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Abstract: In this paper, we consider theL∞ criterion of best fit for identifying linear regression models
from data. This criterion has much appeal as it protects against the worst since it selects the regression
model that minimizes the largest deviation from observations. Moreover, based on the obtained optimal
loss, one can build prediction intervals, as opposed to single prediction values, which are guaranteed to
contain newly generated output values with high probability. Our main result is the exact quantification
of the probability of making a false prediction valid in conditions of independent and stationary
observations, a result that provides an exhaustive characterization of the confidence of prediction
based onL∞ regression models. It turns out that this false prediction probability is independent of the
mechanism through which observations are generated. This result bears implications on the possibility
of obtaining general and non-conservative evaluations forthe probability of false prediction with no
a-priori knowledge of the data generation mechanism properties.
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1. INTRODUCTION

We consider linear regression models of a variabley ∈ R on
a p-dimensionalexplanatoryvariablex ∈ R

p. Precisely, given
q regressorfunctions f j : R

p → R, j = 1, . . . ,q, the linear
regression model is given by

y(x) =
q

∑
j=1

β j f j(x) = f (x)Tβ , (1)

where f (x) := [ f1(x) · · · fq(x)]T is the vector of regression
functions andβ = [β1 · · · βq]

T is the vector of tunable coef-
ficients. As a simple example, (1) encompasses affine models
in x, that isy(x) = β1x(1) + β2x(2) + · · ·+ βpx(p) + βp+1, where
superscript(i) indicates thei-th component of vectorx.

Given a batch ofN independent observations(xi ,yi), i =
1, . . . ,N, the model is tuned according to theL∞ criterion of best
fit. This amounts to select the coefficientsβ j so as to minimize
the maximum deviation of the observedyi ’s from y(xi), namely

min
β=[β1, ··· βq]T

max
i=1,...,N

∣

∣

∣
yi − f (xi)

Tβ
∣

∣

∣
. (2)

The optimal solution of (2) is indicated withβ ∗ = [β ∗
1 · · · β ∗

q ]T

while the optimal cost value ish∗.

L∞ regression has a long history which dates back to some
works of Euler in the late 17th century, as described in Har-
ter [1975]. Since the 1950s there has been a renewed inter-
est spurred by the development of linear programming tech-
niques to compute theL∞ regression solution, see e.g. Karst
[1958], Kelley [1958], Wagner [1959], Appa and Smith [1973],
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Barrodale and Phillips [1975], Armstrong and Kung [1979],
Planitz and Gates [1991], Ruzinsky and Olsen [1989], Zhang
[1993], Narula and Wellington [2007]; see also the monographs
Birkes and Dodge [1993], Arthanari and Dodge [1993], Cheney
[1999].

Figure 1.L∞ layers for the construction of prediction intervals.

One reason of appeal of theL∞ criterion is that it protects
against the worst since it selects the regression model that
minimizes the largest deviation from observations. The layer
of vertical height 2h∗ centered around the optimal solution
y = f (x)Tβ ∗ (hereafter called theL∞ layer) is the most thin
layer containing all observations and it can be used to predict
future output data, as graphically represented in Figure 1.To be
precise, given a further observation of the explanatory variable
x, the regressor model produces the predictionf (x)Tβ ∗ for the
unknown value of variabley, while the L∞ layer determines
a confidence interval[ f (x)T β ∗−h∗, f (x)Tβ ∗ + h∗] around the



predicted value which should containy with high (guaranteed)
probability.

For the sake of completeness, it must be said that, for this
prediction to be really useful, the vertical dispersion of the
observations around the curve of best fit must be moderate,
since, as observed as early as in 1809 by Gauss, the optimal
L∞ regressor only depends on few observations and is quite
sensitive to even sporadic noise (that is to the fact that other
variables, besides those listed inx, can in some observations
significantly contribute to form the value of they variable).
Likewise, the presence of significant noise even in few observa-
tions drastically impoverish the quality of the layer by making
it wide and therefore little accurate. Despite these drawbacks,
the minimax method can be an interesting alternative to least-
squares in applications with moderate noise.

1.1 Results of this paper

The goal of this paper is to study the reliability of the returned
prediction intervals by quantifying the probability of false pre-
diction of the L∞ layer, that is the probability that the next
data point falls outside the layer. Our main result is that the
false prediction probability is independent of the probability
that generated the data, a result bearing important implications
on the applicability ofL∞ layers.

In more formal terms, assume that observations(xi ,yi) are
independently generated according to an invariant probability
Pr in R

p ×R with density p(x,y) and consider theL∞ layer
{(x,y) such that

∣

∣y− f (x)T β ∗
∣

∣ ≤ h∗}. The probability of false
prediction is then the probability of theL∞ layer complement:

η := probability of false prediction
= Pr{(x,y) such that

∣

∣y− f (x)T β ∗
∣

∣ > h∗},

and thisη is a random variable since the layer is, as it depends
on the observations(xi ,yi). Therefore,η is characterized by
its probability distribution, and one would like this distribution
to concentrate around zero in order for theL∞ layer to exhibit
good prediction properties. We here establishes the fact that the
probability distribution ofη is aBetadistribution, and that it is
independent ofPr and of the choice of the regressor functions
f j .

Theory-wise, this result

1. establishes the fact thatη is apivotal variable, in the sense
that its distribution remains unchanged under variation of
the problem elements;

2. supports in a quantitatively exact manner the intuitive idea
thatη is small with high probability.

From a practical point of view, the distribution ofη provides
exact information on the false prediction properties of theL∞
layer. Two aspects deserve to be further highlighted in this
connection:

1. since theη distribution is pivotal, the fact that the user
has no knowledge ofPr, that is no knowledge of the
data generation mechanism, does not introduce any con-
servatism in the evaluation of the dependability of theL∞
layer. The general applicability of the result is important,
quoting Hogg [1974]:“. . . we know in practice the most
models will seldom fit exactly the real situations. Thus,
for the sake of application, it seems ridiculous to try to
get the last ounce of mathematical efficiency out of some

assumed situation. A more realistic approach would be
to seek statistical procedures good for a broad class of
possible underlying models, but which are not necessarily
best for any of them.”. The nice additional feature of the
theory here developed is that generality is obtained at no
cost, due to that the distribution is pivotal;

2. since the selection of the regressor functionsf j does not
impact the false prediction probability, when choosing the
f j functions one should only keep in mind the objective
of obtaining aL∞ layer of small width, and any a-priori
knowledge should be addressed to achieve this result.

More information on the practical use of the result will be
provided in due course after the result is established.

2. MAIN RESULT

Before stating the main theorem, we establish some preliminary
results of independent interest that are also instrumentalto the
theorem derivation.

2.1 Existence and uniqueness ofβ ∗

The existence ofβ ∗ immediately follows by the observation
that

max
i=1,...,N

∣

∣

∣
yi − f (xi)

T β
∣

∣

∣

is non-negative and piecewise-linear.

Uniqueness is more involved and requires the following natural
condition.

Condition 1. The functionsf j(x) are linearly independent on
every setA ⊆ R

p of nonzero Lebesgue measure, i.e. for any
β ∈ R

q, β 6= 0, it holds thatf (x)T β 6= 0 on every setA⊆ R
p of

nonzero Lebesgue measure. ∗

Condition 1 is verified for standard choices of regressor func-
tions such as polynomial and trigonometric sums. It corre-
sponds to requiring that none of the regressor functions is su-
perfluous for the description of the relationship betweenx and
y over a setA.

Under Condition 1, for anyβ 6= 0, relationf (x)Tβ = 0 holds on
a zero Lebesgue measure set only. Since(x,y) admits density,x
also does, that is the marginal probabilityPrx of x is absolutely
continuous with respect to the Lebesgue measure, so that the
fact that f (x)Tβ = 0 holds only on a zero Lebesgue measure
set implies that

Prx

{

f (x)T β = 0
}

= 0, ∀β ∈ R
q, β 6= 0. (3)

Uniqueness of the solution of (2) follows from (3), as estab-
lished in the following proposition.

Proposition 1.Problem (2) withN ≥ q admits with probability
1 a unique solution if and only if (3) holds. ∗

Proof . Suppose that (3) holds. Then, the probability that the
vector f (x) = [ f1(x) · · · fq(x)]T belongs to a given subspace of
R

q of dimension less thanq is zero. This in turn implies that,
with probability one, for every choice ofq different indexes
i1, i2, . . . , iq from 1, . . . ,N, the vectorsf (xi1), f (xi2), . . . , f (xiq)
are linearly independent. But this is the well-known Haar’scon-
dition (see Cheney [1999]) for the uniqueness of the solution,



so that the “if” part of the proposition is established.
Suppose instead that (3) does not hold, that is

Prx

{

f (x)Tβ = 0
}

> 0

for some givenβ . Then, there is a non-zero probability that
all x1, x2, . . . , xN are extracted wheref (x)Tβ = 0, in which
case f (x1)

T , f (x2)
T , . . . , f (xN)T belong to a subspace ofR

q

of dimension less thanq. If so, given a solutionβ ∗ of (2), we
show thatβ ∗+αβ is also a solution for everyα ∈ R, that is the
solution of (2) is not unique and the proof is complete.
To show thatβ ∗ + αβ is also a solution, simply note that

f (xi)
T(β ∗ + αβ) = f (xi)

T β ∗ + α f (xi)
Tβ = f (xi)

T β ∗,

which means that the regressors obtained withβ ∗ + αβ is the
same as the regressor obtained withβ ∗ and being the latter a
solution, also the former must be. ∗

2.2 Probability distribution ofη

We are now ready to state the main result of this paper.
Theorem 1.Let N ≥ q+1 and assume that Condition 1 holds.
Then, the probability distribution ofη is

Fη(z) := PrN{η ≤ z} =
N

∑
i=q+1

(

N
i

)

zi(1−z)N−i.

Note thatFη(z) does not depend on the probabilityPr accord-
ing to which data are generated, nor does it depend on the
regression functionsf j used. ∗

In the theorem,PrN = Pr×·· ·×Pr refers to the product prob-
ability for the multi-extraction(x1,y1), . . . ,(xN,yN). The proof
is given in the next Section 3; we here proceed to a discussion
on the significance the theorem.

In words, Theorem 1 says thatη is a random variable with
a Betadistribution with parametersq+1 andN−q, indepen-
dently of the probability with which(xi ,yi) are extracted and
of the functional form of the regressorsf j . The property that
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Figure 2. fη (z) for q = 7 andN = 50 (dash-dotted line),N =
150 (dashed line),N = 250 (continuous line).

the distribution ofη does not depend on the distribution of
the observations can be phrased by saying that “η is a pivotal
random variable”. The probability density ofη is

fη (z) :=
d
dz

Fη(z) = (N−q)

(

N
q

)

zq(1−z)N−q−1,

and it is graphically visualized for different values ofN in
Figure 2.

Using fη (z), orFη(z), permits one to exactly quantify the prob-
ability of false prediction of theL∞ layer for any finiteN and
without any knowledge of the data generation mechanism. For
an easier, though approximated, evaluation of the probability
of false prediction, the Chernoff bound for the Beta tail, see
Chernoff [1952], can be used:

PrN{η ≤ z} =
N

∑
i=q+1

(

N
i

)

zi(1−z)N−i

= 1−
q

∑
i=0

(

N
i

)

zi(1−z)N−i

≥ 1−e−2N(z− q
N )2

,

where the last inequality is in fact the Chernoff bound. An
inspection of the last formula reveals that, for any fixedz,
PrN{η ≤ z} tends to 1 exponentially fast asN increases.

We end this section with an example that helps gain insight in
the presented results.

2.3 An example

Let y ∈ R andx ∈ R. N = 250 points(x1,y1), . . . ,(x250,y250)
have been collected, by independent extractions inR

2, accord-
ing to an unknown probability density. The data are shown in
Figure 3.
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Figure 3. Observations(xi ,yi).

A polynomial regressory(x) = β1 + β2x+ . . . + β7x6 is tuned
according to theL∞ criterion

min
β=[β1 ··· β7]T

max
i=1,...,250

∣

∣yi −β1−β2xi − . . .−β7x6
i

∣

∣,

and the correspondingL∞ layer is obtained as shown in Fig-
ure 4.

How reliable is the claim that a next, still unseen, point will
fall in the layer with probability at least 90%? This question
is the same as asking for the probability thatη ≤ 0.1, and the
answer can be found in Theorem 1: this probability is equal to
1−∑250

i=8

(250
i

)

0.1i(1−0.1)250−i ≈ 1−10−5. In other words, it
is extremely likely that the obtainedL∞ layer contains at least
90% of the probability mass with which data are generated.
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Figure 4. Polynomial regressor and correspondingL∞ layer.
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Figure 5. Trigonometric regressor and correspondingL∞ layer.

Upon an inspection of Figure 4, it is apparent that the con-
structed layer is not tight around the data points, that is the data
seem to have some pattern that is not captured by the model.
Considering instead a trigonometric regressor, we can set out to
solve the minimization problem

min
β=[β1 ··· β7]T

max
i=1,...,250

∣

∣yi −β ∗
1 −β ∗

2 sin(πxi)−β ∗
3 cos(πxi)−

·· ·−β ∗
6 sin(3πxi)−β ∗

7 cos(3πxi)
∣

∣.

The obtained layer is in Figure 5, and it appears to tightly fitthe
observations. As already noted, Theorem 1 holds irrespective of
the chosen regression functions, so that we can still claim that
the constructed layer contains at least 90% of the probability
mass with confidence 1−10−5.

3. PROOF OF THE MAIN THEOREM

We need the following preliminary definition and lemma.

Definition 1.(point of support). We say that a data point

(xℓ,yℓ), ℓ ∈ {1,2, . . . ,N},

is of supportif

min
β

max
i=1,...,ℓ−1,ℓ+1,...,N

∣

∣

∣
yi− f (xi)

T β
∣

∣

∣
< min

β
max

i=1,...,N

∣

∣

∣
yi− f (xi)

Tβ
∣

∣

∣
.

In other words, a point is a point of support if its removal
improves the solution. ∗

The points of support fully characterize the solution of the
optimization problem, in the sense that the solution(β ∗,h∗) of
the original problem

min
β

max
i=1,...,N

|yi − f (xi)
T β | (4)

is the same as the solution of problem

min
β

max
i=i1,...,id

|yi − f (xi)
Tβ |, (5)

where(xi1,yi1), . . . ,(xid ,yid) are the points of support. To see
this, one can note that the removal of a point which is not of
support from the initial set of points(x1,y1), . . . ,(xN,yN) does
not change the solution; this is a tautological fact that descends
from the very definition of point of support. Moreover, one
can easily see that the points of support for the problem with
the remainingN − 1 data points are the same as the points
of support for the original problem withN points. Proceeding
iteratively and eliminating each time a point which is not of
support, the conclusion is eventually drawn that the solution of
the problem with only the points of support is the same as the
solution of the original problem withN observations, i.e. (4)
and (5) have the same solution.

To proceed, we need the following lemma.
Lemma 1.The number of points of support is almost surely
equal toq+1. ∗

Proof . We first show that the number of points of support can
be less thanq+1 with probability zero only.
Consider the observations such that the number of points of
supportd is less thanq+1. As we have just seen, the points of
support determine the solution of the original problem, so that

h∗ = min
β

max
i=i1,...,id

∣

∣

∣
yi − f (xi)

Tβ
∣

∣

∣
, (6)

where (xi1,yi1), . . . ,(xid ,yid) are the points of support. But
then, sinceβ has at least as many components as there are
points of support, equation (6) implies thath∗ = 0 whenever
f (xi1), . . . , f (xid) are linearly independent, a situation that oc-
curs with probability one (see the proof of Proposition 1). On
the other hand,h∗ is also given by

h∗ = max
i=1,...,N

|yi − f (xi)
T β ∗|,

so thath∗ = 0 impliesyi = f (xi)
Tβ ∗ for all i = 1, . . . ,N. This

means that all points( f1(xi), . . . , fq(xi),yi), i 6= i1, . . . , id, belong
to the proper subspace ofRq+1 generated by thed points
( f1(xi), . . . , fq(xi),yi), i = i1, . . . , id, and this situation happens
with probability zero since(x,y) have density and Condition 1
holds.
Hence, the number of points of support is less thanq+ 1 with
probability zero only.
Suppose now that the number of points of support is instead
greater thanq+ 1 and consider the followingN + 1 regions in
R

q+1:
Fi =

{

(β ,h) ∈ R
q+1 : |yi − f (xi)

Tβ | ≤ h
}

, i = 1, . . . ,N.

and
FN+1 =

{

(β ,h) ∈ R
q+1 : h < h∗

}

.

For any choice{i1, i2, . . . , iq+2} of q+ 2 indexes from the set
{1,2, . . . ,N +1}, we have that

⋂

i=i1,...,iq+2

Fi 6= /0. (7)



Indeed, if {i1, i2, . . . , iq+2} ∈ {1,2, . . . ,N}, then (β ∗,h∗) is a
point in

⋂

i=i1,...,iq+2
Fi and hence (7) holds. Suppose instead that

one of the indexesi1, . . . , iq+2 is N+1, sayiq+2 = N+1. Then,
we certainly have

min
β

max
i=i1,...,iq+1

∣

∣

∣
yi − f (xi)

Tβ
∣

∣

∣
< h∗, (8)

since at least one point of support is missing in the list ofq+1
points with respect to which max is taken (recall that we have
supposed that the number of points of support is greater than
q+ 1). This means that

⋂

i=i1,...,iq+1
Fi contains a point(β̄ , h̄)

with h̄ < h∗. Thus, this point is also inFN+1 and (7) remains
proven in this case too.
Since (7) holds and since all setsFi , i = 1, . . . ,N + 1 are
convex, resorting to Helly’s theorem (see Rockafellar [1970])
now yields

⋂

i=1,...,N+1

Fi 6= /0.

Thus, we can find a point(β ∗∗,h∗∗) which is simultaneously in
all Fi , i = 1, . . . ,N, so that it satisfies|yi − f (xi)

T β ∗∗| ≤ h∗∗,
i = 1, . . . ,N + 1, and that is also inFN+1, so thath∗∗ < h∗.
But then this(β ∗∗,h∗∗) would outperform(β ∗,h∗), the optimal
solution, and this is a contradiction. This concludes the proof of
the lemma. ∗

We are now ready to prove Theorem 1.

Let us start by computing the quantity:

µk =
∫ 1

0
(1−z)kFη(dz).

Recalling thatη := Pr
{

(x,y) :
∣

∣y− f (x)T β ∗
∣

∣ > h∗
}

and that
the extractions are independent,µk is the probability thatk
further extracted observations fall inside theL∞ layer deter-
mined byβ ∗ andh∗. In other words, assuming thatN+k obser-
vations(x1,y1), . . . ,(xN,yN),(xN+1,yN+1), . . . ,(xN+k,yN+k) are
extracted and lettingβ ∗ andh∗ be the optimal solution for the
first N observations ,µk is given by

µk

= PrN+k {∣

∣yi − f (xi)
T β ∗

∣

∣ ≤ h∗, for all i = N+1, . . . ,N+k
}

= E
[

1{∣

∣yi− f (xi)T β ∗
∣

∣≤h∗, for all i=N+1,...,N+k
}

]

,

whereE denotes the expected value jointly over theN obser-
vations determining(β ∗,h∗) and over the additionalk observa-
tions, and1A is the indicator function of setA.
Now, let S = {i1, . . . , ik} be a generic subset ofk indexes
from {1,2, . . . ,N + k} and letS be the family of all possi-
ble choices ofS (S contains

(N+k
k

)

elements). Moreover let
S= {1,2, . . . ,N+k}−S.
If we indicate byβ ∗

S
andh∗

S
the optimal solution and the optimal

value of the problem

min
β

max
i∈S

∣

∣

∣
yi − f (xi)

Tβ
∣

∣

∣
,

then, owing to the independence of observations, we have that

E
[

1{
∣

∣yi− f (xi)T β ∗
∣

∣≤h∗, for all i=N+1,...,N+k
}

]

= E
[

1{∣

∣yi− f (xi)T β ∗
S

∣

∣≤h∗
S
, for all i∈S

}

]

, ∀S∈ S .

Whence,

µk = E
[

1{∣

∣yi− f (xi)T β ∗
∣

∣≤h∗, for all i=N+1,...,N+k
}

]

=
1

(N+k
k

) ∑
S∈S

E
[

1{
∣

∣yi− f (xi)T β ∗
S

∣

∣≤h∗
S
, for all i∈S

}

]

=
1

(N+k
k

)E

[

∑
S∈S

1{
∣

∣yi− f (xi)T β ∗
S

∣

∣≤h∗
S
, for all i∈S

}

]

. (9)

For a fixed multi-sample(x1,y1), . . . ,(xN+k,yN+k), the quantity

∑
S∈S

1{
∣

∣yi− f (xi)T β ∗
S

∣

∣≤h∗
S
, for all i∈S

}

counts the number of choices ofS such that theL∞ layer
constructed on the observations with indexes inS contains all
the remaining points inS. TheseSare those such that(β ∗

S
,h∗

S
)

is also the solution of the problem with allN+k observations

min
β

max
i∈{1,...,N+k}

∣

∣

∣
yi − f (xi)

T β
∣

∣

∣
, (10)

and this happens if and only ifS does not contain any of the
support points for the problem (10) (see Definition 1). Sincein
Lemma 1 we proved that the number of support points is almost
surely equal toq+1 (note that the lemma holds irrespectively of
the actual number of data points in theL∞ regression problem),
the number of thoseS is the same as the number of all possible
choices ofk indexes out ofN + k− q− 1, i.e.

(N+k−q−1
k

)

, and
we therefore have that

∑
S∈S

1{∣

∣yi− f (xi)T β ∗
S

∣

∣≤h∗
S
, for all i∈S

} =

(

N+k−q−1
k

)

,

almost surely. By substituting this latter expression in (9) gives

µk =
∫ 1

0
(1−z)kFη(dz) =

(N+k−q−1
k

)

(N+k
k

) , k = 1,2, . . . . (11)

Expression

Fη(z) =
N

∑
i=q+1

(

N
i

)

zi(1−z)N−i

(which corresponds toFη(dz) = (N−q)
(N

q

)

zq(1− z)N−q−1dz)
indeed satisfies (11), as it can be seen by an integration by parts.
On the other hand, no other expressionsFη(z) are admissible
since determining anFη satisfying (11) is a moment problem
for a distribution with finite support (recall thatη takes values
in [0,1]) and its solution is unique (see e.g. Corollary 1, §12.9,
Chapter II of Shiryaev [1996]).
Thus, it remains proven thatFη(z)= ∑N

i=q+1

(N
i

)

zi(1−z)N−i . 2
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