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Abstract: In this paper, we consider the problem of estimating unknownparameters of the so-called
Pacejka’s model of a tyre from measurements of the car behavior. Differently from other estimation
problems, the tyre parameters may change during the car lifedue to tyre aging, the variability of the
inflation pressure, or many further reasons. Rather then solving a single estimation problem, thus,
the issue is to set-up an automaticestimator, able to to supply reliable estimates of the Pacejka’s
parameters for any type of tyre and any type of operating condition. Existing methods for parameter
estimation have been conceived for the estimation of the value taken by the parameter in a given
functioning condition, and are not suitable for the problemhere considered. In this paper we present
a novel approach, the TS (two-stage) approach, specificallytailored to the problem of returning accurate
estimates notwithstanding the tyres changeability. We compare its performances with those achievable
with other parameter estimation techniques such as Prediction Error and Kalman Filter based methods.
It turns that the TS approach offers significant improvements.
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1. INTRODUCTION

One of the most critical aspects in modeling the dynamics of a
vehicle is the determination of the lateral force generatedby the
interaction between tyres and the soil. The underlying physical
phenomenon is rather complex and, for its description, one
often resorts to empirical models, the most renowned of which
is undoubtedly thePacejka’s magic formula, Pacejka [2005].
This is a non-linear function supplying the lateral force asa
function of the steering angle. The formula contains a number
of parameters, the value of which has to be tuned in order to
distinguish between different kinds of tyres, with their own
characteristics in term of size, constitutive material, inflation
pressure, deterioration, etc. In order to complete the model for
the vehicle behavior, thus, a further step is required, thatof
assigning a sensible value to the tyre Pacejka’s parameters. In
the Pacejka’s magic formula, parameters have no clear physical
meaning, and usually they are estimated from experimental data
(white-box identification, Bohlin [2006]).
Estimating unknown parameters in a given plant from observed
data is a basic problem in control engineering, Bittanti and
Picci [1996], Bohlin [2006], Gelb et al. [1974], Ljung [1999],
Söderström and Stoica [1989], and many techniques, such as
those based on Kalman Filtering (KF), Anderson and Moore
[1979], Grewal and Andrews [2001], Simon [2006], Su and
Kamen [1999], or those based on Prediction Error Methods
(PEM), Bohlin [2006], Ljung [1999], Söderström and Stoica
[1989], or Linear Fractional Transformation (LFT), Wolodkin
et al. [1997], have been developed to this purpose. All these
techniques are well understood by theorists and practitioners,
and can be effectively used to retrieve the parameters of a
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given tyre in a certain operating condition, correspondingto the
available set of data.
During the car life, however, the operating condition may
change due to the tyre aging, the variability of the inflation
pressure, or many further reasons (including the fact that the car
owner may decide to substitute the tyres!). Then, to guarantee
the accuracy of the model, the parameters value must be re-
estimated with new fresh data.
Thus, rather then solving a single estimation problem, the issue
here is to set-up an automaticestimatorto be embedded in an
electronic device installed in the car. The estimator task is to
supply reliable estimates of the Pacejka’s parameters for any
type of tyre and any type of operating condition.
Clearly, this conceptual framework poses some additional re-
quirements:

- The estimation algorithm must be fully automatic as no
human-supervision is allowed onboard.

- The computational effort must be low due to the limited
computational resources.

As we will see, these requirements prevent the use of classical
estimation approaches.
Conceptually, an estimator, or estimation algorithm, is nothing
but a map from measured observations to the value of the pa-
rameters estimate. Typically, such a map is implicitly defined by
the filter equation (KF based methods), or by the minimization
of a mean square error cost function (PEM) or of a likelihood
(LFT). All these approaches, however, may encounter serious
drawbacks in the tyre parameters estimation problem.
More specifically, PEM and LFT call for the minimization of
a non-linear cost function, a task which might be very hard.
Indeed, simple gradient-based methods suffers from the obnox-
ious problem of local minima leading to biased (inconsistent)
estimation unless the user supervises the minimization process.



On the other hand, more sophisticated gridding-based auto-
matic methods run into the curse of dimensionality for which–
in the words of Bohlin [2006] – “simulation would require su-
percomputers, and optimization an order of magnitude more”.
As for KF methods, Extended Kalman Filter (EKF) and Un-
scented Kalman Filter (UKF) suffer from serious convergence
problems if the initial estimate and the initial error covariance
are not suitably initialized, Ljung [1979], Garatti and Bittanti
[2008]. Moreover, such initialization depends on the actual
value of the true parameters one want to estimate, so that it is
often impossible to find an initialization ensuring convergence
no matter what the true parameters are. Thus, both EKF and
UKF require the adaptation of the “algorithm tuning knobs”
through some human-supervision, every time the parameters
value changes.
Another approach, still settled in the Kalman Filter setup,is
the so-called Particle Filter (PF) which basically reconstructs
the a-posteriori probability distribution of unknown parameters
by letting a cloud of initial values for the unknown parameters
evolving through the systems equation. Differently from EKF
and UKF, PF has the great advantage of guaranteeing the con-
vergence of the estimate independently of the initialization, Hu
et al. [2008], and this is one reason for its increasing popularity.
On the other hand, the PF estimation algorithm requires an
intensive simulation of the model evolution before returning
an estimate for the unknown parameters. For this reason, PF
is computationally demanding, and in general clashes with the
limitation on available resources.

In this paper, a new estimation method, named the TS (two-
stage) approach, is considered for the problem of tyre Pace-
jka’s parameters estimation. The TS approach has been recently
introduced in Garatti and Bittanti [2008], Bittanti and Garatti
[2008] and is specifically tailored to the problem of returning
accurate estimates notwithstanding the tyres changeability. The
basic rationale underlying the TS method is to off-line recon-
struct the relationship linking the data to parameters through
extensive simulation runs of the model. This is achieved thanks
to an intermediary step aiming at the generation of a set of
artificial data. Precisely, the procedure develops in two phases:
the first one transfers the information contained in the original
data into the artificial data, while the second one enables es-
tablishing the link between these last data and the unknown
parameters. As a final product, the TS approach returns an
explicit formula for the parameter estimator. The effectiveness
of the proposed approach will be discussed by a comparison
with other estimation techniques.

The paper is organized as follows. First, a model for the vehicle
dynamics including interactions with tyres is described inSec-
tion 2. This will permit us to precisely formulate the estimation
problem. For the sake of completeness, the TS approach is then
resumed in Section 3, while Section 4 presents the experimental
results obtained for the tyres parameters problem.

2. CAR MODEL DESCRIPTION AND PROBLEM
FORMULATION

For simplicity we consider a car moving at constant speedV,
and we model the car lateral dynamics only. In the sequel,x and
y will denote the car longitudinal and lateral axis, respectively,
while X andY will denote an inertial coordinates frame. Our
model input is the steering angleδ , i.e. the angle between the
front wheels longitudinal axis and the car longitudinal axis (we

suppose the steering angle is the same for both front wheels),
while the output is the car body lateral acceleration denoted by
ay. V is the velocity vector in the inertial coordinates frame,

Fig. 1.The car model.

while β is the car sideslip angle (i.e. the angle between the car
longitudinal axis andV) andψ is the car yaw angle (i.e. the
angle between the car longitudinal axis and theX axis). Clearly,
V = Vej(β+ψ). In the following, we will assume that all angles
are small enough to approximate function sin with its argument
and cos with the constant 1.
The model of the car lateral dynamics is obtained as a force and
moment equilibrium (see Figure 1):

{
may = T f L

y +T f R
y +TrL

y +TrR
y

Jψ̈ = (T f L
y +T f R

y ) · l f − (TrL
y +TrR

y )lr ,
(1)

whereTy denotes the lateral forces generated by one tyre, while
superscriptsf , r, L, andRdistinguish betweenfront, rear, Left,
andRightwheels.l f andlr indicate the distance between front
and rear wheels and the car center of mass. Finally,m andJ
denotes the car mass and moment of inertia, respectively.
Under the current assumptions,

dV
dt

=
d
dt

Vej(β+ψ)
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It follows that

ay≈ V̇β −V(β̇ + ψ̇) =−V(β̇ + ψ̇),

beingV constant. Then, (1) becomes

−mV(β̇ + ψ̇) = T f L
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y +TrL
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Jψ̈ = (T f L
y +T f R

y ) · l f − (TrL
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As for the lateral forces generated by tyres, we resort to the
Pacejka’s magic formula, Pacejka [2005]:

Ty = Dsin{Carctan[Bᾱ−E(Bᾱ−arctan(Bᾱ))]}+SV

where



SH = pH1 + pH2 fz+ pH3γ
SV = Q[(pV1 + pV2 fz)+ (pV3 + pV4 fz)γ]

ᾱ = α +SH

C = pC1

µ = (pD1 + pD2 fz)(1− pD3γ2)

D = µQ

E = (pE1 + pE2 fz) [1− (pE3+ pE4γ)sign(ᾱ)]

K = pK1Fzsin[2arctan(Q/(pK2 ·Fz)))(1− pK3|γ|)]
B= K/(C ·D)

In this formulaα is the wheel sideslip angle (i.e. the angle
between the wheel longitudinal axis and the wheel velocity),
while Q is the vertical load acting on the wheel.γ is the
so called camber angle, here supposed to be constant,Fz the
wheel nominal load (which is constant too), andfz = (Q−
Fz)/Fz is the relative load. All other parameters appearing in
this formula are the so called Pacejka’s tyre parameters and
their value determines the tyre response. Summarizing, letting
θ be the vector of Pacejka’s parameters, the Pacejka’s magic
formula is nothing but a parametric inθ nonlinear function
of variablesα andQ supplying as output the generated lateral
force:Ty = Fθ (α,Q).
In order to complete the model, it remains to show how to
computeα andQ from β , ψ , andδ .
As for the wheel sideslip angle, we need first to compute the
longitudinal and lateral speed of front and rear wheels. These
are (right and left do not matter here):

V f
x = V cosβ ≈V V f

y = V sinβ + l f ψ̇ ≈Vβ + l f ψ̇
V r

x = V cosβ ≈V Vr
y = V sinβ − lrψ̇ ≈Vβ − lrψ̇ .

The sideslip angles are then as follows:

α f = arctanV f
y /V f

x − δ ≈ β + l f · ψ̇/V− δ
α r = arctanVr

y /Vr
x ≈ β − lr · ψ̇/V.

In order to compute the vertical load acting on each wheel,
instead, we need to model the car roll dynamics to take into
account the vertical load shift. Precisely, letϑ be the roll angle,
g the gravitational acceleration,h the altitude of the center of
mass,l the car semi-axis, andN = m· g the car vertical load.
Then, we have that

Jr ϑ̈ +Cr ϑ̇ +Krϑ = h ·m·gsin(ϑ)−ay ·h ·m·cos(ϑ),

whereKr , Cr andJr are suitable constants. From the roll angle,
then the lateral shift of the center of mass can be computed as
hcos(ϑ), so obtaining the following expression for the vertical
loads on right and left wheels:

QR = N
l/2−hcos(ϑ)

l
QL = N

l/2+hcos(ϑ)

l
.

Thus, altogether, the car lateral dynamics can be modeled
through a continuous time nonlinear systemP(θ ), depend-
ing on an uncertain parameter vectorθ ∈ R

q. The system
input u is equal to the steering angle and outputy to the
car lateral acceleration. See Figure 2. In order to retrieve

Fig. 2.The data generating system.

the unknown value of the parameter vectorθ , the system

input and output are observed through an angular position
sensor and an accelerometer for a certain time interval over
which a numberN of input and output observations̄DN =
{ȳ(1), ū(1), . . . , ȳ(N), ū(N)} are collected. The issue then is
how to build a suitable parameter estimator, i.e. a mapf̂ :
R

2N→ R
q which exploits the information contained in the ob-

servationsD̄N = {ȳ(1), ū(1), . . . , ȳ(N), ū(N)} so as to produce
fair estimates of the values taken by the uncertain parameter θ .

3. THE TS APPROACH FOR PARAMETER ESTIMATION

In this section we introduce the TS approach for estimators con-
struction. The basic rationale is to resort to the plant simulator
and to perform off-line intensive simulation runs in order to re-
construct from synthetic data the functionf̂ mapping measured
input/output data into an estimate for the parameterθ .
To be precise, we use thesimulator to generate input/output
data for a number of different values of the unknown parameter
θ . That is, we collectN measurements

DN
1 = {y1(1),u1(1), . . . ,y1(N),u1(N)}

for θ = θ1; N measurements

DN
2 = {y2(1),u2(1), . . . ,y2(N),u2(N)}

for θ = θ2; and so on and so forth. By repeated simulation

θ1 DN
1 = {y1(1),u1(1), . . . ,y1(N),u1(N)}

θ2 DN
2 = {y2(1),u2(1), . . . ,y2(N),u2(N)}

...
...

θm DN
m = {ym(1),um(1), . . . ,ym(N),um(N)}

Table 1.The simulated data chart as the starting point of the
TS method.

experiments one can work out a set of, saym, pairs{θi ,DN
i }

as summarized in Table 1. Such set of data is referred to as the
simulated data chart.
From the simulated data chart,f̂ : R

2N → R
q is reconstructed

as that map minimizing the estimate error over simulated data,
i.e.

f̂ ←min
f

1
m

m

∑
i=1

∥∥∥θi− f (yi(1),ui(1), . . . ,yi(N),ui(N))
∥∥∥

2
. (2)

Should f̂ be found, then theθ corresponding to actual measure-
mentsD̄N = {ȳ(1), ū(1), . . . , ȳ(N), ū(N)} is estimated as

θ̂ = f̂ (ȳ(1), ū(1), . . . , ȳ(N), ū(N)).

As is clear, solving Problem (2) requires the preliminary choice
of a suitable class of functionsF within which performing
optimization. This is indeed a critical issue, due to the high
dimensionality of the problem. Indeedf depends upon 2N
variables, normally a very large number if compared to the
numberm of experiments. IfF is a class of low-complexity
functions, then it is difficult to replicate the relationship linking
DN to θ for all values ofθ (bias error). On the opposite, ifF is
a class of high-complexity functions, then the over-fittingissue
arises (variance error), see Ljung [1999], Söderström and Stoica
[1989].
In order to achieve a sensible compromise between bias and
variance, the TS approach is proposed. In this method, the
selection of the family of functionsF is split in two steps. This
splitting is the key to select a proper classF and, in turn, to
obtain a good estimator̂f .
To be more precise, the objective of the first step is to reduce
the dimensionality of the estimation problem, by generating
a new data chart. The new chart is composed again ofm



sequences; however, each sequence is constituted by a limited
numbern of samples (n≪ N). We will call such sequences
compressed artificial data sequencesand the corresponding
chart thecompressed artificial data chart. In the second step,
the map between the compressed artificial observations and
parameterθ is identified. By combining the results of the two
steps, the map̂f is finally unveiled.
We now give more details on each of the two stages.

First stage. The first step consists in a compression of the
information conveyed by measured input/output sequencesDN

i

in order to obtain data sequencesD̃n
i of reduced dimensionality.

While in the dataDN
i the information on the unknown parame-

ter θi is scattered in a long sequence ofN samples, in the new
compressed artificial datãDn

i such information is compressed
in a short sequence ofn samples (n≪ N). This leads to a

θ1 D̃n
1 = {α1

1 , . . . ,α1
n}

θ2 D̃n
2 = {α2

1 , . . . ,α2
n}

...
...

θm D̃n
m = {αm

1 , . . . ,αm
n }

Table 2.The compressed artificial data chart.

new compressed artificial data chart constituted by the pairs
{θi ,D̃n

i }, i = 1, . . . ,m, see Table 2.
The compressed artificial data sequenceD̃n

i can be derived
from DN

i by resorting to a standard identification method.
To be precise, one can fit a simple model to each sequence
DN

i = {yi(1),ui(1), . . . ,yi(N),ui(N)}; then, the parameters of
this model, sayα i

1,α
i
2, . . . ,α

i
n, are seen as compressed artificial

data, i.e.̃Dn
i = {α i

1, . . . ,α
i
n}.

To fix ideas, we suggest the following as a typical method
for the generation of compressed artificial data. For eachi =
1,2, . . . ,m, the data sequence

DN
i = {yi(1),ui(1), . . . ,yi(N),ui(N)}

can be concisely described by an ARX model:

yi(t) = α i
1yi(t−1)+ · · ·+ α i

ny
yi(t−ny)+

α i
ny+1ui(t−1)+ · · ·+ α i

ny+nu
ui(t−nu),

with a total number of parametersn = ny +nu. The parameters
α i

1, . . . ,α
i
n of this model can be worked out by means of the

least squares algorithm (Ljung [1999], Söderström and Stoica
[1989]): 


α i

1
...

α i
n


 =

[ N

∑
t=1

ϕ i(t)ϕ i(t)T]−1
·

N

∑
t=1

ϕ i(t)yi(t), (3)

ϕ i(t) = [yi(t−1) · · ·yi(t−ny) ui(t−1) · · ·ui(t−nu)]
T .

Remark 1.(Physical interpretation of the artificial data). While
P(θ ) is a mathematical description of a real plant, based on
the physics of the problem, the simple model class selected to
produce the compressed artificial data does not need to have
any physical meaning; this class plays a purely instrumental and
intermediary role in the process of bringing into light the hidden
relationship between the unknown parameter and the original
collected data. �

In conclusion, the first stage of the method aims at finding a
function ĝ : R

2N → R
n transforming each simulated data se-

quenceDN
i into the a new sequence of compressed artificial

dataD̃n
i conveying the information onθi . As compressed arti-

ficial data we take the parameters of a simple model, identified
from DN

i . In this way, functionĝ is implicitly defined by the
chosen class of simple models together with the corresponding
identification algorithm.

Second stage. Once the compressed artificial data chart in
Table 2 has been worked out, problem (2) becomes that of
finding a map̂h : R

n→ R
q which fits the set ofm compressed

artificial observations to the corresponding parameter vectors,
i.e.

ĥ←min
h

1
m

m

∑
i=1

∥∥∥θi−h(α i
1, . . . ,α

i
n)

∥∥∥
2
. (4)

Function minimization in (4) is reminiscent of the original
minimization problem in (2). However, beingn small, the bias
versus variance error trade-off is no more an issue.
As for the choice ofh one can select a linear function:
h(α i

1, . . . ,α
i
n) = c1α i

1+ . . .+cnα i
n, ci ∈R

q, i.e. each component
of h is just a linear combination of the compressed artificial
dataα i

1, . . . ,α
i
n. As in any linear regression, the parametersci

appearing here can be easily computed via least squares, at
a low computational cost. Of course such a way of parame-
terizing h is computationally cheap but possibly loose. Better
results are expected by choosing a class of nonlinear functions,
such as Neural Networks or NARX models. The minimization
in (4) can be performed by resorting to the back-propagation
algorithm or to other standard algorithms developed for these
classes of nonlinear functions.

Remark 2.(The functionŝg andĥ). The TS methods is based
on two functions:ĝ and ĥ. The former is thecompression
function, transforming simulated data into compressed artificial
data. The latter is thefitting functionproviding the map from the
compressed artificial data to the unknown parameter. Whileĝ is
chosen by the designer,ĥ is identified by fitting the parameter
values to the corresponding compressed artificial data. �

Use of the TS estimator. Once functionĝ has been chosen
and functionĥ has been identified, the function̂f mapping
input/output data into the estimate forθ is given bŷh(ĝ(·)), see
Figure 3. When an actual input/ouput sequence is observed, say

Fig. 3.The estimator function composition.

D̄N = {ȳ(1), ū(1), . . . , ȳ(N), ū(N)}, the corresponding unknown
parameter can then be estimated as:θ̂ = ĥ(ĝ(D̄N)).
As previously discussed, viewing this data vs.θ map as the
composition ofĝ and ĥ is the key to transform a numerically
intractable problem into an affordable one.

Remark 3.(Construction of the TS estimator). As is apparent,
the TS approach relies on intensive simulations of the plant
model and this fact can be computationally demanding. Yet,
differently from other approaches, all these simulations have to
performed once for all, by using the car simulator. The result
then is an explicit map̂f (i.e. f̂ = ĥ(ĝ(·)) which can be easily
applied over and over, for estimating all possible values ofθ
at low computational cost (i.e. the cost of evaluating a function
f̂ for a given data sequence) and without any supervision from
an human-operator. Thus, the TS approach is well-suited for



the Pacejka’s parameters estimation problem as studied in this
paper. �

4. EXPERIMENTAL RESULTS

The car model described in Section 2 has been implemented
in Dymola/Modelica and then simulated throughMatlab.
We then applied the TS approach in order to construct an
estimator able to retrieve the Pacejka’s tyre parameters from
the measurements of the car lateral acceleration while the car,
moving at constat speedV = 10 m/s, is steered as in Figure 4.
This manoeuver lasts about 10 seconds and corresponds to per-
forming achicane. In order to take into account measurement

Fig. 4.Standard steering angle trend.

Fig. 5.Measured lateral acceleration.

errors, we added a zero mean white noise with suitable variance
0.01 m/s2 to the lateral accelerationay returned by the simula-
tor. A typical trend of the lateral acceleration (for a particular
type of tyres) is shown in Figure 5. Finally, for simplicity,we
supposed that the Pacejka’s tyre parameters were the same for
the four tyres of the car (i.e. the four tyres mounted on the car
are of the same type with same aging and pressure condition),
and that among all Pacejka’s parameters, onlypK1 and pK2
were subject to changeability (while all others were fixed).In
other words, the vectorθ to be estimated is constituted by
θ1 = pK1 andθ2 = pK2. This choice was dictated by the fact that
the lateral force as calculated by means of the Pacejka’s magic
formula is much more sensitive to variation of parameterspK1
and pK2 than all other parameters (this can be easily verified

by simple experiments). Typically,pK1 ranges between−42.83
and−27.32, whilepK2 between−1.22 and−0.98.
In order to apply the TS method,m= 2000 values forθ were
extracted uniformly from the rectangle[−42.83,−27.32]×
[−1.22,−0.98] and, correspondingly, we run 2000 simulations
of the car model, each time adopting the steering angle singal
in Figure 4 as input. By sampling input and output signals
with a period of 0.02 s, we then obtained 2000 sequences
ui(1),yi(1), . . . ,ui(500),yi(500), i = 1, . . . ,2000, 500-samples
long each, which, together with the 2000 extracted values for
θ , formed the simulated data chart.
For each data setui(1),yi(1), . . . ,ui(500),yi(500), the com-
pressed artificial data sequence was obtained by identifying
through the least squares algorithm the coefficientsα i

1, . . . ,α
i
8

of an ARX(4,4) modelyi(t) = α i
1yi(t−1)+ · · ·+α i

4yi(t−4)+
α i

5ui(t − 1) + · · ·+ α i
8ui(t − 4). Such a choice for the model

order was derived by a sequence of trials and errors.
The final estimator̂h(α i

1, . . . ,α
i
8) was instead derived by resort-

ing to a feed-forward 2-layers neural network, with 20 neurons
in the hidden layer and 2 linear neurons in the output layer. The
network weights were trained by the usual back-propagation
algorithm. Again, the order as well as the structure of the
neural network was also chosen by means of a trials and errors
procedure.
The entire process for the derivation of the TS estimator took
about 20 minutes on a standard 2.40 GHz dual-processor com-
puter, and it produced an explicit estimation mapf̂ = ĥ◦ ĝ
defined as the composition of the least squares algorithm and
the trained neural network.

In order to test the performance of the so obtained TS estimator,
we applied it to 800 new data sequences, generated from 800
fresh values for parameterθ . Then, 800 estimateŝθ were then
computed by simply evaluatinĝf for each data sequence. This
validation process took few seconds only.
The performance of the TS estimator can be appreciated in
Figures 6 and 7 where the estimatesθ̂1 andθ̂2 of the first and
second parameter are compared with the true values ofθ1 and
θ2. More precisely, Figure 6 [Figure 7] depicts in thex-axis

Fig. 6. Estimates ofθ1 as returned by the TS estimator (x-axis) vs. corre-
sponding true values (y-axis).

the value of the first [second] parameter, while in they-axis the
returned estimate. Thus, each point in the graph corresponds to
a pair true-parameter vs. returned-estimate, and the more the



Fig. 7. Estimates ofθ2 as returned by the TS estimator (x-axis) vs. corre-
sponding true values (y-axis).

points concentrate around the graph bisector (here plottedas
a dashed line), the better the estimation performance. To ease
the result visualization, we have also drawn a continuous line
representing an optimal linear fit of the points in the graph.
As it appears, the TS estimator returns fairly accurate estimates,
especially for the first parameter. In this respect, we note that
the first parameter is one order of magnitude more important
than the second one in determining the lateral force supplied
by the Pacejka’s magic formula, and this reflects into an easier
identifiability of θ1.
For the sake of comparison, we also applied the Particle Filter
estimation algorithm to the first 50 data sequences out of the
800 we used for validating the TS approach. The estimates were
computed by letting evolving a cloud of 500 particles through
the filter equations. As for the Particle Filter equations, the
reader is referred to the literature (see e.g. Simon [2006]).
Figures 8 and 9 plot the estimatesθ̂1 andθ̂2 returned by Particle
Filter vs. the true parameters value. As it appears, the PF

Fig. 8. Estimates ofθ1 as returned by the Particle Filter (x-axis) vs. corre-
sponding true values (y-axis).

estimates are consistent although much more scattered around
the graph bisector. Furthermore, note that the PF algorithm
required 5 hours to compute each estimate (the computation
of all the 50 estimates took about 250 hours). This has to be

Fig. 9. Estimates ofθ2 as returned by the Particle Filter (x-axis) vs. corre-
sponding true values (y-axis).

compared with the few seconds required by the TS estimator
for computing 800 estimates.
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