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Abstract: In this paper, we consider thg criterion of best fit for identifying linear regression mdsle
from data. This criterion has much appeal as it protectanagéie worst since it selects the regression
model that minimizes the largest deviation from observetidloreover, based on the obtained optimal
loss, one can build prediction intervals, as opposed tdesimgediction values, which are guaranteed to
contain newly generated output values with high probabiltur main result is the exact quantification
of the probability of making a false prediction valid in catmohs of independent and stationary
observations, a result that provides an exhaustive claization of the confidence of prediction
based orlL. regression models. It turns out that this false predictimbability is independent of the
mechanism through which observations are generated. &igtibears implications on the possibility

of obtaining general and non-conservative evaluationgterprobability of false prediction with no
a-priori knowledge of the data generation mechanism ptigser

Keywords: System identification; Prediction; Probabitifyfalse predictiont., regression.

1. INTRODUCTION

We consider linear regression models of a variabeR on
a p-dimensionakxplanatoryvariablex € RP. Precisely, given
q regressorfunctions f; : RP — R, j = 1,...,q, the linear
regression model is given by

q
yx) =y Bifi(x)=f(x)"B, 1)
=

where f(x) == [f1(x) --- fq(X)]" is the vector of regression
functions andB = [B1 -+ By)" is the vector of tunable coef-

ficients. As a simple example, (1) encompasses affine models

in x, that isy(X) = B1ix(Y + Box(®) + .- + Bpx(P) + By 1, where
superscripti) indicates the-th component of vector.

Given a batch ofN independent observations,y;), i =

1,...,N, the modelis tuned according to thg criterion of best
fit. This amounts to select the coefficiefisso as to minimize
the maximum deviation of the observa® from y(x;), namely

; o AT
B:[BTI--r-]Bq]T max \yl f (%) B\- )
The optimal solution of (2) is indicated wifB* = [B; --- B&*]T
while the optimal cost value is*.

est spurred by the development of linear programming tec
nigues to compute thk., regression solution, see e.g. Kars
[1958], Kelley [1958], Wagner [1959], Appa and Smith [19,73]

Barrodale and Phillips [1975], Armstrong and Kung [1979],
Planitz and Gates [1991], Ruzinsky and Olsen [1989], Zhang
[1993], Narula and Wellington [2007]; see also the monolsap
Birkes and Dodge [1993], Arthanari and Dodge [1993], Cheney
[1999].

X

Figure 1.L. layers for the construction of prediction intervals.

One reason of appeal of the, criterion is that it protects
against the worst since it selects the regression model that

L. regression has a long history which dates back to sonﬁ]%i
works of Euler in the late 17th century, as described in Haf
ter [1975]. Since the 1950s there has been a renewed intgr-

nimizes the largest deviation from observations. Thetay
vertical height 2* centered around the optimal solution
= f(x)TB* (hereafter called th&. layer) is the most thin
yer containing all observations and it can be used to predi
uture output data, as graphically represented in Figuie be

precise, given a further observation of the explanatoriabée
x, the regressor model produces the predicfiog " 3* for the

* Paper supported by the MIUR national project “Identificatind adaptive Unknown value of variablg, while the L., layer determines

control of industrial systems”.

a confidence intervdlf (x)T 8* — h*, f(x)T 8* + h*] around the



predicted value which should contajirwith high (guaranteed) assumed situation. A more realistic approach would be
probability. to seek statistical procedures good for a broad class of
possible underlying models, but which are not necessarily
best for any of them."The nice additional feature of the
theory here developed is that generality is obtained at no
cost, due to that the distribution is pivotal;

since the selection of the regressor functiépdoes not
impact the false prediction probability, when choosing the
f; functions one should only keep in mind the objective
of obtaining al. layer of small width, and any a-priori
knowledge should be addressed to achieve this result.

For the sake of completeness, it must be said that, for this
prediction to be really useful, the vertical dispersion loé t
observations around the curve of best fit must be moderate,
since, as observed as early as in 1809 by Gauss, the optim
L. regressor only depends on few observations and is quite™
sensitive to even sporadic noise (that is to the fact thagtroth
variables, besides those listedncan in some observations
significantly contribute to form the value of thevariable).
Likewise, the presence of significant noise even in few olaser
tions drastically impoverish the quality of the layer by ik More information on the practical use of the result will be
it wide and therefore little accurate. Despite these drakda provided in due course after the result is established.
the minimax method can be an interesting alternative ta-leas
squares in applications with moderate noise.
2. MAIN RESULT

1.1 Results of this paper

Before stating the main theorem, we establish some predirpin
The goal of this paper is to study the reliability of the reted  results of independent interest that are also instruméntale
prediction intervals by quantifying the probability of $al pre- theorem derivation.
diction of the L. layer, that is the probability that the next
data point falls outside the layer. Our main result is that th
false prediction probability is independent of the proligbi
that generated the data, a result bearing important intjita

2.1 Existence and uniquenesg3of

on the applicability oL, layers. The existence of3* immediately follows by the observation
that

In more formal terms, assume that observatigxsy;) are _max ‘yi — f(xi)TB‘

independently generated according to an invariant prdibabi i=1...N

Pr in RP x R with density p(x,y) and consider thé., layer is non-negative and piecewise-linear.
{(xy) such thaty — f(x)TB*Lg h*}. The probability of false
prediction is then the probability of tHe, layer complement:  Uniqueness is more involved and requires the following reatu
n := probability of false prediction condition.
= Pr{(x,y) such thafy — f(x)Tp*| > h*}, Condition 1. The functionsf;(x) are linearly independent on

and thisn is a random variable since the layer is, as it depende"Y SEtA C RP of nonzero I;e_besgue measure, i.e. for any
on the observation§s,yi). Therefore, is characterized by B € RY, B # 0, itholds thatf (x)" B # 0 on every sef C RP of

its probability distribution, and one would like this distition Nonzero Lebesgue measure. *

to concentrate around zero in order for the layer to exhibit
good prediction properties. We here establishes the fattlie
probability distribution of} is aBetadistribution, and that it is
independent oPr and of the choice of the regressor function
fj.

Condition 1 is verified for standard choices of regressocfun
tions such as polynomial and trigonometric sums. It corre-
Ssponds to requiring that none of the regressor functions-is s
perfluous for the description of the relationship betwremd
yover a seA,
Theory-wise, this result . = . T
Under Condition 1, for anfg + 0, relationf (x)' 8 =0 holds on

1. establishes the fact thiatis apivotal variable in the sense a zero Lebesgue measure set only. Siixcg) admits densityx

that its distribution remains unchanged under variation also does, that is the marginal probabik of x is absolutely

the problem elements; continuous with respect to the Lebesgue measure, so that the

2. supports in a quantitatively exact manner the intuitilesi  fact thatf(x)T8 = 0 holds only on a zero Lebesgue measure
thatn is small with high probability. set implies that

From a practical point of view, the distribution gf provides Prodfx)TB=0\=0 VBecRY B+O. 3
exact information on the false prediction properties of lthe X{ ("B } » 7P B7 3
layer. Two aspects deserve to be further highlighted in thidniqueness of the solution of (2) follows from (3), as estab-

connection: lished in the following proposition.
1. since then distribution is pivotal, the fact that the user Proposition 1. Problem (2) withN > g admits with probability
has no knowledge oPr, that is no knowledge of the 1 & unique solution if and only if (3) holds. *

data generation mechanism, does not introduce any cdProof . Suppose that (3) holds. Then, the probability that the
servatism in the evaluation of the dependability of the vectorf(x) = [f1(x) --- fq(X)]T belongs to a given subspace of
layer. The general applicability of the result is importantR? of dimension less thagq is zero. This in turn implies that,
quoting Hogg [1974]"...we know in practice the most with probability one, for every choice af different indexes
models will seldom fit exactly the real situations. Thusi,iz,...,iqfrom 1,...,N, the vectors (xi, ), f(xi,), ..., f(Xi)

for the sake of application, it seems ridiculous to try taare linearly independent. But this is the well-known Haaogs-
get the last ounce of mathematical efficiency out of sonition (see Cheney [1999]) for the uniqueness of the satuytio



so that the “if” part of the proposition is established. and it is graphically visualized for different values Bf in
Suppose instead that (3) does not hold, that is Figure 2.

TR _
Prx{ f)°B = 0} >0 Using f, (z), or Fy (z), permits one to exactly quantify the prob-
for some givenB. Then, there is a non-zero probability thatal_mllty of false prediction of thé.., layer for any finiteN qnd
all X1, Xo xy are extracted wheré(x)TE — 0. in which without any knowledge of the data generation mechanism. For
case%(xl’)fl 'f(XZ)T f(xu)T belong to a sub’space gl an easier, though approximated, evaluation of the proibabil
of dimensién less thaq If 0, given a solutiorB* of (2), we of false prediction, the Chernoff bound for the Beta taik se

show tha{3* + a8 is also a solution for every € R, that is the Chemoff[1952], can be used:

solution of (2) is not_qnique and theT proqf is complete. PrN{n <z} = % (N) Zi(l_ Z)Nfi
To show thai3* + a3 is also a solution, simply note that E DA
FO0)T(B"+aB) = () B"+af(x)"B=f(x)'B", P ('_\I)Zi(l_z)Ni
which means that the regressors obtained \@ith- a3 is the iZO '
same as the regressor obtained withand being the latter a > 1fe*2N(Zf%>2’
solution, also the former must be. *  where the last inequality is in fact the Chernoff bound. An
2.2 Probability distribution ofy inspection of the last formula reveals that, for any fixed

PrN{n <z} tends to 1 exponentially fast &sincreases.
We are now ready to state the main result of this paper.

Theorem 1.LetN > g+ 1 and assume that Condition 1 holds
Then, the probability distribution af is

N ) )
Fp(2):=PrN{n <z} = Z <'i\l>zl(1 2N, 2.3 An example

i=g+1 .
Note thatF, (z) does not depend on the probabiliy accord- Lety € R andx € R. N = 250 points(xy, y1),..., (X250, Y250)

ing to which data are generated, nor does it depend on (f8¥® been olecied: by ehendert extactolsyaceore
regression function$; used. * Figure 3 p y Y.

In the theoremPrN = Pr x --- x Pr refers to the product prob-
ability for the multi-extraction(x1,y1), ..., (Xn,Yn). The proof 2r
is given in the next Section 3; we here proceed to a discussi
on the significance the theorem. 15r

We end this section with an example that helps gain insight in
the presented results.

In words, Theorem 1 says thgt is a random variable with K *
a Betadistribution with parameterg+21 andN—q, indepen- sl .
dently of the probability with which(x;,y;) are extracted and ) S .
of the functional form of the regressofs. The property that R RS LT R
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Figure 3. Observations, y;).
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1ol A polynomial regressoy(x) = B1 + BoX+ ... + B is tuned
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kﬁ o according to thé., criterion

A 1 - 6
S min _ max_|yi—Bi—Bxi—...— B¢,

0 N ‘ ‘ ‘ ‘ ‘ ‘ l3=[l31"'137]Ti:1~,---~,250‘y| Pr =P B7X"

0 01 02 08 04 05 06 07 08 09 4 and the correspondinig., layer is obtained as shown in Fig-
ure 4.

5

Figure 2., (2) for g =7 andN = 50 (dash-dotted linel\ = . . . . . .
150 (dashed line)\l = 250 (continuous line). How reliable is the claim that a next, still unseen, pointl wil
o o fall in the layer with probability at least 90%? This questio

the distribution ofn) does not depend on the distribution ofis the same as asking for the probability thjat< 0.1, and the

the observations can be phrased by saying thas"a pivotal - answer can be found in Theorem 1: this probability is equal to
random variable”. The probability density gfis 1-— 5250 (2?% 0.1/(1—0.1)250-1 ~ 1— 10°5. In other words, it

_d _ N N—g-1 is extremely likely that the obtaindd, layer contains at least
fn(2) := d_ZF'? (2=(N-a) (q) 2(1-2 ’ 90% of the probability mass with which data are generated.



In other words, a point is a point of support if its removal
improves the solution. *

The points of support fully characterize the solution of the
optimization problem, in the sense that the solutifh, h*) of
the original problem

. . AT
min, max Iy — f(4)" | (4)
is the same as the solution of problem
”}z'n max |y| —f(x)"Bl, ®)
=i

where(xil,yil),...,(xid,yid) are the points of support. To see
this, one can note that the removal of a point which is not of
support from the initial set of points,yi),..., (XN, yn) does
-2 ‘ ‘ ‘ ‘ : ‘ ‘ ‘ ‘ ‘ not change the solution; this is a tautological fact thatdeds

' ‘ ' ‘ ' ' from the very definition of point of support. Moreover, one
can easily see that the points of support for the problem with
the remainingN — 1 data points are the same as the points
of support for the original problem witN points. Proceeding
iteratively and eliminating each time a point which is not of
support, the conclusion is eventually drawn that the sotudif
the problem with only the points of support is the same as the
solution of the original problem wititN observations, i.e. (4)
and (5) have the same solution.

Figure 4. Polynomial regressor and correspondindayer.

To proceed, we need the following lemma.

Lemma 1.The number of points of support is almost surely
equal tog+ 1. *
Proof . We first show that the number of points of support can
be less thaig+ 1 with probability zero only.

Consider the observations such that the number of points of
supportd is less tham+ 1. As we have just seen, the points of
support determine the solution of the original problem hsd t

1 -08 -06 -04 -02 0 02 04 06 08 1 h* = n};nl rlnax ‘yl — f(x ﬁ‘ (6)
1,
where (Xi;,Vi,),---, (X4, Yiy) are the points of support. But

Figure 5. Trigonometric regressor and correspondintpyer.  then, sinceB has at least as many components as there are

points of support, equation (6) implies thait = 0 whenever
Upon an inspection of Figure 4, it is apparent that the conf(x;,),..., f(x,) are linearly independent, a situation that oc-
structed layer is not tight around the data points, thatdsiita curs W|th probab|l|ty one (see the proof of Proposition 1) O
seem to have some pattern that is not captured by the modgle other handy* is also given by

Considering instead a trigonometric regressor, we cansebo x_ T R
solve the minimization problem h _i:max i = F04)° A7),
min__ max__|yi— B; — B sin(mx) — B3 cog1mx;)— so thath* = 0 impliesy; = f(x)"B* for alli = 1,...,N. This
B=[By -+ B7T i=1,...,250 . § means that all pointsf1(xi),..., fq(%i), Vi), i #i1,...,iq, belong
- — P sin(3704) — B7 cog(37x) |. to the proper subspace @91 generated by thel points

The obtained layer is in Figure 5, and it appears to tightthét  (f1(x),..., fq(X), Vi), i =i1,...,iq, and this situation happens
observations. As already noted, Theorem 1 holds irrespeati  with probablllty zero sincéx,y) have density and Condition 1
the chosen regression functions, so that we can still claah t holds.

the constructed layer contains at least 90% of the prolabiliHence, the number of points of support is less thanl with

mass with confidence4 107°. probability zero only.
Suppose now that the number of points of support is instead
reater tham+ 1 and consider the followindyl + 1 regions in
3. PROOF OF THE MAIN THEOREM I, e o 9
1. T ;
We need the following preliminary definition and lemma. Fi= {(th) ERY: [y — (%) Bl < h}, I=1....N.

Definition 1.(point of support). We say that a data point and

— g+1 . *
(X, Ye), (€{1,2,...,N}, Fnver = {(B.h) eRT': h<h'}

For any choicefiy, iy, ...,iqr2} of g+ 2 indexes from the set

is of supportif {1,2,...,N+ 1}, we have that
_ — f(x)T F#£0. 7
rr}zm 7777 emfe)il ‘ f(x) [3‘<m|n max ‘yl f(x) B‘. N N F# (7)



Indeed, if {i1,iz,...,iq+2} € {1,2,...,N}, then (B*,h*) is a
pointini_i, . _i,,, Fi and hence (7) holds. Suppose instead that Hie= {|y, )
one of the indexes, ...,ig12iISN+1, sayiqgro =N+ 1. Then,

,for all i=N+1,.. ,N+k}:|

we certainly have = NLH( E [l }
- Tal b (9 & L <hg for all ies
min _max |y~ f(x)7B| <h", ®)
ﬁ 1=l1,.lg+1 1
since at least one point of support is missing in the lisf #f1 = —(N+k) E Lezy 1{|yi,f X <he, for all ies}] )
k 4 -F

points with respect to which max is taken (recall that we have _ _ _
supposed that the number of points of support is greater th&ar a fixed multi-sampléxa, y1),. .., (Xn+k, Yn+k), the quantity
q-+1). This means thafl_;, _;.,, F contains a poin{f3,h) Z

with h < h*. Thus, this point is also ify+1 and (7) remains 4 {‘y' }
proven in this case too. counts the number of ch0|ces @‘such that thel., layer
Since (7) holds and since all seB, i = 1,...,N+ 1 are constructed on the observations with indexeSicontains all
convex, resorting to Helly's theorem (see Rockafellar [I}97 the remaining points is. TheseSare those such th#gs, hg)
now yields is also the solution of the problem with &l+ k observations
F #0. - ‘ £ (x)T
i=1,0N+1 mBInie{lT?NXA—k} Vi 100) B, (10)

Thus, we can find a poirf3**,h**) which is simultaneously in and this happens if and only § does not contain any of the
all F,i=1,...,N, so that it satisfiesy; — f(x)"8**| < h**,  support points for the problem (10) (see Definition 1). Simce
i=1...,N+1, and that is also i1, SO thath™ < h*. | emma 1 we proved that the number of support points is almost
But then this(8**,h™) would outperform(3*,h*), the optimal  surely equal tg+ 1 (note that the lemma holds irrespectively of
solution, and this is a contradiction. This concludes ttwpof  the actual number of data points in the regression problem),
the lemma. *  the number of thosBis the same as the number of all possible

We are now ready to prove Theorem 1. choices ofk indexes out oN +k—q— 1, i.e. (V7 971), and
we therefore have that

Let us start by computing the quantity: Z 1{| ] } _ (N + k; q- 1)

1 , it ’
N ok S
“"_/ (1-2)°Fy(d2). almost surely. By substituting this latter expression ingi®es

Recalling thatn = Pr {(x,y): |[y— f(x)TB*| > h*} and that 1 o (VA

the extractions are mdependem, is the probability thatk M :/o (1-2"Fy(dz) = Wv k=12.... (11)

further extracted observations fall inside thg layer deter- _ k

mined byB* andh*. In other words, assuming thisit+ k obser-  Expression

vations(xg, ¥1), - -, (XN, YN )5 (XN+2, YN+1)5 - -+ (XN ko YN1K) @re N /N N

extracted and letting* andh* be the optimal solution for the Fn(2) = L )Z2(1-2)

first N observations i is given by i=g+1
(which corresponds t&, (dz) = (N — Q)(Z')zq(l— 2)N-0-1dy)

Hi indeed satisfies (11), as it can be seen by an integrationrks/ pa

= PrN+k{|yi —f(x)"B*| <h*, foralli=N+1,...,N+k}  Onthe other hand, no other expressiéi$z) are admissible
since determining af, satisfying (11) is a moment problem

=E for a distribution with finite support (recall thgt takes values
{|y' 04) Sforalli=n+1.. Nk} | in [0,1]) and its solution is unique (see e.g. Corollary 1, §12.9,
whereE denotes the expected value jointly over thebser- Chapter Il of Shiryaev [1996]).
vations determiningf*,h*) and over the addition& observa- Thus, it remains proven thit (z) = zl q+1< )z‘(l 2N O
tions, andl, is the indicator function of se.
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