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Abstract— Robust control is grounded on the idea that a
design should be guaranteed against all possible occurrees of
the uncertain elements in the problem. When this philosophy
is applied to securing a desired performance, it often leadso
conservative, low performing, designs because emphasis ad
placed on the worst-case situation. On the other hand, in man
applications a 100%-guarantee is not necessary, and it may
be convenient to opt for a small compromise in the guarantee
level, say99%, in favor of a (possibly significant) improvement
in the performance. While the above reasoning sets a sensibl
principle, to date the real stumbling-block to its practical use
is the lack of computationally-tractable algorithmic methods
to trade guarantees for performance. This paper aims to open
new directions to address this problem, and we show that this
result can be achieved through randomization.

Index Terms—robust control, modulation of robustness,
randomized algorithms, probabilistic uncertainty, scenaio ap-
proach.

I. INTRODUCTION

Many problems in systems and control suchcastroller
synthesisnoise compensatigror prediction are often cast
in mathematics a®ptimization programswhere the cost
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user quantitative tools to guide his choice towards a slgtab
compromise between the two.

After introducing the general principles in PART | of the
paper, PART Il presents algorithmic solutions. Algorithms
are developed to deal with cost functions exhibiting a
convex dependence on the optimization variables and an
arbitrary dependence with respect to uncertainty, a set-up
of theoretical importance and that covers many situations
of practical interest. The output of the algorithm is given
in terms of a performance-violation plot like the one
displayed in Figure 1 and that anticipates results refgrdn

a numerical example developed later in Section IV. khe
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function captures in a quantitative manner the objective
to be pursued, e.g. trajectory tracking, attenuation of
noise or prediction capabilities. Along this optimization
process, however, an additional element often comes into

play, and this isuncertainty The real world is beset with g
uncertainty due to partial knowledge of the environment
and unpredictable and/or variable conditions in which the

plant is called to operate. Uncertainty demaan to EXETCITE riable in the horizontal axis runs over the choices among

. . Yvhich the user can select. To eath there is associated
uncertainty represents a central challenge in noWadacyisdif'ferent solution design, e.g. different parameter &alu
systems theory. for the controller or for the predictor being designed; the
nf’:llgorithm also explicitly provides these design parameter
values. The solid curve is the performance, while the dashed
curve is the probability with which the performance is not

?hndt we am totde§|gn_trr]n ethc()jds_to da(I:hleallep(?rformbaanlt_at guaranteed, that is the probability that bad circumstances
at 15 guaranteed with a desired Ievel ot probabllily .., during the actual operation of the system so that

Level of probability and performance are linked one tZhe incurred performance is worse than that given by the

the other: like pulling down one end of a rope wrappe irst curve. These two curves are constructed on a solid

a:gg;g”?t prr:e)r/cj\l/f; t&i“gﬁ;ﬁ:ﬂ*ﬂig"ggg (Ijﬁr?acirnea;ﬁ'rrlgttr;t{:eoretical ground and are the quantitative support toauid
P y 1mp P ) the designer in making a decision. Through these results

the present paper is to study this trade-off and offer thf”:his paper opens new avenues to address the algorithmic

This work is supported by MIUR (Ministero dellistruzione, Challenge to make designs that suitably compromise
dell'Universita e della Ricerca) under the projetiNuovi algoritmi performance against guarantees.
ed applicazioni di identificazione e controllo adattativo”

M.C. Campi is with the Dipartimento di Ingegneria dell'lmfoazione, T
Universita di Brescia, via Branze 38, 25123 Brescia, Italirmail:
mar co. canpi @ng. uni bs. it

S. Garatti is with the Dipartimento di Elettronica ed Inf@mone,
Politecnico di Milano, piazza L. da Vinci 32, 20133 Milandaly. E-mail:
sgaratti@let.polim.it

N

16%

44%

12%

160

Fig. 1. Performance-violation plot.

Different approaches can be adopted to deal with unceytai
In this paper, uncertainty is given a probabilistic deaip

. PART | — VARIABLE ROBUSTNESSCONTROL:
PRINCIPLES

Uncertainty may generate in different ways, and it is
common practice in the systems and control community



to distinguish betweerstructural uncertainty(parametric The worst-case philosophy has been adopted in the control
or non-parametric) and uncertainty introduced by a-priofiterature out of concerns for stability. Spurred by the kvor
unknownexogenous signal@isturbances) steering the plantof Doyle, [20], and others that showed that the classical
away from its nominal behavior, see Figure 2. In this papet,QG regulator had no stability margins, control theorists
started in the 1980s to seek for alternative approaches able
ds to provide robust guarantees of stability. Much influential
was the work of Zames, [53], whictle factolaunched the
era of H,, control as the robust alternative to LQG control,
see [26], [54], [18]. Ever since, the worst-case approach ha
Ut » vV Yt » been ubiquitous in the robust control literature, and it has
been applied to a variety of control problems.

The average approach
Fig. 2. A system can have uncertain parametefsapd be affected by At times, it may be convenient to adopt a more structured,
disturbancesdg). - . . . i .
probabilistic, point of view in the description of uncertsi.
we take a somehow more abstract point of view which

; ; In, formal terms, suppose thaf\ is endowed with a
encompasses as special cases both types of uncertainty Wﬂrc])bability Pr. Depending on the problem at hand, Pr can

the idea of setting up a theory that can be applied acro L . . 4 . o
different kinds of uncertainty. Our aim is to provide the ave different interpretations. Sometimes it is a measure

designer with general tools for use in various applicatiof?]c t_he Ilkellhooq with which situations occur, other times
endeavors. it simply describes the relative importance we attribute

to different uncertainty instances. Using Pr allows one to
weigh situations so that one can form an overall cost by

Throughout, an uncertain element will be indicated ; S
averaging and then solve an average optimization problem:

independently of its nature, with the symbglwhile A will
be the range set fat. If for example the pole of a stable A-OP: min Ea [((8,0)] = min/ (0, 6)dPr.
continuous-time system is uncertain (structural uncetyaj geRd ’ gerd Jo

thend = p and A is the left half complex plane; if instead This framework has been widely adopted when uncertainty
uncertainty stays with a disturbandé€) = A - step(t —to)  is associated with disturbance signals, [5], [31]. A typica
whose amplitude and step time is unknown, then (A,%))  example is quadratic stochastic control where the average

andA = R>. cost is in discrete time given by
T
Letting # € R? be the vector of design variables — it T T
, E ¢ t) +ut)T Ru(t)} |, 3
can e.g. contain the parameters of a controller, of a 4 ;{x() Qu(t) + u(t)” Rul )} 3

compensator, or those of a predictor — the cost function to L .
be minimized is written ag(¢, ), where the simultaneous wherez(t) indicates the system stateit) the system input,

presence of) and ¢ reflects that we have only partial graspa;\(ihex%(_ecttatgon IS taflf<ent_ Wltl';hrespe(t:t to Elbr? ree:llzatlons
of the final optimization result through because it also ot the disturbance aflecting ne system.. 1hus, nere we
depends on uncertainty What we are facing is a so-called identify oned with a noise realization and\ is the set of

Uncertain Optimization Problemmamely: all realizations with a probability Pr dictated by the type
' of noise we are considering. If e.g. the noise is white and

U-OP: ;ng}l £(6,0), ¢e€A. (1) Gaussian, Pr is the product probability BfGaussians.
€

An U-OP cannot be considered as a gomp!ete formalizationhe average approach is normally less conservative than the

of the optimization problem though since it misses to deyorst-case approach, but its conservatism can be enhanced

scribe how the uncertain elemehshould be accounted for. py the introduction of an exponential cost. E.g. in stodoast

Addressing the issue of providing a complete formalizatiogontrol, with the notation/ := 2(t)7Qx(t) + u(t)” Ru(t),

requires to broaden our discussion about uncertainty. instead of considering a quadratic cd&t[J] as in (3), one

A. Alternative ways to describe uncertainty can useEa [e_xp(J)]. Because of the exponential function,
the penalty in the occurrence of values $flarger than

The worst-case approach EA[J] outweighs the alleviation in penalty caused by the

Uncertainty is inescapably I_inked to the concept of Selyccurrence of some values less than[.7], corresponding

as ther_e cannot be uqcertalnty without a set of possmg a pessimistic viewpoint. A connection between this
uncerta!n outcomes. Wlthout any further structure given t8verage-exponential approach and the worst-case approach
uncertﬁlnty aglart t_hat Ilt ranges in a skf a natrt:.ral Way 10 \yas established by Jacobson and Whittle for linear systems,
pose the problem Is alongworst-caseapproach: [27], [52], and then highlighted in a nonlinear set-up in
[28], [16].

WC-OP: min [maxé(@,é)} . (2)
OeR? | 6EA



VRC: Variable robustness control So, how shouldA. be selected? One obvious criterion is
Within a probabilistic set-up, minimizing an average costhat leaving out ar-probability set should improve the cost
function is not the only route one can follow. Alternatively value. And, the more the better. Pushing this process all the
way down to an optimal selection corresponds to solving
Pr program

‘ i, [peeo)] ©

So formulated, the problem is well known in the optimization
literature under the name of “chance-constrained”
optimization, [37], [38], [19], the name meaning that

A a chance that boungf is violated exists, but this chance is
prob =¢ constrained by. However, it has to be said immediately

that finding an exact solution to the chance-constrained

Fig. 3. The reduced\. set has probabilityt — e. problem (5) is generally beyond reach due to the associated

3 . overwhelming computational difficulties. If optimality
probability can be used to quantify the chance that a certaiannot be reached, one can aim for good, even though
performance specification is not achieved. The origin ofuboptimal, selections oA\.. This is the route this paper

this approach traces back to [43] which used it for analysi®llows and the focus of PART Il is towards designing
purposes in the context of flight control, then followedalgorithms to obtain this result.

by many other contributions among which [44], [39], [6],
[33]. One way to evaluate the probability that a certaifone aspect that deserves a mention at this point is
performance is not achieved is through randomization, anflat parameter should not be seen as a fixed value, rather
[30], [45], [46] provide explicit bounds on the numberit js a “knob” the user can tune. The bigger the better
of samples needed to this end. Moreover, sequentide performance, but the higher the risk of performance
methods have been proposed to solve synthesis problegiglation. Thus, the level of robustness is adjustable,
where one wants to determine a controller that attains grresponding to a “variable robustness control” (VRC)
specified performance level with high probability, [12],approach. The choice of a suitablestays with the user,
[36], [21], [29], [22], [35]. This is afeasibility problem who will select it depending on his attitude to the risk. Our
where a controller is feasible if it achieves the indicate@rincipal goal in PART Il is to provide the user with tools
performance; on the other hand, sequential methods are migit allow him to make the selection on solid quantitative
a natural tool to addressptimizationproblems. grounds (refer back to Figure 1).
Within this set-up of using probability to quantify the clean
of negative events, we here consider optimization problenmse paradigm here described of optimization under
along a minimax approach where the max requiremegfobabilistic constraints has received to date almost no
is relaxed in a probabilistic sense. Precisely, referriag tattention by the systems and control community, with
Figure 3, one is content with minimizing the max cost withperhaps only the exception of [13], [1], [2]. In our
max taken over a reduced s&t C A having large enough appreciation, this state of things is due to two different
probability, P{A.} = 1 — ¢, and write: reasons.
(i) One is tradition. As said above, robustness in control
] ) (4) originated in the 1980s out of concerns for stability. When
dealing with stability, a performance-risk compromise can
Indicating by#? the optimal solution of problem (4) and by hardly be accepted, and thus worst-case was the adopted
2% its optimal value, we havé: = maxsea, €(6%,0), i.e.¢;  approach in this context. Since then, robustness and worst-
is guaranteed against all uncertainty outcomeAinthat is case have traveled hand in hand becoming almost synonyms
it is guaranteed with probability — e. in the control community. Meanwhile, stochastic control
theorists have been working with the average cost approach.
One question arises naturally along this approach ar{d) One second crucial fact is that the chance-constrained
it is: how shouldA. be chosen in (4)? Clearly, onck. approachhas so far lacked suitable algorithmic methods to
has been selected, W@P is simply a WC-OP over the practically find solutionsa circumstance that has by and
reduced setA.. On the other hand, the original designlarge hindered the applicability of this synthesis paradig
problem is specified in terms @fé, ), A, and Pr only, that
is in terms of the ingredients of U-OP in (1) and probabilityOur thrust with this paper is to introduce the chance-
Pr. Therefore A, is not an initial assignment in the designconstrained/VRC paradigm to the large audience of
problem and its determination has to be thought of as atientists working in systems and control. Due to a new
integral part of the solution of the problem. scheme rooting in randomization, we shall try to open
algorithmic routes to address robustness along this paradi

WC.-OP: min {maxﬁ(@j)
eRL |dEA,



in an attempt to crack the so far fundamental obstacle posed £ -

by practical computability. 1%

2%
B. A look at the different robustness paradigms in the igg
optimization domain . :

Worst-case, average and chance-constrained approaches
can be best visualized in the domain where the o
displayed against the design variable

For a given uncertainty instan@e (6, 9) is a deterministic
function of the design variabld. One such function is
profiled in Figure 4. AS) is let vary, functiong (9, ¢) form 7

a cloud, as shown again in Figure 4. The top border of this
Fig. 6. Chance-constrained cost functions for differefties ofc.

L

letting 6 vary, maxsea,., £(#,0) describes the curve with
index 1% in Figure 6. For a giver®, a 1%-fraction of the
£(0,6) functions parameterized it fare abovel and these
functions represent our risk not to meet performafic€he
chance-constrained solutions at= 1% is the minimizer
of this curve. Ase assumes different values, one obtains a
26,5) full range of risk-performance possibilities, as visuatizn
Figure 6.

C. Discussion about VRC

Before moving to PART Il dealing with algorithms, we feel
Fig. 4. One/(6,4) and the cloud o¥(6, ) asd is let vary. it is advisable to pose a moment to better put VRC into
perspective with other methods.

’

£ Robustness along the worst-case approach has been a

max£(6,9) successful story in control. When the uncertainty level
is moderate enough so that a controller exists securing
an adequate performance for all uncertainty instances,
the worst-case paradigm indicates the route. Yet, at times
uncertainty goes beyond this point. This can be true for
structural uncertainty, and it is almost invariantly truaem

Ea 69, 6)] uncertainty stays with external disturbance signals that
normally range over a vast support. Developing proper
designs requires in these cases to follow a route altemativ
to the worst-case method. The average approach is one valid

- alternative that has been used for long mainly to deal with

Baveroae disturbance signals, but which has also been imported into

structural uncertainty by the works [50], [51]. VRC follows

a different route of finding solutions carrying a guaranteed

r;%)en‘ormance—risk tradeoff.

%
OWC'

Fig. 5. 05, and oy ,crqge-

cloud represents the worst-case performance, while gutti
the cloud vertically corresponding to a givénand taking

average over thé's returns Ex [¢(6,d)]. Worst-case and
average designs are then obtained as indicated in Figure

To pursue a performance-risk tradeoff, a simpler route
;;lgan VRC can in principle be conceived. Indicating by
p- A, p €[0,1], a re-sizing of the uncertainty set (if e.g.
A is the unitaryH,, ball, p - A is the ball of radiusy, and
if A is a unitary box hosting the parametegs, A is the
box of sidep) one can explore the worst-case solution for
various values op to find a compromise. This is in general
a loosing approach however. What one typically finds is
1Said more formallymaxse o £(6, 5) is the(1—e)-level of the quantile that thep-performance plot is something as shown in Figure
function of the random variablé(, -). 7. To improve performance has to be decreased to, say,

Moving to the chance-constrained approach, for a gi#en
maxgsen, £(6,9) where A, is optimally chosen so as to
improve the cost corresponds to thevalue that leaves an
¢ portion of the cloud above {t.Picking e.g.e = 1% and



The algorithm, and its theoretical properties, are derived
under the following assumption of convexity.

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr / Assumption 1 (convexity)or every §, function £(6,0)
‘ is convex with respect té. *

Instead, the dependence 6f¢,0) on § can be arbitrary.
Albeit convexity in x represents a limitation to the use of

0 o7 PE the algorithm, this condition applies naturally to a number
of problems, and, moreover, many problems are susceptible
Fig. 7. p-performance plot. of convex reformulation via e.g. LMIs (Linear Matrix

Inequalities), [7], [23], [3], [4], [40], [41].

0.7 or less, which however can correspond to a dramatie,, simplicity, we will also make the assumption to

drop in terms of probability or volume. E.g. in @ box10  ¢o)j0w which guarantees that every optimization problem

dimensions,p = 0.7 shrinks the volume down from to  \ye will encounter in the sequel admits a unique solution.
0.7 = 0.028 < 3%, that is a97% portion is left out.

On the other hand, concentrating on the whole seand Assumption 2:The solution of every minimax problem
using VRC can well show that the same performance as fQfhere max is taken over afinite uncertainty setr

p = 0.7 is attainable by leaving out a small portion &f {61,05,...,5,} C A, i.e. the solution of every problem of
only. This portion is hardly the outer shell &f (this is what o type
the p - A re-sizing approach leaves out) atlie reduced .
set A, has to be determined based on an inspection of ;Ielgi {fgleafz(f(eﬁ)] ,
the optimization problemFigure 8 illustrates the situation. , ,
exists and is unique. *

Though this assumption could be relaxed, we prefer to
maintain it to avoid technical complications that haveditt
conceptual interest.

The approach of the present paper builds on the so-
called “scenario approach” introduced in [8], and further
developed in [9], [14], [15]. Moving a fundamental step

A ahead with respect to these contributions, we in this
paper consider constraints removal to trade guarantees for
Fig. 8. Shaded region is the portion to be left out. performance. An alternative, complementary, approach is

presented in the most interesting paper [2] which allows
The region to be left out is represented as having afor non-convex cost functions, provided they have finite
elongated shape to visualize that it typically has a smalfapnik-Chervonenkis dimension, [49], [48].
volume despite it can have a significant linear extension. )
This state of things has been previously observed in [Sf}' The VRC Algorithm
where the fortunate terminology “icicle geometry” has beehet 5,5 ... §(N) be N uncertainty instances, hereafter
introduced to indicate this phenomenon. In general, findingalled “scenarios”, extracted independently of each other
a suitable region to leave out is a formidable task and tHeom A according to probability P.This set of scenarios
VRC Algorithm of PART Il explores using randomization is used as a “surrogate”, or a descriptor,/ofand it comes

to this purpose. handy in the development of practical algorithms because
it only contains finitely many elements. What is crucial
I1l. PART Il = VARIABLE ROBUSTNESSCONTROL: is that a procedure like VRC which is only based on
ALGORITHMS s 6@ 5(Y) comes with precise guarantees related to

In this second part we develop an algorithm for thdhe wholeA set even though the procedure totally neglects
implementation of the VRC logic. The idea is to replacdhe vast majority of thé € A (see Theorem 1 below). This
the infinite setA with a finite approximant obtained by is the “magic” of randomization.
randomization and to further remove elements of this
approximant so as to improve the performance value. The rest of this section IlI-A is structured as follows.
We first introduce a “Procedure for computifg and ¢;”,

2For example, in the bofo, 1]10, the region(0, 1]10 stretches from one

corner to the center of the box but has only volug%% < 0.1%. 3See [11], [10], [47] for algorithms to perform random extias.



wheref; and/; are the design parameters and performance | F ¢ <7 THEN setd = 67 and? = ¢7;
levels obtained after the removal of an increasing number END EOR

k of scenarios. This procedure is then embedded in thep 3: setz ={iec {1,2,...,N}: £(8,6D) < 2};
complete “VRC Algorithm”; the VRC Algorithm also .4 IF|Z| >N —k THEN GOTO 2. 1

delivers complementary probabilistic guarantees that the % (17| = cardinality of setZ)

performance levels be achieved. ELSE setGj = Z, 0 =0, and(; = [;

procedure for computing 6; and £; END FOR

Replacing A with §V 63 .. 6) in the worst-case
approach of (2) yields

The FOR cycle in 2. 2 removes one by one the scenarios
_ maxNE(&&(i))] . in search of the one whose elimination gives the largest
improvement in the cost value; the search is restricted to
The solutiondg of this problem is the starting point for the the §(/) such that¢(6,5¢)) = ¢ (the “active scenarios”)
procedure. since the elimination of nonactive scenarios cannot pbssib
improve the cost value. Upon exiting tR€R cycle in2. 2,
Moving from 65, the procedure executes a progressivene solution is stored i and the corresponding optimal
elimination of scenarios according to a greedy logic. To bgalue is¢. The procedure, however, does not immediately
specific, letGy, be the set of “survived” scenarios after theypdate G, at this stage, this is due to a detail that has
elimination of k scenarios, and lef; (also called thelesign  been omitted in the discussion made before the procedure.
at level k) be the solution of the problem Indeed, 6 is only a potential solution at levek since
removing one scenarié’’) can generate a paid, £) such
that £(8,5®) < 7 for some previously removed scenario
_ 6@, If so, we can reinstaté(® and proceed further to
and ¢; = maxieg, ((6},5") be the corresponding gliminate another scenario before outputting the design
performance level. To updaté,, one has to select gt |evelk, and point2. 4 executes the test to decide if this

which scenario has to be removed next. To this aim, thg the case. The outdFOR in point 2 cycles over thek
procedure scans one by one the scenariaS,irand selects yqjyes, and point is an initialization.

the one that, if removed, gives the largest improvement #he procedure comes to termination whenever in the
performance. Eliminating this scenario fratf givesGri1.  FOR cycle in 2. 2 a scenario is found whose elimination

. . improves the cost value. For this not to be true, &t 6*))
The following pseudo-code implements the above schemeynctions must cluster in an anomalous way, and termination
of the algorithm with probability one with respect to the

min [maxf(b’ﬁ(i))} )
9eRr? |i€G)

— 6, 6@ §(N) extractions is assumed throughout the
Procedure for computing 63 and £; for k = 0,1,...,k following.
1. setGo={1,2,...,N}; The procedure for computing; and ¢; implements the
solve program idea of discarding scenarios so as to improve performance.
. inl .4 Scenarios discarding is according to a greedy logic, ard thi
glelle {gg’;é(eﬁ )] ; makes the procedure computationally feasible.

let 05 be the optimal solution andé; = The procedure operates over a finite set of scenarios

maxiec, (05, 6")) the optimal value; 51,53 .. §(N) and the sole interpretation @f that is
). IS:(Z;R’Zk:-—G(i,'I?O:E%, and¢ = £5; available at this point is that; bounds the cost(6;,?)

: = . R for § € Gy. Scenariog™®, 52 ... §(N) are the “visible”
2.1 setA= {j €Z: £(0,6D) = é}is uncertainty instances, those the procedure uses, andsthis i

2.2: FORjecA only a tiny portion of the total uncertainty set. From a
solve program higher perspective, a question arises now quite naturally

_ as how guaranteed the performance lefjeis for the vast

;relg}l Lrgzaxj 6(9,6(”)} ; multitude of the other unseeh € A. This is the question

of inferring theinvisible from the visible, and this issue is
let # be the optimal solution and” = addressed in the VRC Algorithm that is next developed.
max;ez_; L(67,6@) the optimal value;

VRC Algorithm

4This convex problem and that i@. 2 can be efficiently solved via i i i it
standard solvers, such as the openly distrib@e¥, [25], [24], or YALM P, We start with the foIIowmg definition.

[34].
5A contains the “active scenarios”. Definition 1 (performance violation probability)Given a



design variablé and a performance levé] theperformance
violation probability of (9, ¢) is defined as

V(6,0):=Pr{6 € A:(0,6) > 1},

i.e. V(0,0) is the probability with which the cost obtained

with 4 is bigger than level. *

Hence, being able to quantify/(d,/) corresponds to

3: run the “Procedure for computingj; and ¢; for k =
0,1,.... k" ~
RETURN 0} and(; for k =0,1,...,k;

4: for k=0,1,...,k solve fore; equation
d+k
d+k N\ N—i 8 5
(11— b= 7
(T (Va0 =L

i=0

RETURN ¢, for k = 0, 1,.. ., k.

the ability of ascertaining the level of robustness that

performance/ has relative to the whole uncertain sét
when the design variable & The VRC Algorithm outputs

0y and/; as the procedure before and it additionally return

ek, a tight upper bound fol/(;,¢;). Thus, it succeeds

in providing a design and further complementing it with
solid performance guarantees, the ingredients to build trgf
plot of Figure 1. In a real application, the user inspects th

numerical valued;, against the probabilities;, to meet a
suitable tradeoff before “buying”
designé;.

The algorithm requires three inputs, namely o%,
and g, which have the following interpretation:

1. £ sets an upper bound far, the performance violation
probability for k = 0;

2. a% is the proportion of the total numbéy¥ of scenarios
discarded upon exiting the algorithm;

3. B is a so-called confidence parameterwhose

The role of ¢, and the fact that it indeed bounds
%/(9,’;,62), is analyzed in the next theorem.

Theorem 1:Relation V (65, ¢5) < & holds true
multaneously for allk = 0,1,...,k with probability
St leastl — s. *

the appropriate solatio The proof of the theorem rests on establishing the fundamen-

tal result that the left-hand-side of equation (7) bounds th
probability thatV (65, ¢5) > e;. This quantity is set equal
to E%l so thatV (5, ¢;) < e holds true simultaneously for

all k=0,1,...,% with probability1 — >2F_ Lo=1-4.
The technical proof is given in Appendix A.

B. Further comments oV and e,

sample complexity NV
The sizeN of the scenario set is the most significant factor

understanding requires a bit of additional explanatiom determining the computational complexity of the VRC

provided here. Due to randomizatidfj, and ¢; are random
quantities depending oa™ 62 ... §) and so is the

result thatV’ (6}, ¢;) < e, so that one cannot totally exclude <

that V(6;,¢;) be bigger thane, for some unfortunate
extractions 6, 5 .. (V) The input 3 allows the

user to exercise his option to reduce the chance for this

happen below a desired levgl Although necessary from
a theoretical point of views has a very minor practical
relevance because selecting a fairly small valuedde.g.

B = 10~7, or even smaller) only very modestly affect the
computational burden of the algorithm as discussed later

Section 11I-B.

VRC Algorithm
| NPUT: &, a%, 8
QUTPUT: 65, 45, €k

1. compute the smallest integdf > d (recall thatd is the
size off) such that

d
N\ \N—i B 6
_ <= .
O O S ST
let k := |a% - N|, the integer part ob% - N;
2: sample N independent scenariog™),§® ... §&V)

from A according to probability Pr;

6N can be computed via thget ai nc function of MATLAB, a complete
code is provided in Appendix D.

Algorithm. It can be proved (see Appendix B) that the
given in pointl of the VRC Algorithm is bounded by

{g_ (d—l—lnl—l—l) —0—%111 (g_ (d—‘—lnl-l-l))J +1,
g I6] g 5 I6]
8

here this formula is valid for any value of parametés.
E ) exhibits an approximately linear dependence—;oand
a logarithmic dependence Thus, 3 can be made very
small (e.g.6 = 10~7 or even smaller) with no significant
increase of the computational complexity.
fAne remarkable fact is that the design problem to which
VRC is applied only enters (8) through the size of the
design variables; the dependence @éns linear. Instead,
N does not depend on the uncertainty fet This is in
contrast with approximation schemes based on a gridding
of A, an approach which suffers from the so-called curse
of dimensionality. This opens up the possibility of a wide
usage of the VRC Algorithm irrespective of the form of the
uncertainty entering the problem.

performance violation parameter e,
ex given by point4 of the VRC algorithm is bounded by

ko d+h+R212(d+k)h
ook At bt VP 2d 4R

)
where

1
+In—+d-
p

7Appendix E provides a MATLAB code for this computation.

h=1In(k+1)

{l—i-lnd—i_k}



(see Appendix C for a proof).
(9) reveals important features ef,. The first term in the The following “VRC — easy to implement Algorithm”
bound is%, the empirical violation of the solution at level implements the above simplifications. Inpgtand a% and
k. Due to stochastic fluctuation, one cannot expect that ttadl outputs have the same meaning as in the original VRC
real violation be belovv]’“v with high confidencd — 3, and  Algorithm.
the second term accounts for this.
As N increases, the second term goes to zero approximately
as O(LN), so that, fork = ~ - N, e approachesy as VRC — easy to implement Algorithm
N grows. This behavior is depicted in Figure 9, whege | NPUT: &, a%
QUTPUT: 6%, 45, ek

Ek1'

091

1. set
)l 2 4 (2
o7r N = {— (d+17.2)+ =In (— (d+ 17.2)>J +1;

g g 13

0.6
05 B % (|-] = integer part)
04l letk := |a% - N|;

2: sample N independent scenariog™), 6 ... §&V)

0.3

from A according to probability Pr;
3: run the “Procedure for computingg and ¢; for k =
0,1,..., k"
1000 2000 3000 4000 5000 6000 7000 8000 go.ooz\foéoo RETURN 9;; and élt for k = 0,1,... ,E;
4. fork=0,1,...,k set

] e e T T

0.1F

Fig. 9. ¢ as a function ofN fork=02-N(d=28=10"7, and k d+h+ h2+2(d—|—k)h
_|_

E=02-N). =
given by (7) is profiled agains¥V whenk = 0.2 - N (other where
parameters werd = 2, 3 = 10~7, andk = 0.2 - N). _ d+k
_ _ h=1n(k+1)+16.2+d-[14—111—};
C. An easy to implement VRC Algorithm d

In this section, we present a simplified version of the  RETURN ¢, for k=0,1, ..., k.
VRC Algorithm that requires less intervention by the user
and makes VRC more practical to implement.

IV. A SIMULATION EXAMPLE

A first simplification is .obtai.ned by providing expli.cit An example is presented to illustrate the methodology
values forN andey. The idea is as follows. An inspection jniroduced in this paper. The example is simple enough so
of the original VRC Algorithm reveals that the result iy, gifferent aspects can be easily explained and visdliz
Theorem 1 continues to hold if one chooses

i. any N > d that satisfies the inequality in poifitof the  Consider the following ARMA (Auto-Regressive Moving-
VRC Algorithm, not necessarily the smallest one; Average) system

ii. e values bigger than those given by the solution of the

equation (7) in poing of the VRC Algorithm. Yer1 = ay + buy + crwy + cowy—1, (10)
Plainly, some price is paid by choosiny and ex as where v, and y, are input and output, andv, is a
indicated in i. and ii., both in terms of an increasedy n(0,1) (white noise with zero mean and unitary
computational complexity N is larger than required), as
well as because the probabilistic guarantegsbecome Wi

looser. The choices aV ande;, that we suggest to use are

given by the right-hand-side of equations (8) and (9).

To further streamline the usage of the algorithm, we drop
B from the set of inputs the user has to assign. Indeed, Gompensatord .| ARMA BN

this parameter has a minor impact on the computational Sl
complexity of the algorithm and can therefore be set to

a fixed low value. Specifically, we picked = 1077, a Fig. 10. The feed-forward compensation scheme.
number small enough to be negligible for practical purp8ses

variance) disturbancey, b, ¢;, andc, are real parameters,
8107 is below the proportion of airplane crashes over the numiber o ) el ! 2 P

flights. So, traveling by plane entails neglecting probtéd of this order with |a| <1 (Stab“ity Condition) and 7é 0 (Contm”abi"ty
of magnitude. condition), whose values are not precisely known.

Y Y




and to another systenpérturbed systejmpicked at random
We assume thatw, is measured, and the objective isin the uncertainty domain. The dramatic deterioration in
to design a feed-forward compensator with structure performance for the latter does not come as a surprise since
the nominal compensator is conceived with no concern for
e = b1y + Orwi uncertainty.
that minimizes the asymptotic variancenf see Figure 10.

Moving to VRC we sete = 0.5%, 8 = 1077, a% = 3%,
If the system parameters, b, c;, and c; were known and run the VRC Algorithm in Section IlI-A where Pr was
an optimal compensator would be easily found. Indeedjniform over [—1,1]2. N was N = 5427. The obtained
substitutingu; = 61w, + f2w;—1 in (10) gives performance-violation plot is displayed in Figure/lby k
the plot offers the user different trade-off choices: thikdso

Yer = aye + (e + bbr)wr + (e + bz)wr 1, curve represents the value 8fy?] which is guaranteed for

from which the expression for the asymptotic varianceof all systems but an;, proprotion, as displayed by the dashed

is computed as curve.
E[y?] = (c1 + b61)° + (c2 + b#a)® + 2a(c1 + b01)(c2 + b2)
el = 1— a2 ’ Based on an inspection of the curves, we selected
Hence, the values df; and6, minimizing E[y?] are seen k = 60, a choice which is largely subjective and others
to be ' could have opted for a different choice. With this choice,
0, = _% and 0y = _& (11) €60 = 2.5% and ¢§, = 1.42, with an improvement of76%
b b’ over the initial performance value of.04 obtained for
resulting in E[y?] = 0. k = 0. The compensator parameters wefg, = —0.24 and

0560 = —0.59. According to Theorem 1, with probability
On the other hand, the system parameter values are fdot- 3 = 1 — 107 (in practice with probability 1) the
always available in practical situations. More realidtica compensatoru; = —0.24w; — 0.59w;—; guarantees that
the parameters are only partially known, and they tak&[y7] < 1.42 for all plants in the uncertainty sek but a
value in a given uncertainty sek, so that the choice of small proportion of size no more thag, = 2.5%. Figure
the compensator parameteffls and 6, have to be made

taking into account the different dynamical behaviors that f"z
the system can possibly have. -
As an example, suppose thathas two components; i ‘
and o2 both ranging in[—1,1], that isé = (o1,02) and :
A = [-1,1]?, and that the system parameters are expressed )
as: N YTt T
3.507 — 0.2 3
= =1 7 .(0.32 0.6), !
“ 307 103 (3201 406) |
2 A |
0105
b == 1 ,1:
LT |
- —0.014‘(0'14‘0'%)2 1 (0’1—1)(0’2—1)
a = 0.02 + (0’1 + 03)2 ’ - 2 ’ Fig. 12. Region where the cost value is not guaranteed.
0.05
2 = 0.0+ (01 + 03 —2)2° 12 depicts the region in thA domain where the cost value
. nom 1.42 is not met, the volume of the regioni2% of the total
The nominal values folr; and o2 are of = 0 and

volume of the uncertainty domaip-1, 1], below threshold
2.5%. What is fundamental is that the VRC Algorithm has

. : been able to determine a region of small volume whose
ensuing nominal compensator has parameigfs’ = 0.25 S . X
and #2o™ — —0.0124. Figure 11 shows the output obtainedel'm'nat'on guarantees a large improvement in the cost
2 ' ' value. This has been achieved by letting the problem speak,

of°™ = 0 corresponding toa™°™ = —04, """ = 1,
cpem = —0.25, and ¢5°™ = 0.0124. Based on (11), the

" " m while an a priori choice ofA. obtained e.g. by a re-sizing
° ° ﬂ/‘m ‘\J( o of the A domain as discussed in Section 1I-C would have
0 O T instead produced little benefit.
-5 5 Vel TeY \/W/
U
0 5 100 150 , 200 0 5 100 150 ; 200 Figures 13-15 depict the value af[y?] achieved for

Fig. 11. Outputs obtained with the nominal compensatott: (ledminal

9 . i _ 2
system: right: perturbed system). For completeness, we also considered a re-sizingh\ot= [—1, 1]

to [—0.9874,0.9874]2 (which leaves out @.5% of the total volume),
. . ) and found that the robust compensator fer0.9874,0.9874]2 achieved
when this compensator is connected to ttominal system performances.46.



the various systems im\A by the nominal compensator systems as done in Figure 11 but this time using the
(Figure 13), and the compensators obtained by VRC farompensator obtained fér = 60 we measured the outputs
k = 0 (Figure 14) and fork = 60 (Figure 15). In figure shown in Figure 16. Not surprisingly, the performance with

yt5 yts
6 Y STV W IRILTS WY AT PP POy L4 N PR Wil S
Py L7AA LA A | Y Yo (T i
Ely] s . v VI ! . 4/

0 50 100 150 200 0 50 100 150 , 200

t t

Fig. 16. Outputs obtained with the compensator obtained: fer 60 (left:
nominal system; right: perturbed system).

the nominal system becomes worse, while the performance
with the perturbed system improves, in line with the
provided guarantees.

o2

APPENDIX
A. Proof of Theorem 1
Fig. 13. E[y?] for nominal compensator. .
To shorten the notation let := (6™, ...,§(V)). Note that

05, ¢;, are stochastic elements dependingiomlthough such
a dependence is not explicitly indicated to ease the reading

Bl ] 5 Define

_ {5eAN: ke {0,1,....k}
such thatV (65, ¢5) > ek},

i.e. B is the set of “bad” multi-extractiong from AN
leading for somek to a violation bigger thary. In these
notations, the theorem statement write§' PB} < 3.
Letting

By = {5 e AN V(9L 6) > sk}

be the event where the performance violation probability fo

Fig. 14. E[y?] for compensator obtained fdr = 0. a g'Yenk is bigger thans;, we have thatB = Uk:o B,
leading to the bound

k
PY{B} <> PM{B:}. (12)
Bl . k=0
4 The theorem will be proved by computingPfB;,} for k =
5 0,1,...,k, and then by summing ové.

Anticipating the result, we will show that
d+k

P < (1TF) S (T)ea-e0v . a

=0
so that the thesis follows by substitution in (12):

k d+k
d+k N\ . ,
PrN < % _ N—i
@ < >|(H T (Vau- ]
Fig. 15. E[y?] for compensator obtained fdr = 60. k= =0
= [ anks to (7)
15, the flat zone close to the cornfr, 1) corresponds to
the region where the performance is not guaranteed (so that = Z i 1
E[y?] is in reality above the cutting value42 represented
in the figure). Thus, to complete the proof, we have to establish the

fundamental relation (13).
Injecting a disturbance in the nominal and in the perturbed



Fix a value fork. Given a subsetl = {iy,...,ix} of To proceed, we have now to appeal to a resultFonfrom
k indexes from{1,..., N} (I = 0, the empty set, ik = 0), [14]:

let 67 be the solution to the minimax problem where the
scenarios with index id have been removed, i.e. - d /N _E\ _

Fu(v) > Fr(v) :—1—Z< . )w(l—v)N’“. 10

0; = i 00,6 14 N

! arg?éﬁa%ie{ﬁ%}fz (0,07, (14)

This inequality is tight, i.e. it holds with equality for a
whole class of problems, that called “fully-supported” in
[14], Definition 3.

and let/; be the corresponding cost value, i.e.

= ie{lf??ﬁf,}_/(of’ ). Now, the integra[ld;k in (17) is an increasing function of,
so thatFy (v) > Fy (v) implies that
Moreover, let
, k k 47
A = (6€ AV (5}69) > 1, vieT) [ eS| ahe). a8

Thus, aéd is in A} if the performance valué; is violated This can be verified by the calculation:
in correspondence of all the scenarioslinhat have been

removed in the construction (14) éf.

Since the paim;, ¢; generated by the VRC Algorithm are / o* dFy (v)

such that the performance valdgis violated in correspon- (ex,1]

dence of exactlyk scenarios, it is clear thatf;,(;) = = [Theorem 1136, Chapter Il of [42]

(0%, ¢%) for somel such thatd € AY. Thus, = 1=k (en) _/ Fy (0ot do
(k1]
_ N ., * % _ _
Be = 10e a7 VI, 6) > e < 1_e§FV(ak)_/ Fy (0)ko* " do
c YeAY: vor. ) >} (15) (x1]
et = / v* dFy (v).
up to a zero probability set, whefeis the collection of all (-]
possible choices of indexes from{1,..., N}.

The sought bound for Pr{B,} is now obtained by first Hence, PY{6 € AY : V(8;,£;) > &} can finally be
bounding P¥{6 € AN : V(6;,¢%) > e}, and then bounded as follows:
summing overl € 7.

PN{6 € AN : V(0;,05) > ex}

Fix anl = {i1,...,i}, and write < [use (17) and (18)
PV{6 € AN : V(6;,05) > er} < /( ; o* dFy (v)
_ / PV {Ay ‘ V(05 07) = v} dFy (v) — [the density offy is
(ek,1] N —k
X N—k—d d(] _ ) N—k—d—1
- / PrN{é(Gf,é(Z))>£j;, We]’ ( )( d >” (1-v) ]
(Ekvl] N - k k
_ . +d1 _  \N—k—d—1
V76 = v dFv(e),  (18) /(E,}f]v g d>( d ) 1-0) av
= [integration by paris
where Fy is the cumulative distribution function of the (ka) dik
random varigbleV(@},E}), ﬁnd PN {AN | V(65,05) = v} = 4 Z < .>5;'€(1 —ep)N (19)
is the conditional probability of the evenk® under the (d+k) =0
condition thatV (63, ¢;) = v (see eq.(17)§ 7, Chapter Il
of [42]).
To [evz]a)luate the integrand in (16), remind tl%(tﬁ},@?) — v 10To be precise, this result follows from Theorem 1 in [14] bytimg

/ that the minimax problemmin max;
means that R0 : £(0%,0) > (3} = v; then, owing t0 rewritten as oere Sl

the independence of the scenarios, the integrand egtials

N1—14£(6,6®)) can be

Substituting in (16) yields min  h
0cRd heR
bj (6,85 i -
PV e Al : V@O0 >e) = [ o dFv(w). SUDleCt 0,07 S b v & Lo N,

(ex1]
(17) i.e. a program withd + 1 optimization variables and&v — k constraints.



To conclude the proof, go back to (15) and write: Hence,

g M+1
PY{By} < DY PMN{SeAY: V(67,07) > e} Mz -d = In 5
IeT
(Mg —d)? 3
= [Z contains(jlj) choice$ 4 [since 2Me = M§ —d
N (M — d)? S lnM+1
= <k>-PrN{aeA§V; V(05,05) > ex} 2Me - B
4
< [use (19D _ (Me—d)? < Jé]
2Mé& _—
< (DS (Naa e T s e
S . L —¢€k
k (di\:k) im0 \ ! which, by applying the Chernoff’'s bound for the Binomial
A\ TN _ tail, see [17] or [49], gives
S (E e ™
ZIO Z(M)Ei(l_E)M_ig Mﬁ+1 = %\iﬂ'
(3 [0
which is (13). x i=0 ’
Thus, M satisfies (6); since théV selected in pointl of
B. Proof of (8) the VRC Algorithm is the smallest integer satisfying (6), we
have N < M. *
Letting
C. Proof of (9)
|2 1 4 2 1 o
M= {g (d+1n§ +1> tzhn (g (d+ln§ +1>)J +1, If e, < &4, then (9) is trivially true.

If insteade, > %4, then the well-known Chernoff bound
we have for the Binomial tail (see [17] or [49]) applies, yielding
2 1 4. (2 1 RN . (Ve —d—k)?

M > —|(d+ln—+1])+-In{=(d+In=-+1 i1 — g )Vt T oNe,
= g<+nﬁ+>+sn<a<+nﬁ+>) z%<z’)€k(1 k)T Se A
1 i
= [putp=d+In 8 +1] Moreover, it holds that
_ 2_“+3.2.1n<2_“> d+k\ _ (d+k)led
E £ 5 S
y k d
> [since2 > —] : .
p—1 and so the Ieftz—hand—5|de of (7) is bounded by
S e ) (i)te! ~SHREE Hence,
= g & u-1 £ d
2 1 2,LL (d+ k)ded _ (exN-—d—k)? ﬁ
. — — 1 1 _— A Ne L
22w (2) B
= - ! 5 [/L —1+1n (2—H>} , This inequality can be rewritten as
37 @ €
: k+1 (d+k)ded
Nep —d—k)? < 2Neg -1 :
which implies (Ner )7 2Neg-In Jé] de ’
: 2% 1 which, made explicit foey, gives
M- > u—1+ln<—) + 5 M
2 €/ F ko d+h+B2+2(d+k)h
> |[sincel — - <0] N
where we have posed
> u—1+1n(27“)+%(M+1—2T“) _
‘ = c h w[E1 (d—l—k)ded]
= n .
> [sinceIn(z) + %(y — ) > In(y)] p ldd .
> p—1+In(M+1) = ln(E—i—l)—l-lnB—l-d-[l—l-ln y ]

d—i—ln%—l—ln(M—i—l).



D. MATLAB code to computd’

Function inputsieps = ¢; al ph = a%; bet = 3; d =
no. of design variables.

Notes: in the function, N is computed by bisectiorl\l is
the initial lower-bound, whileN2 is the initial upper-bound

and corresponds to formula (8).

function findN

function N = findN(eps, al ph, bet, d)

N1 d;
N2 floor( 2/eps*(d+l og(1l/bet)+1) +
4/ eps*| og( 2/ eps*(d+l og(1/ bet)+1)) ) + 1;

whil e N2- N1>1
N = floor ((N1+N2)/2);
i f betainc(1l-eps, Nd,d+1)
> bet/ (al ph*N+1)

N1=N;
el se
N2=N;
end
end
N = N2;

E. MATLAB code to computs,

Function inputsk = no. of removed scenarids N = no.
of scenariosN; kmax = k; bet = g; d = no. of design

variablesd.

function findepsk

function epsk = findepsk(k, N, kmax, bet, d)

epsl = O;
eps2 = 1;
coeff = 1/ (dxbeta(k+1,d));

whil e eps2-epsl > le-10
epsk = (epsl+eps2)/2;
i f coeff=xbetainc(1l-epsk, N-k-d, d+k+1)
> bet/ (kmax+1)

epsl = epsk;
el se
eps2 = epsk;
end

end

epsk = eps2;
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