonly used in practice, the above approach has
only heuristic validity with N finite, and, in the present setting
with N = 2000, it fails to return a sensible estimate of the
distribution of θ̂N . This is clearly depicted in Figure 1, where
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Figure 1. The actual probability distributions of each compo-
nent of θ̂N (solid line) vs. the distributions returned by the
asymptotic theory of system identification (dashed line).

the empirical distribution estimate computed according to the
rationale above is compared with the actual distribution of θ̂N ,
reconstructed here through Monte-Carlo simulations. From the
plot, a wide mismatch between the estimated distribution and
the actual one is apparent, with the former being a gaussian
centered on the estimate, θ̂N = [0.46 − 0.84 − 0.68]T , and
the actual distribution being bi-modal and hence not Gaussian.
Notably, the approximation by a gaussian is inadequate, even if
this gaussian were to be computed based on the exact parameter

values.
Let us briefly discuss the mechanism underlying the failure of
the asymptotic theory. As shown in Garatti et al. [2004], in
the SMS example, the cost V (θ) , E[(yk − ŷk|k−1(θ))2] is a
non-convex function with several minima. Precisely, if rt had
been a zero signal, there would have been two global minima,
one corresponding to θ0 = [−0.7 0.3 0.5]T and the other to
θ ∗ = [0.5 −0.9 −0.7]T , see Garatti et al. [2004]. When instead
rt is not zero but has only a small variance as in our example, θ0
remains a global minimum while θ ∗ becomes just a local one,
but V (θ0) and V (θ ∗) are very close. (Actually, their difference
can be made as small as desired by reducing the variance of
rt .) This latter fact in turn implies that, because VN(θ) is a
perturbed version of V (θ), the minimizer θ̂N of VN(θ) will end
up close to θ ∗ instead of θ0 with non-vanishing probability.
With N = 2000 this probability is about 38% as revealed by
the actual distribution function of θ̂N plotted in Figure 1.
It is worth noticing that, as N increases, with probability tending
to one, θ̂N lies in the neighborhood of θ0 and the asymptotic
theory is valid. It should be clear that theoretical achievements
of the asymptotic theory are not at issue in the SMS exam-
ple. Our criticism regards only the heuristic use of asymptotic
results with N finite. Clearly, the validity of the asymptotic
theory for N = 2000 in this example is compromised by the
paucity of excitation, leading to very weak identifiability of the
correct parameter value. For sufficiently large N and even for
this example, the asymptotic results are valid.

3. RESAMPLING STRATEGIES

In order to provide a fair evaluation of uncertainty, some dif-
ferent tools have to be considered, and in this paper the focus
is on resampling strategies, Efron [1982, 1988], Efron and Tib-
shirani [1993], Politis [1998], Shao and Tu [1995]. Resampling
methods have recently attracted the attention of the systems and
control community, Bittanti and Lovera [2000], Dunstan and
Bitmead [2003], Tjärnström and Forssell [1999], Tjärnström
and Ljung [2002]. Yet, they have not met with wide acceptance,
at least not as in other fields such as statistics, econometrics,
and signal processing. Our main objective here is to examine
whether these methods overcome the difficulties of the asymp-
totic theory in contexts as difficult as the SMS example.
Three different resampling methodologies for the reconstruc-
tion of the underlying probability distribution of the identi-
fied parameter θ̂N are considered: namely, Monte-Carlo, Sub-
sampling, and Bootstrapping. In the following, a brief descrip-
tion of each of them is provided for the sake of completeness.
These approaches have been first developed in the context of
independent data and then extended to the dependent case.
Here, only this latter is treated for it is the framework of system
identification problems.

3.1 The Monte-Carlo method

The Monte-Carlo procedure amounts to repeating the identifi-
cation experiment m times so as to collect m independent N-
long data sequences (X N

1 , . . . ,X N
m ), which in turn, by mini-

mizing V (θ ,X N
i ), i = 1, . . . ,m, yields m different parameter

estimates (θ̂ 1
N , . . . , θ̂ m

N ). These estimates are then used to recon-
struct the probability distribution of θ̂N as

FMC(θ) =
1
m

m

∑
i=1

1[(θ̂ i
N≤θ ],



where the vector inequality θ̂ i
N ≤ θ is taken componentwise and

1[·] is the indicator function.
It is well known that FMC(θ) is an unbiased and consistent
(both mean square and almost surely) estimator of the actual
probability distribution F

θ̂N
(θ) (see Shao and Tu [1995]). How-

ever, computing FMC(θ) requires more data than those actually
available, and thus is infeasible in general. The Monte-Carlo
method has been introduced for comparison with others resam-
pling methodologies.

3.2 The Sub-sampling method

Sub-sampling has been first introduced in Politis and Romano
[1994] and, despite its attractive properties, has not received
much attention from the systems and control community yet
except for Dunstan and Bitmead [2003]. Sub-sampling is quite
intuitive and is reminiscent of the Monte-Carlo approach. A
single data set, however, is used. Precisely, let m ≤ N and
NS ≤ N−m + 1. From the N-long available data set X N , the
set of all NS-long sub-sequences of consecutive data points is
considered and, among these, m are extracted, that is:

(X NS
1 , . . . ,X NS

m )⊆ (XNS
1 ,XNS

2 , . . . ,XNS
N−NS

),

where XNS
j = [xT

j+1 xT
j+2 · · · xT

j+NS
]T .

Starting from the chosen sub-sequences (X NS
1 , . . .X NS

m ), m
different parameter estimates (θ̂ 1

NS
, . . . , θ̂ m

NS
) are derived by min-

imizing each time the identification cost criterion V (θ ,X NS
i ),

i = 1, . . . ,m based on NS data points only. The distribution of θ̂N
is then reconstructed as the empirical distribution of the θ̂ i

NS
’s,

i.e.

FSS(θ) =
1
m

m

∑
i=1

1[θ̂ i
NS
≤θ ].

The main point in sub-sampling is that since the X NS
i ’s are

taken from the actual data set X N , they are distributed identi-
cally to the original data, although their length is reduced. The
choice of NS is a degree of freedom of sub-sampling, and a
sensible tuning of NS is of paramount importance. Also, the
choice of the X NS

i ’s among (XNS
1 ,XNS

2 , . . . ,XNS
N−NS

) is relevant
to the final result, because of the inherent dependence between
the data sets. These aspects will be treated in the next Section 4
where the analysis of sub-sampling is provided. It is worth
noticing that sub-sampling does not correspond to performing
m Monte-Carlo NS-long simulations, since sub-sequences X NS

i
are correlated in general (actually, they can even be overlap-
ping). Showing that FSS(θ) is unbiased and consistent is not
straightforward.

3.3 The Bootstrap method

Given the data sequence X N , estimates Â(z) and B̂(z) of A(z)
and B(z) in (1) are obtained according to some identification
algorithm. This identification algorithm need not be the same
as that used for computing θ̂N , and even the family of models
from among which Â(z) and B̂(z) are found can be differ-
ent from that parametrized by θ , see Dunstan and Bitmead
[2003], Tjärnström and Ljung [2002]. Given the model estimate
{Â(z), B̂(z)}, the one-step prediction residuals (ε1, . . . ,εN) are
computed according to the following equation:

εt = B̂(z)−1Â(z)
[

ut
yt

]
.

The residual sequence is asymptotically (as N increases) inde-
pendent and equal to ηt provided Â(z) and B̂(z) are consistent
estimates of A(z) and B(z).
From (ε1, . . . ,εN), the complete distribution function, F̂εt (ε),
of the residual error εt is reconstructed (for this purpose
one can use a number of techniques such as empirical sum,
L1 approximation, kernel methods, etc.); then, a new, boot-
strapped, residual sequence is generated by extracting N sam-
ples (εB

1 , . . . ,εB
N) according to F̂εt (ε). This new bootstrapped

residual sequence (εB
1 , . . . ,εB

N) can be thought of as new ex-
tracted samples from the noise process ηt and it can be used
for computing a new bootstrapped N-long input/output data
sequence (uB

1 ,yB
1 ,uB

2 ,yB
2 , . . . ,uB

N ,yB
N) according to the following

mechanism:

Â(z)
[

uB
t

yB
t

]
= B̂(z)εB

t .

This bootstrapped data sequence in turn is used to produce
a new parameter estimate θ̂ 1

N by minimizing the usual cost
criterion.
Repeating the residual bootstrapping process m times yields a
sequence of m parameter estimates θ̂ 1

N , . . . , θ̂ m
N whose empirical

distribution is used to reconstruct the probability distribution of
θ̂N :

FBS(θ) =
1
m

m

∑
i=1

1[θ̂ i
N≤θ ].

4. ANALYSIS OF THE SUB-SAMPLING METHOD

In this section, we establish our main theoretical result, that
FSS(θ) is a consistent estimate of F

θ̂NS
(θ), and provide some

considerations about sub-sampling.

4.1 Preliminary definitions and results

We need the following preliminary definition, see e.g. Bosq
[1998].
Definition 1. (α-mixing). Let {Yt}t∈Z be a stationary random
process in Rl and let A0 be the σ -algebra generated by {Yt}t≤0
and A τ that generated by {Yt}t≥τ , τ ≥ 0. Then, the α (or
strong) mixing coefficient for {Yt} is defined as:

αY (τ) , sup
A,B
{|P(A∩B)−P(A)P(B)|, A ∈A0,B ∈A τ}.

If αY (τ)→τ→∞ 0, then {Yt} is said to be α (or strong) mixing.
If in addition αY (τ) ≤ ρτ for a certain ρ ∈ (0,1) then {Yt} is
said to be geometrically α (or geometrically strong) mixing.

We have the following lemma, in line with Politis and Romano
[1994].
Lemma 1. Let {Yt}t∈Z be a stationary random process in Rl and
suppose that Yt is α-mixing.
Let ϕ : Rl → Rk be any measurable function and let F̂(x) =
1
m ∑

m
i=1 1[ϕ(Yi)≤x] be the empirical probability distribution of

ϕ(Yt) and F(x) = P(ϕ(Yt) ≤ x) be the actual probability dis-
tribution (here, as usual, the vector inequalities are taken com-
ponentwise). Then, for every x, we have that

E
(
(F̂(x)−F(x))2)≤ 12

m2

m

∑
τ=−m

(m−|τ|) ·αY (|τ|).

Proof : Clearly, P(ϕ(Yt)≤ x) = E(1[ϕ(Yt )≤x]).
Let Zt = 1[ϕ(Yt )≤x]−E(1[ϕ(Yt )≤x]). Zt is zero mean and, more-



over, it is stationary since Yt is. Letting γZ(τ) = E
(
ZtZt+τ

)
=

γZ(−τ) be the covariance function of Zt , we have that

E
(
(F̂(x)−F(x))2)= E

(( 1
m

m

∑
i=1

Zi
)2
)

=
1

m2

m

∑
i=1

m

∑
j=1

E(ZiZ j)

=
1

m2

m

∑
τ=−m

(m−|τ|)γZ(τ)

≤ 1
m2

m

∑
τ=−m

(m−|τ|)|γZ(τ)|.

Since Zt ∈ [−1,1] and is measurable with respect to the σ -
algebra generated by Yt , then we have that |γZ(τ)| ≤ 12αY (|τ|)
(See the corollary of Lemma 2.1 in Davydov [1968].) leading
to the sought bound. 2

The following result is a straightforward consequence of
Lemma 1
Corollary 1. If 12

m2 ∑
m
τ=−m(m− |τ|) · αY (|τ|) → 0 as m → ∞,

then F̂(x) is mean square convergent to F(x)

4.2 Sub-sampling strategies and mixing conditions

We want now to apply Lemma 1 to the sub-sampling recon-
structed distribution function FSS(θ) = 1

m ∑
m
i=1 1[θ̂ i

NS
≤θ ]. In this

case, X NS
i plays the role of the process Yt in Lemma 1 while

θ̂ i
N , the parameter vector estimated from the subsequence X NS

i ,
that of ϕ(Yt). Clearly, θ̂ i

N is a measurable function of X NS
i . As

for the process X NS
i we need to check whether it is:

1. stationary;
2. α-mixing.

As for Point 1, recall that

(X NS
1 , . . . ,X NS

m )⊆ (XNS
1 ,XNS

2 , . . . ,XNS
N−NS

),

where XNS
j = [xT

j+1 xT
j+2 · · · xT

j+NS
]T ; xt = [ut yt ]T , in turn, is

generated as a stationary ARMA process:
A(z)xt = B(z)ηt .

It easily follows that XNS
j is stationary too, while X NS

i is

stationary as long as the X NS
i s are chosen from the XNS

j s in

a equally time-spaced manner. That is, if X NS
i = XNS

j1
and

X NS
i+1 = XNS

j2
, then the difference j2− j1 must be the same

whatever i is. Some possible choices ensuring stationarity are
the following (here b·c denotes the integer part and k ≤ NS):

(X NS
1 , . . .X NS

m ) = (XNS
1 ,XNS

2 , . . . ,XNS
N−NS

),
(X NS

1 , . . .X NS
m ) = (XNS

1 ,XNS
k+1, . . . ,X

NS

bN−NS
k c·k+1

),

(X NS
1 , . . .X NS

m ) = (XNS
1 ,XNS

NS+1, . . . ,X
NS
b N

NS
−1c·NS+1

),

(X NS
1 , . . .X NS

m ) = (XNS
1 ,XNS

2NS+1, . . . ,X
NS
b N

2NS
−1c·2NS+1

).

As for Point 2, note first that, since xt is a stationary ARMA
process, it is geometrically α-mixing as long as the mild as-
sumption that the probability distribution of the noise ηt admits
a probability density is satisfied, Bosq [1998] and Mokkadem
[1988]. Thus, letting αx(τ) be the α-mixing coefficient of xt ,
we have that αx(τ) ≤ ρτ

x for a certain ρx ∈ (0,1). Perhaps,
it is worth noticing that ρx is strictly related to the maximum
modulus pole of the ARMA system in (1).

From the α-mixing property of xt it easily follows that XNS
t

and, in turn, X NS
t are α-mixing too. The α mixing coefficient

of X NS
t (say αX (τ)), however, depends on how subsequences

(X NS
1 , . . . ,X NS

m ) are chosen from (XNS
1 ,XNS

2 , . . . ,XNS
N−NS

).
Lemma 1 can now be invoked in order to prove that FSS(θ) is a
(mean-square) consistent estimate of F

θ̂NS
(θ). Precisely, for the

choice (X NS
1 , . . .X NS

m ) = (XNS
1 ,XNS

2 , . . . ,XNS
N−NS

), we have that

E
(
(FSS(θ)−F

θ̂NS
(θ))2)

≤ 12
m2

m

∑
τ=−m

(m−|τ|)ρ
(|τ|−NS+1)·1[|τ|≥NS ]
x

=
12
m2

NS−1

∑
τ=−NS+1

(m−|τ|)+
24
m2

m

∑
τ=NS

(m− τ) ·ρτ−NS+1
x

= 12
NS−1

m
·
(

2− NS

m

)
+

24
m2

m−NS+1

∑
i=1

(m−NS +1− i) ·ρ i
x,

= 12
NS−1
N−NS

·
(

2− NS

N−NS

)
+

24
N−NS

· ρx

1−ρx
, (3)

Equation (3) provide a non-asymptotic bound of the mean
square mismatch between the sub-sampling reconstructed dis-
tribution FSS(θ) and F

θ̂NS
(θ) for given N and NS. The bound

holds independently of the underlying data generating mecha-
nism, apart from the knowledge of ρx, a parameter which could
be estimated. Besides, (3) implies that

E
(
(FSS(θ)−F

θ̂NS
(θ))2)→N→∞ 0

(i.e. FSS(θ) is a mean-square consistent estimator of F
θ̂NS

(θ)),

as long as NS is chosen such that NS
N → 0 when N→∞. A typical

choice for NS guaranteeing this latter condition is NS = N p,
where p ∈ (0,1).
Expressions like (3) can be similarly derived for all other
choices of (X NS

1 , . . .X NS
m ) given before, and correspondingly

theorems hold. For reference, this result is stated as a theorem.
Theorem 1. Suppose that sub-sequences are extracted from the
available data according to the following scheme:

(X NS
1 , . . .X NS

m ) = (XNS
1 ,XNS

2 , . . . ,XNS
N−NS

).
Then, we have that

E
(
(FSS(θ)−F

θ̂NS
(θ))2)

≤ 12
NS−1
N−NS

·
(

2− NS

N−NS

)
+

24
N−NS

· ρx

1−ρx
.

If the subsequences are extracted according to:

(X NS
1 , . . .X NS

m ) = (XNS
1 ,XNS

NS+1, . . . ,X
NS
b N

NS
−1c·NS+1

),

then, we have that

E
(
(FSS(θ)−F

θ̂NS
(θ))2)≤ 12

b N
NS
c

+
24
b N

NS
c
· ρx

1−ρ
NS
x

.

If moreover NS is such that NS
N → 0 as N → ∞, then the

reconstructed distribution FSS(θ) is a mean-square consistent
estimator of F

θ̂NS
(θ).

4.3 Critique of sub-sampling

As previously seen, sub-sampling has many appealing features:



- it is easily implementable at a low computational cost;
- the reconstructed distribution FSS(θ) is a mean square

consistent estimate of F
θ̂NS

(θ);
- more importantly, the quantification of the mean square

error E
(
(FSS(θ)−F

θ̂NS
(θ))2

)
is non-asymptotic, and de-

pends only on a parameter, ρx, which might be retrieved
from basic experiments on the data generating system.

Sub-sampling, however, has some drawbacks the most central
of which is that it reconstructs the distribution of a different
parameter: F

θ̂NS
(θ), the probability distribution of the param-

eter estimated with NS data points only, in place of F
θ̂N

(θ),
the distribution of θ̂N . Clearly, there is a deep kinship between
θ̂N and θ̂NS as well as between F

θ̂NS
(θ) and F

θ̂N
(θ), so that

estimating the uncertainty of θ̂N with that of θ̂NS is reasonable.
However, the uncertainty of θ̂N is less than that of θ̂NS . In
this respect, it is clear that NS has to be chosen as a trade-off
between two opposite effects:

1. too small an NS means that FSS(θ) is close to F
θ̂NS

(θ) but

F
θ̂NS

(θ) 6= F
θ̂N

(θ);
2. too large an NS implies that F

θ̂NS
(θ) ≈ F

θ̂N
(θ) but

FSS(θ) 6= F
θ̂NS

(θ).

5. ANALYSIS OF THE BOOTSTRAP

We have the following result from Bose [1988], which mirrors
Theorem 1 for sub-sampling.
Theorem 2. (Bose [1988], Theorem 3.9). Suppose that:

- the data is generated by an autoregressive (AR) process yt =
θ T

0 ϕt + et , ϕt = [yt−1 · · · yt−n]T , with roots inside the unit
circle,

- the AR driving noise process, et , is independent and iden-
tically distributed with zero mean, unit variance, and has
bounded (2s+1)th moment with s≥ 3,

- the variables e1 and e2
1 satisfy Cramèr’s Condition, which is

implied by their having probability distributions absolutely
continuous with respect to Lebesgue measure.

Denote the empirical Bootstrapped distribution function based
on m resamplings of the N-long data sequence as FBS(θ̂ BS

N )
and let the associated probability be PBS. Furthermore let Σ

be the covariance of ϕt and let ΣBS
N be the covariance of the

bootstrap version of ϕt (i.e. the regressor obtained from the
model yt = θ̂ T

N ϕt + εt , being θ̂N the parameter estimate from
actual data and εt the bootstrapped residuals.) Provided m is
chosen sufficiently large for convergence of the estimate FBS,
then almost surely,

sup
x

∣∣∣∣PBS
(

N1/2
[
Σ

BS
N

]1/2(
θ̂

BS
N − θ̂N

)
≤ x
)
−P

(
N1/2

Σ
1/2 (

θ̂N −θ0
)
≤ x
)∣∣∣∣

= o
(

N−1/2
)

.

(4)

The first comment about this result is to remark on its similarity
to the earlier theorems on sub-sampling. The underlying condi-
tions on the stochastic processes are effectively the same. (The
limitation to autoregressive processes is extensible to ARX,
ARMA, and ARMAX with a small amount of work.) The
quantification is marginally different and the result is almost
sure rather than mean-square. Since Bootstrapping permits an

extraordinarily large number of resampled data sequences, the
limitation on m is not regarded as a problem.
In terms of quantifying the uncertainty in the parameter vector,
we see that the result measures the Bootstrapped variable’s
deviation from the sample mean and compares this to the de-
viation about the true parameter value. Accordingly, there is an
implicit requirement for near consistency of the initial parame-
ter estimator before the Bootstrapped distribution estimator can
be reliably applied. We shall see this feature demonstrated in
the reconsideration of these estimators with the SMS Example
next.

6. SMS EXAMPLE REDUX

Both sub-sampling and the Bootstrap have been applied to
the SMS Example from Section 2 in order to reconstruct the
probability distribution of the identified model parameter θ̂N ,
N = 2000. In this section, some results which permit better
understanding of sub-sampling and Bootstrapping estimators’
performance are developed.

6.1 Sub-Sampling Estimated Distributions

Figure 2 depicts the probability distribution FSS(θ) recon-
structed via sub-sampling by setting m = 250, NS = 150, and
by choosing subsequences so as to achieve the smallest overlap
compatibile with the number of collected data. The actual dis-
tribution of θ̂NS (i.e. F

θ̂NS
(θ)) as well as that of θ̂N (i.e. F

θ̂N
(θ))

are displayed too. The two reference distributions, F
θ̂NS

(θ) and

Figure 2. Distribution functions: Sub-sampling empirical dis-
tribution with NS = 150 (dashed line), the Monte-Carlo
distribution of θ̂NS (solid thin line), and the Monte-Carlo
distribution θ̂N with N = 2000 (solid thick line).

F
θ̂N

(θ), have been calculated by Monte-Carlo simulations with
m = 500.
As is apparent and according to Theorem 1, FSS(θ) and F

θ̂NS
(θ)

are quite close to each other, showing that sub-sampling indeed
provides a reliable estimate of the distribution function of θ̂NS
including capturing the local variances about the two modal
points. On the other hand, F

θ̂NS
(θ) and F

θ̂N
(θ) differ with the

latter being more tightly centered on the modal points than the
former. Consequently, the uncertainty reconstructed via sub-
sampling results as predicted in an oversized empirical vari-
ance. One might contemplate rescaling these empirical distri-
bution functions to accommodate this known feature. However,
this would require firstly parametrizing the empirical distribu-
tion function as, say, a mixture of gaussians. This is a difficult
problem to resolve. From our perspective of uncertainty estima-
tion for control though, the central question about the quality
of the plant parameter estimate is answered primarily by the
detection of the two distinct modes.
If we increase the sub-sample size, NS, from 150 to 500,
F

θ̂NS
(θ) gets closer to F

θ̂N
(θ) for N = 2000; but, the recon-

structed distribution FSS(θ) does not match F
θ̂NS

(θ) any more



because NS is now too big and the available set of representa-
tive sub-sampled sequences is too small to achieve an accurate
approximation. This is shown in Figure 3.

Figure 3. Distribution functions: Sub-sampling empirical dis-
tribution with NS = 500 (dashed line), the Monte-Carlo
distribution of θ̂NS (solid thin line), and the Monte-Carlo
distribution of θ̂N with N = 2000 (solid thick line).

6.2 Bootstrap Estimated Distributions

For the Bootstrap, we set m = 500 and generated this many
N = 2000-long data sets by reconstructing the residual distribu-
tion with an empirical sum. We used the full order model corre-
sponding to θ̂N with the original data as an estimate of the true
data generating system in computing the un-resampled original
residual sequence. The distribution of residuals was estimated
by the empirical sum method. The reconstructed distribution
FBS(θ) along with the actual distribution of θ̂N is displayed in
the next two figures.
We provide two separate plots. The first, in Figure 4 is based on
the initial identified parameters being close to the correct value;
θ̂N ≈ θ̂0 = [−0.7 0.3 0.5]T . Here we see very close agree-
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Figure 4. Bootstrap empirical distribution function (dashed
line) and the Monte-Carlo distribution function of θ̂N
(solid line) for the case where θ̂N ≈ θ0.

ment between the Bootstrap empirical distribution function
and the underlying actual parameter distribution, as determined
by Monte-Carlo simulation. This includes the identification of
the bi-modal distribution, the relative probabilities of the two
modal points, and the local variances.
As remarked in Section 5, the accuracy of FBS(θ) may be
adversely affected by deviation of θ̂N , the initial identified
model parameter vector, from the true value, θ0. In our par-
ticular experiment, poorer results are achieved with the actually
identified parameter vector θ̂N = [0.46 −0.84 −0.68]T , which
is significantly different from θ0. This is depicted in Figure 5.
The Monte-Carlo analysis shows that for this example set-up
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Figure 5. Bootstrap empirical distribution function (dashed
line) and the Monte-Carlo distribution function of θ̂N
(solid line) for the case where θ̂N 6≈ θ0.

the likelihood of estimating such a distant parameter vector is
38%. The Bootstrap correctly picks up the bi-modality, but errs
in estimating the probabilities and local variances.

7. CONCLUSIONS

In this paper, we considered the problem of reconstructing the
probability distribution of the identified model parameter θ̂N
based on a single finite-length data record. After showing that
the heuristic use (with N finite) of classical asymptotic theory of
system identification can be misleading, we introduced proce-
dures based on resampling ideas and discussed their advantages
and drawbacks. Theorems were developed on sub-sampling and
compared to the Bootstrap results. A somewhat pathological
example was used as a vehicle for this evaluation.
In particular, in the sub-sampling framework non-asymptotic
guaranteed results can be given, although the estimated uncer-
tainty tends to be oversized with respect to the actual one. Yet,
sub-sampling requires minimal assumptions to work properly,
and the procedure presented in this paper can be applied verba-
tim in the presence of under-modeling.
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