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Abstract: In this paper, we consider the problem of estimating unknparameters of the so-called
Pacejka’s model of a tyre from measurements of the car behdifferently from other estimation
problems, the tyre parameters may change during the caduieto tyre aging, the variability of the
inflation pressure, or many further reasons. Rather thevirgpl single estimation problem, thus,
the issue is to set-up an automagistimator able to to supply reliable estimates of the Pacejka’s
parameters for any type of tyre and any type of operating itiond Existing methods for parameter
estimation have been conceived for the estimation of thaevédken by the parameter in a given
functioning condition, and are not suitable for the probleene considered. In this paper we present
a novel approach, the TS (two-stage) approach, specifialityed to the problem of returning accurate
estimates notwithstanding the tyres changeability. Wepamits performances with those achievable
with other parameter estimation techniques such as Piadigtror and Kalman Filter based methods.
It turns that the TS approach offers significant improversent
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1. INTRODUCTION given tyre in a certain operating condition, correspondiritpe
available set of data.

One of the most critical aspects in modeling the dynamics of@uring the car life, however, the operating condition may
vehicle is the determination of the lateral force generhietthe  change due to the tyre aging, the variability of the inflation
interaction between tyres and the soil. The underlying jlays pressure, or many further reasons (including the fact tieatar
phenomenon is rather complex and, for its description, or@vner may decide to substitute the tyres!). Then, to guagant
often resorts to empirical models, the most renowned of whighe accuracy of the model, the parameters value must be re-
is undoubtedly thePacejka's magic formulaPacejka [2005]. estimated with new fresh data.
This is a non-linear function supplying the lateral forceaas Thus, rather then solving a single estimation problem,sbee
function of the steering angle. The formula contains a numb&ere is to set-up an automagstimatorto be embedded in an
of parameters, the value of which has to be tuned in order &lectronic device installed in the car. The estimator tastoi
distinguish between different kinds of tyres, with theirrow supply reliable estimates of the Pacejka's parametersrfgr a
characteristics in term of size, constitutive materiaflaition  type of tyre and any type of operating condition.
pressure, deterioration, etc. In order to complete the irfode Clearly, this conceptual framework poses some additiogal r
the vehicle behavior, thus, a further step is required, diat quirements:

assigning a sensible value to the tyre Pacejka's paraméters o ogtimation algorithm must be fully automatic as no
the Pacejka’s magic formula, parameters have no clear gadysi human-supervision is allowed onboard

meaning, and usually they are estimated from experimeatald  _ : _
(white-box identification, Bohlin [2006]). 1251 computational effort must be low due to the limited
g X ; putational resources.
Estimating unknown parameters in a given plant from obskrve
data is a basic problem in control engineering, Bittanti ands we will see, these requirements prevent the use of cklssic
Picci [1996], Bohlin [2006], Gelb et al. [1974], Ljung [19R9 estimation approaches.
Soderstrém and Stoica [1989], and many techniques, such @snceptually, an estimator, or estimation algorithm, ithitg
those based on Kalman Filtering (KF), Anderson and Mooreut a map from measured observations to the value of the pa-
[1979], Grewal and Andrews [2001], Simon [2006], Su andameters estimate. Typically, such a map is implicitly dediby
Kamen [1999], or those based on Prediction Error Methodbe filter equation (KF based methods), or by the minimizatio
(PEM), Bohlin [2006], Ljung [1999], Soderstrom and Stoicaof a mean square error cost function (PEM) or of a likelihood
[1989], or Linear Fractional Transformation (LFT), Woladk (LFT). All these approaches, however, may encounter sgriou
et al. [1997], have been developed to this purpose. All thesawbacks in the tyre parameters estimation problem.
techniques are well understood by theorists and practitgn More specifically, PEM and LFT call for the minimization of
and can be effectively used to retrieve the parameters ofaanon-linear cost function, a task which might be very hard.
Indeed, simple gradient-based methods suffers from thexabn
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On the other hand, more sophisticated gridding-based autppose the steering angle is the same for both front wheels)
matic methods run into the curse of dimensionality for which while the output is the car body lateral acceleration deshbte

in the words of Bohlin [2006] — “simulation would require su-ay. V is the velocity vector in the inertial coordinates frame,
percomputers, and optimization an order of magnitude more”

As for KF methods, Extended Kalman Filter (EKF) and Un- A

scented Kalman Filter (UKF) suffer from serious convergenc
problems if the initial estimate and the initial error cdaarce

are not suitably initialized, Ljung [1979], Garatti and taitti
[2008]. Moreover, such initialization depends on the alctua
value of the true parameters one want to estimate, so that it i
often impossible to find an initialization ensuring convemige

no matter what the true parameters are. Thus, both EKF and
UKF require the adaptation of the “algorithm tuning knobs”
through some human-supervision, every time the parameters
value changes.

Another approach, still settled in the Kalman Filter setigp,

the so-called Particle Filter (PF) which basically recomsts

the a-posteriori probability distribution of unknown paraters

by letting a cloud of initial values for the unknown paranste
evolving through the systems equation. Differently fromFEK
and UKF, PF has the great advantage of guaranteeing the con-
vergence of the estimate independently of the initialaatHu

et al. [2008], and this is one reason for its increasing peyl -

On the other hand, the PF estimation algorithm requires allzrlng' 1.The car model.
intensive simulation of the model evolution before retapi
an estimate for the unknown parameters. For this reason,
is computationally demanding, and in general clashes \uigh t
limitation on available resources.

|Iguile B is the car sideslip angle (i.e. the angle between the car
ongitudinal axis and/) and ¢ is the car yaw angle (i.e. the
angle between the car longitudinal axis andxhexis). Clearly,
_ o V = V&%) In the following, we will assume that all angles
In this paper, a new estimation method, named the tW8-( are small enough to approximate function sin with its argaime
stagg approach, is considered for the problem of tyre Pacemnd cos with the constant 1.
jka’s parameters estimation. The TS approach has beertkecerhe model of the car lateral dynamics is obtained as a forde an
introduced in Garatti and Bittanti [2008], Bittanti and @dr moment equilibrium (see Figure 1):
[2008] and is specifically tailored to the problem of retwgni fL —fR  —IL  —IR
accurate estimates notwithstanding the tyres changsalitie { may =T, o Ty i T+ TxL . )
basic rationale underlying the TS method is to off-line reco P = (Ty-+T,7) 1 = (Ty- + Tyl
struct the relationship linking the data to parametersugio - yhereT, denotes the lateral forces generated by one tyre, while
extensive simulation runs of the model. This is achievedkba sy nerscriptd, r, L, andR distinguish betweefront, rear, Left,
to an intermediary step aiming at the generation of a set ghqRightwheels.+ andl, indicate the distance between front
artificial data. Precisely, the procedure develops in two phasegng rear wheels and the car center of mass. Finailgnd J

the first one transfers the information contained in theioaly jenotes the car mass and moment of inertia, respectively.
data into the artificial data, while the second one enables 8§pder the current assumptions

tablishing the link between these last data and the unknown
parameters. As a final product, the TS approach returns an

explicit formula for the parameter estimator. The effestigss d_V - EVeJ (B+w)

of the proposed approach will be discussed by a comparisondt d_t _ _

with other estimation techniques. =[VcosB —V(B+)sinBlel¥ +

The paper is organized as follows. First, a model for thealehi +[Vsing +V(B +¢) cosB]ej(L“g)

dynamics including interactions with tyres is describe&éat- : S : : R T
tion 2. This will permit us to precisely formulate the estiina ~ {V ~V(B+ W)B} el + [VB ~V(B+yg)| WD,

problem. For the sake of completeness, the TS approachnis tr]?follows that
resumed in Section 3, while Section 4 presents the expetahen . . .
results obtained for the tyres parameters problem. ay~VB-V(B+y)=-V(B+y),

beingV constant. Then, (1) becomes
2. CAR MODEL DESCRIPTION AND PROBLEM
; m _ T fL fR L R
FORMULATION ~mV(B+ ) =T+ T, +Tyr +Tyr

Y fL fR rL rR
For simplicity we consider a car moving at constant spéed =T +Ty7) e = (Ty- + Ty
and we model the car lateral dynamics only. In the secxseld ~ As for the lateral forces generated by tyres, we resort to the

y will denote the car longitudinal and lateral axis, respetyi,  pacejka’s magic formula, Pacejka [2005]:
hile X andY will denote an inertial coordinates frame. Our . — — —
e b e e . Ty = Dsin{Carctar[Ba — E (Ba —arctar(Ba))|} + Sy

model input is the steering angée i.e. the angle between the
front wheels longitudinal axis and the car longitudinakaive  where



S4 = PH1+ PH2fz+ PHsY input and output are observed through an angular position
_ sensor and an accelerometer for a certain time interval over
S =Ql(pva+ pvzfz) + (Pvat pvafz)y] which a numbem of input and output observatior3N =

a=0+ {y(1),u(1),...,y(N),u(N)} are collected. The issue then is
C = pc1 how to build a suitable parameter estimator, i.e. a nhAacp
RN — RY which exploits the information contained in the ob-
1 = (pp1+ Pozf7) (1— pp3y?) servationsDN = {y(1),0(1),...,y(N),d(N)} so as to produce
D=puQ fair estimates of the values taken by the uncertain pararfiete

E = (Pe1+ pe2fz) [1 - (Pes+ Peay)sign(a)]

K = pkiFzsin[2arctaiQ/ (pk2 - Fz))) (1 — pkaly])]

B=K/(C-D) Ir: thif_ sec'%i_%n vl\)/e ir.1troq[.uce '?he_ TtS approtatchtfk‘or elstirrt1al_mms c
In this formulaa is the wheel sideslip angle (i.e. the angle>" cron. (e basic rationale 1S 1o resort 1o the pian oy
between the wheel longitudinal axis gnd t%e v(vheel velo,cgthy)'jlnd to perform oﬁ-lme.lntenswe smulaﬂon run.s in ordere-
while Q is the vertical load acting on the wheaf.is the _constructfrom syr_1thet|c data the functibmapping measured
so called camber angle, here supposed to be consiatiie NPut/outputdata into an estimate for the param@ter

wheel nominal load (which is constant t00), afid= (Q — To be precise, we use tr@mulatorto generate input/output

F,)/F; is the relative load. All other parameters appearing iflata for a number of different values of the unknown paramete
this formula are the so called Pacejka’s tyre parameters afd Thatis, we collecN measurements

3. THE TS APPROACH FOR PARAMETER ESTIMATION

their value determines the tyre response. Summarizintipdet DY = {y}(1),ut(2),...,y*(N),ut(N)}

f9 be tlhe_ vecttohr_ of Ft;a;:ejka’s paratme'ggrs, tr}_e Pacsjka’ts mag#t 0 — 6;; N measurements

ormula is nothing but a parametric i nonlinear function N 2 2

of variablesa andQ supplying as output the generated lateral D2 = {yz(l),u (@), ,yZ(N),u (N)} ) )
force: Ty = Fg(a, Q). for 8 = 6,; and so on and so forth. By repeated simulation
In order to complete the model, it remains to show how to

6 | DY ={y"(1).u'(1),....y'(N),u'(N)}
computea andQ from B, i, ands. S —vrE ey N (N

As for the wheel sideslip angle, we need first to compute the % 2= P )_""’yz( LN}
longitudinal and lateral speed of front and rear wheels.s€he

are (right and left do not matter here): o D = {ym(l),um(l)-,u. YM(N), u™(N) }

fo —VcosB ~V Vyf —VsinB 411y ~VB -+l Table 1.The simulated data chart as the starting point of the
V! —=VcosB A~V T =VsinB — I ~ VB — I, . . T method. . N
X y ' r experiments one can work out a set of, saypairs{6,D;"}
The sideslip angles are then as follows: as summarized in Table 1. Such set of data is referred to as the
simulated data chart .
a' =arctay )V =S~ B+1i-/V -5 From the simulated data chaft; R?N — RY is reconstructed

a = arctarv;/vxr ~B - P)V. ;51: that map minimizing the estimate error over simulated,dat
In order to compute the vertical load acting on each wheel, A 1 m _ _ _ _ 2
instead, we need to model the car roll dynamics to take into f — min— ZlHé}l - f(y‘(l),u'(l),...,y‘(N),u'(N))H . (2
account the vertical load shift. Precisely, #be the roll angle, fmis
g the gravitational acceleratioh,the altitude of the center of gpoy|df be found, then thé corresponding to actual measure-
mass,| the car semi-axis, anl = m- g the car vertical load. mentsDN = {y1), (1), ..., ¥(N),a(N)} is estimated as
Then, we have that SRS L

J9 +Cd +K 8 =h-m-gsin(d) —ay-h-m-cogd), ) 9_: (y(l),u(l),...,y(N),u(N)). o )
whereK;, C; andJ; are suitable constants. From the roll angIeAfS IS clgtarélsolvllng Pr?l?lethZr)l;qu_ltrrt]e_s th?‘_prhellml?arglph
then the lateral shift of the center of mass can be computed%sa surtable class of Tunctio within which performing

- : ; . Pptimization. This is indeed a critical issue, due to thehhig
E)%%sé%h fi;r:)tb;ﬁmg?t wﬁefglllsgwmg expression for the Vertlca@imensionality of the problem. Indeefl depends upon 2

variables, normally a very large number if compared to the
QR=N |/2—hcogd) Q- =N |/2+hcogd) numberm of experiments. IfZ is a class of low-complexity
| | functions, then it is difficult to replicate the relationghinking
Thus, altogether, the car lateral dynamics can be modelgd to 6 for all values off (bias error). On the opposite,.# is
through a continuous time nonlinear systd9), depend- a class of high-complexity functions, then the over-fittisgpe
ing on an uncertain parameter vectBre R9. The system arises (variance error), see Ljung [1999], Séderstrom &mid&
input u is equal to the steering angle and outguto the [1989].
car lateral acceleration. See Figure 2. In order to retriey@ order to achieve a sensible compromise between bias and
variance, the TS approach is proposed. In this method, the
u(t) P(0) y( selection of the family of function is split in two steps. This
splitting is the key to select a proper clag and, in turn, to
obtain a good estimatd.
To be more precise, the objective of the first step is to reduce
the dimensionality of the estimation problem, by genetatin
the unknown value of the parameter vectr the system a new data chart. The new chart is composed agaim of

Fig. 2.The data generating system.



sequences; however, each sequence is constituted by edimigatab" conveying the information 0. As compressed arti-
numbern of samples i < N). We will call such sequences ficja| data we take the parameters of a simple model, idedtifie
compressed artificial data sequencasd the corresponding from DN. In this way, functiong is implicitly defined by the

chart thecompressed artificial data charin the second step, chosen class of simple models together with the correspgndi
the map between the compressed artificial observations agntification algorithm.

paramete# is identified. By combining the results of the two
steps, the map is finally unveiled.
We now give more details on each of the two stages.

Second stage. Once the compressed artificial data chart in
Table 2 has been worked out, problem (2) becomes that of
] ) . ) finding a maph : R" — RY which fits the set ofn compressed
First stage. The first step consists In a compression of th@rtificial observations to the corresponding parametetovec
information conveyed by measured input/output sequebges j e
in order to obtain data sequend@%of reduced dimensionality. ~ 1 i i

While in the dateDN the information on the unknown parame- he " mi;HG' h(ay,.., o) @

ter 6 is scattered in a long sequenceNoBamples, in the New ¢,ction minimization in (4) is reminiscent of the original
compressed artificial dataf’ such information is compressed minimization problem in (2). However, beimgsmall, the bias

in a short sequence af samples 1f < N). This leads to a yersys variance error trade-off is no more an issue.

As for the choice ofh one can select a linear function:
h(ay,...,a)) =cia;+...+cnap, 6 € RY, i.e. each component

of his just a linear combination of the compressed artificial

: : dataay,...,a;. As in any linear regression, the parametgrs

6m | DI ={al,. o} appearing here can be easily computed via least squares, at

2

6 | DY ={al,...,ai}
6, | Dy={da?,...,a2}

Table 2 The compressed artificial data chart. a low computational cost. Of course such a way of parame-
new compressed artificial data chart constituted by thespai'ier'z'l?g his comptutdatt;onzﬂly cheap bIUt po?smlyllloose. Bett.ter
{8,D"},i=1,...,m, see Table 2. results are expected by choosing a class of nonlinear fumti

iy ~ _ such as Neural Networks or NARX models. The minimization
The compressed artificial data sequeriye can be derived (4) can be performed by resorting to the back-propagation

from DN by resorting to a standard identification methodalgorithm or to other standard algorithms developed fos¢he
To be precise, one can fit a simple model to each sequenggsses of nonlinear functions.

DN = {y'(1),u'(1),...,Y(N),u'(N)}; then, the parameters of

this model, sayr;, a,, ..., ay, are seen as compressed artificia ) ~ A > i

data. i.eD" — {a ail on two functions:§ and h. The former is thecompression
J.eD)={aj,...,ah}.

o ; ; tion transforming simulated data into compressed artificial

To fix ideas, we suggest the following as a typical methogJnC A : -

for the generation of compressed artificial data. For daeh a:g. Ihe laéteﬁt'i?i ”imltt('jn? fl:n(t::]lonp:]rl?r\]n%:lr:]g thf nnw]art) frrom.ti?e

1,2,...,m, the data sequence Cf] p ei)setha y cia é%f’:\ % et;l ) b0 f.ttpa a;h eter. Vigh te

N - : - - chosen by the designdr,is identified by fitting the parameter
D = {y'(1),u'(1),....y (N),u'(N)} values to the corresponding compressed artificial data. O

can be concisely described by an ARX model:

Bemark 2(Thefunctionsjandﬂ). The TS methods is based

Use of the TS estimator. Once functiong has been chosen
y(t)=aly(t—1) _l’_..._l,_ari]yyi (t—ny)+ and functionh has been identified, the functioAﬂ mapping
P i i input/output data into the estimate fBiis given byh(g(-)), see
Oy 2 (= 1)+ 4 Ay, U (T =), Figure 3. When an actual input/ouput sequence is obseragd, s
with a total number of parametemns= ny -+ ny. The parameters

al,...,al of this model can be worked out by means of the original & _ artificial
least squares algorithm (Ljung [1999], Sdderstrom andc&toi data data
[1989]):

ho A
—>e

ail y ) Fig. 3. The estimator function composition.
= [thpi(t)cpi(t)T]_l. Zfﬂt)yi (1), @) DN ={y(1),u(1),...,¥(N), G(N)}, the corresponding unknown
al t= t= parameter can then be estimat_edéﬁg_h(@(DN)).
O = (t— 1)yt ) U(t— 1)Ut — )T As previously d|scus§ed, viewing this data ¥smap as the
Y wi composition ofg andh is the key to transform a numerically
Remark 1(Physical interpretation of the artificial data). Whileintractable problem into an affordable one.

51(? r|1s Sf?crsngmﬁema?gglle?ﬁsgépg%] (I)g ;(;321 8':2;' sbeall:gtde dOIQemark 3(Construction of the TS estimator). As is apparent,
bhy P ' P t‘w TS approach relies on intensive simulations of the plant

produce the compressed artificial data does not need to he}ﬁ%del and this fact can be computationally demanding. Yet,
any physical meaning; this class plays a purely instrurianti differently from other approaches, all these simulatioageto

intermediary role in the process of bringing into light ttiéden . performed once for all, by using the car simulator. The ttesul
relationship between the unknown parameter and the ofigi

collected data. . then is an explicit magf (i.e. f — h(g(.)) which can be easily
applied over and over, for estimating all possible value$ of

In conclusion, the first stage of the method aims at finding &t low computational cost (i.e. the cost of evaluating a fiamc

functiong : RN — R" transforming each simulated data se-f for a given data sequence) and without any supervision from

quenceDN into the a new sequence of compressed artifici@n human-operator. Thus, the TS approach is well-suited for



the Pacejka’s parameters estimation problem as studiddsin tby simple experiments). Typicallpk; ranges betweer42.83

paper. O and—27.32, while pg2 between-1.22 and—0.98.
In order to apply the TS method)= 2000 values fof were
4. EXPERIMENTAL RESULTS extracted uniformly from the rectangle-42.83,—27.32] x

[—1.22,-0.98] and, correspondingly, we run 2000 simulations
The car model described in Section 2 has been implementetithe car model, each time adopting the steering angle kinga
in Dynol a/ Mbdel i ca and then simulated throuddat | ab. in Figure 4 as input. By sampling input and output signals
We then applied the TS approach in order to construct amith a period of 002 s, we then obtained 2000 sequences
estimator able to retrieve the Pacejka’'s tyre parameters fr u'(1),y'(1),...,u'(500),y"(500), i = 1,...,2000, 500-samples
the measurements of the car lateral acceleration whileahe clong each, which, together with the 2000 extracted values fo
moving at constat spead= 10 m/s, is steered as in Figure 4.6, formed the simulated data chart. _
This manoeuver lasts about 10 seconds and corresponds to fp@r each data set'(1),y'(1),...,u'(500),y'(500), the com-
forming achicane In order to take into account measuremenpressed artificial data sequence was obtained by iderdifyin

through the least squares algorithm the coefficients. ., ag

of an ARX(4,4) model/ (t) = aly'(t — 1) +---+ aly (t—4) +

steering angle

0.15 alu'(t — 1) +--- + au'(t — 4). Such a choice for the model
order was derived by a sequence of trials and errors.
il The final estimatoh(ay, ..., a}) was instead derived by resort-

ing to a feed-forward 2-layers neural network, with 20 nesro
in the hidden layer and 2 linear neurons in the output laylee. T
network weights were trained by the usual back-propagation
algorithm. Again, the order as well as the structure of the

0.05 4

0.00

005 | neural network was also chosen by means of a trials and errors
procedure.
010 The entire process for the derivation of the TS estimatok too

about 20 minutes on a standard@ GHz dual-processor com-
ot puter, and it produced an explicit estimation mﬁp: hog

fime defined as the composition of the least squares algorithm and
the trained neural network.

015 T T T T

In order to test the performance of the so obtained TS egtitnat
we applied it to 800 new data sequences, generated from 800
8 — fresh values for parametér Then, 800 estimate8 were then
computed by simply evaluatinﬁfor each data sequence. This
validation process took few seconds only.
The performance of the TS estimator can be appreciated in
Figures 6 and 7 where the estimatisand 8, of the first and
second parameter are compared with the true valués ahd
6,. More precisely, Figure 6 [Figure 7] depicts in thexis

lateral acceleration

Outputs vs. Targets, R=0.99362
-20 T T

O Data Points

Best Linear Fit

Fig. 5.Measured lateral acceleration.

errors, we added a zero mean white noise with suitable waian
0.01 m/¢ to the lateral acceleraticay returned by the simula-

tor. A typical trend of the lateral acceleration (for a pautar

type of tyres) is shown in Figure 5. Finally, for simplicitye
supposed that the Pacejka’s tyre parameters were the same fo
the four tyres of the car (i.e. the four tyres mounted on thre ca ; . . :
are of the same type with same aging and pressure condition), L L TafisT =5 E
and that among all Pacejka’s parameters, ooty and px2 e

were subject to changeability (while all others were fixdd).
other words, the vectof to be estimated is constituted by
61 = px1 andB, = pk2. This choice was dictated by the fact that
the lateral force as calculated by means of the Pacejka’scmaghe value of the first [second] parameter, while in yrexis the
formula is much more sensitive to variation of paramefgs returned estimate. Thus, each point in the graph corresptond
and pk2 than all other parameters (this can be easily verified pair true-parameter vs. returned-estimate, and the rhere t

Cutputs ¥, Linear Fit: Y=(0.99)T+(-0.38)

Fig. 6. Estimates ofg; as returned by the TS estimatorgxis) vs. corre-
sponding true values/{axis).
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Fig. 9. Estimates 0f6, as returned by the Particle Filtex-éxis) vs. corre-

. sponding true values/{axis).
Fig. 7. Estimates off, as returned by the TS estimatordxis) vs. corre- P d yiaxis)

sponding true valuey/@xis). compared with the few seconds required by the TS estimator
for computing 800 estimates.

points concentrate around the graph bisector (here plated

a dashed line), the better the estimation performance. 3e ea REFERENCES
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