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Abstract— Robust control is grounded on the idea that a
design should be guaranteed against all possible occurrences of
the uncertain elements in the problem. When this philosophy
is applied to securing a desired performance, it often leadsto
conservative, low performing, designs because emphasis isall
placed on the worst-case situation. On the other hand, in many
applications a 100%-guarantee is not necessary, and it may
be convenient to opt for a small compromise in the guarantee
level, say99%, in favor of a (possibly significant) improvement
in the performance. While the above reasoning sets a sensible
principle, to date the real stumbling-block to its practical use
is the lack of computationally-tractable algorithmic methods
to trade guarantees for performance. This paper aims to open
new directions to address this problem, and we show that this
result can be achieved through randomization.

Index Terms— robust control, modulation of robustness,
randomized algorithms, probabilistic uncertainty, scenario ap-
proach.

I. I NTRODUCTION

Many problems in systems and control such ascontroller
synthesis, noise compensation, or prediction are often cast
in mathematics asoptimization programswhere the cost
function captures in a quantitative manner the objective
to be pursued, e.g. trajectory tracking, attenuation of
noise or prediction capabilities. Along this optimization
process, however, an additional element often comes into
play, and this isuncertainty. The real world is beset with
uncertainty due to partial knowledge of the environment
and unpredictable and/or variable conditions in which the
plant is called to operate. Uncertainty demands to exercise
caution and solving optimization programs incorporating
uncertainty represents a central challenge in nowadays
systems theory.

Different approaches can be adopted to deal with uncertainty.
In this paper, uncertainty is given a probabilistic description
and we aim to design methods to achievea performance
that is guaranteed with a desired level of probability.
Level of probability and performance are linked one to
the other: like pulling down one end of a rope wrapped
around a pulley lifts the other end, similarly decreasing the
probability improves the performance. One main thrust of
the present paper is to study this trade-off and offer the
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user quantitative tools to guide his choice towards a suitable
compromise between the two.

After introducing the general principles in PART I of the
paper, PART II presents algorithmic solutions. Algorithms
are developed to deal with cost functions exhibiting a
convex dependence on the optimization variables and an
arbitrary dependence with respect to uncertainty, a set-up
of theoretical importance and that covers many situations
of practical interest. The output of the algorithm is given
in terms of a performance-violation plot like the one
displayed in Figure 1 and that anticipates results referring to
a numerical example developed later in Section IV. Thek

Fig. 1. Performance-violation plot.

variable in the horizontal axis runs over the choices among
which the user can select. To eachk, there is associated
a different solution design, e.g. different parameter values
for the controller or for the predictor being designed; the
algorithm also explicitly provides these design parameter
values. The solid curve is the performance, while the dashed
curve is the probability with which the performance is not
guaranteed, that is the probability that bad circumstances
occur during the actual operation of the system so that
the incurred performance is worse than that given by the
first curve. These two curves are constructed on a solid
theoretical ground and are the quantitative support to guide
the designer in making a decision. Through these results
this paper opens new avenues to address the algorithmic
challenge to make designs that suitably compromise
performance against guarantees.

II. PART I – VARIABLE ROBUSTNESSCONTROL:
PRINCIPLES

Uncertainty may generate in different ways, and it is
common practice in the systems and control community



to distinguish betweenstructural uncertainty(parametric
or non-parametric) and uncertainty introduced by a-priori
unknownexogenous signals(disturbances) steering the plant
away from its nominal behavior, see Figure 2. In this paper,

Fig. 2. A system can have uncertain parameters (ν) and be affected by
disturbances (dt).

we take a somehow more abstract point of view which
encompasses as special cases both types of uncertainty with
the idea of setting up a theory that can be applied across
different kinds of uncertainty. Our aim is to provide the
designer with general tools for use in various application
endeavors.

Throughout, an uncertain element will be indicated,
independently of its nature, with the symbolδ, while ∆ will
be the range set forδ. If for example the polep of a stable
continuous-time system is uncertain (structural uncertainty),
then δ = p and∆ is the left half complex plane; if instead
uncertainty stays with a disturbanced(t) = A · step(t − t0)
whose amplitude and step time is unknown, thenδ = (A, t0)
and∆ = R

2.

Letting θ ∈ R
d be the vector of design variables – it

can e.g. contain the parameters of a controller, of a
compensator, or those of a predictor – the cost function to
be minimized is written asℓ(θ, δ), where the simultaneous
presence ofθ andδ reflects that we have only partial grasp
of the final optimization result throughθ because it also
depends on uncertaintyδ. What we are facing is a so-called
Uncertain Optimization Problem, namely:

U-OP : min
θ∈Rd

ℓ(θ, δ), δ ∈ ∆. (1)

An U-OP cannot be considered as a complete formalization
of the optimization problem though since it misses to de-
scribe how the uncertain elementδ should be accounted for.
Addressing the issue of providing a complete formalization
requires to broaden our discussion about uncertainty.

A. Alternative ways to describe uncertainty

The worst-case approach
Uncertainty is inescapably linked to the concept of set,
as there cannot be uncertainty without a set of possible
uncertain outcomes. Without any further structure given to
uncertainty apart that it ranges in a set∆, a natural way to
pose the problem is along aworst-caseapproach:

WC-OP: min
θ∈Rd

[
max
δ∈∆

ℓ(θ, δ)

]
. (2)

The worst-case philosophy has been adopted in the control
literature out of concerns for stability. Spurred by the work
of Doyle, [20], and others that showed that the classical
LQG regulator had no stability margins, control theorists
started in the 1980s to seek for alternative approaches able
to provide robust guarantees of stability. Much influential
was the work of Zames, [53], whichde factolaunched the
era ofH∞ control as the robust alternative to LQG control,
see [26], [54], [18]. Ever since, the worst-case approach has
been ubiquitous in the robust control literature, and it has
been applied to a variety of control problems.

The average approach
At times, it may be convenient to adopt a more structured,
probabilistic, point of view in the description of uncertainty.

In formal terms, suppose that∆ is endowed with a
probability Pr. Depending on the problem at hand, Pr can
have different interpretations. Sometimes it is a measure
of the likelihood with which situations occur, other times
it simply describes the relative importance we attribute
to different uncertainty instances. Using Pr allows one to
weigh situations so that one can form an overall cost by
averaging, and then solve an average optimization problem:

A-OP : min
θ∈Rd

E∆ [ℓ(θ, δ)] = min
θ∈Rd

∫

∆

ℓ(θ, δ)dPr.

This framework has been widely adopted when uncertainty
is associated with disturbance signals, [5], [31]. A typical
example is quadratic stochastic control where the average
cost is in discrete time given by

E∆

[
T∑

t=0

{
x(t)T Qx(t) + u(t)T Ru(t)

}
]

, (3)

wherex(t) indicates the system state,u(t) the system input,
and expectation is taken with respect to the realizations
of the disturbance affecting the system. Thus, here we
identify oneδ with a noise realization and∆ is the set of
all realizations with a probability Pr dictated by the type
of noise we are considering. If e.g. the noise is white and
Gaussian, Pr is the product probability ofT Gaussians.

The average approach is normally less conservative than the
worst-case approach, but its conservatism can be enhanced
by the introduction of an exponential cost. E.g. in stochastic
control, with the notationJ := x(t)T Qx(t) + u(t)T Ru(t),
instead of considering a quadratic costE∆[J ] as in (3), one
can useE∆[exp(J)]. Because of the exponential function,
the penalty in the occurrence of values ofJ larger than
E∆[J ] outweighs the alleviation in penalty caused by the
occurrence of some values less thanE∆[J ], corresponding
to a pessimistic viewpoint. A connection between this
average-exponential approach and the worst-case approach
was established by Jacobson and Whittle for linear systems,
[27], [52], and then highlighted in a nonlinear set-up in
[28], [16].



VRC: Variable robustness control
Within a probabilistic set-up, minimizing an average cost
function is not the only route one can follow. Alternatively,

Fig. 3. The reduced∆ε set has probability1 − ε.

probability can be used to quantify the chance that a certain
performance specification is not achieved. The origin of
this approach traces back to [43] which used it for analysis
purposes in the context of flight control, then followed
by many other contributions among which [44], [39], [6],
[33]. One way to evaluate the probability that a certain
performance is not achieved is through randomization, and
[30], [45], [46] provide explicit bounds on the number
of samples needed to this end. Moreover, sequential
methods have been proposed to solve synthesis problems
where one wants to determine a controller that attains a
specified performance level with high probability, [12],
[36], [21], [29], [22], [35]. This is a feasibility problem
where a controller is feasible if it achieves the indicated
performance; on the other hand, sequential methods are not
a natural tool to addressoptimizationproblems.
Within this set-up of using probability to quantify the chance
of negative events, we here consider optimization problems
along a minimax approach where the max requirement
is relaxed in a probabilistic sense. Precisely, referring to
Figure 3, one is content with minimizing the max cost with
max taken over a reduced set∆ε ⊂ ∆ having large enough
probability, Pr{∆ε} = 1 − ǫ, and write:

WCε-OP : min
θ∈Rd

[
max
δ∈∆ε

ℓ(θ, δ)

]
. (4)

Indicating byθ∗ε the optimal solution of problem (4) and by
ℓ∗ε its optimal value, we haveℓ∗ε = maxδ∈∆ε

ℓ(θ∗ε , δ), i.e. ℓ∗ε
is guaranteed against all uncertainty outcomes in∆ε, that is
it is guaranteed with probability1 − ε.

One question arises naturally along this approach and
it is: how should∆ε be chosen in (4)? Clearly, once∆ε

has been selected, WCε-OP is simply a WC-OP over the
reduced set∆ε. On the other hand, the original design
problem is specified in terms ofℓ(θ, δ), ∆, and Pr only, that
is in terms of the ingredients of U-OP in (1) and probability
Pr. Therefore,∆ε is not an initial assignment in the design
problem and its determination has to be thought of as an
integral part of the solution of the problem.

So, how should∆ε be selected? One obvious criterion is
that leaving out anε-probability set should improve the cost
value. And, the more the better. Pushing this process all the
way down to an optimal selection corresponds to solving
program

min
θ∈Rd,∆ε

[
max
δ∈∆ε

ℓ(θ, δ)

]
. (5)

So formulated, the problem is well known in the optimization
literature under the name of “chance-constrained”
optimization, [37], [38], [19], the name meaning that
a chance that boundℓ∗ε is violated exists, but this chance is
constrained byε. However, it has to be said immediately
that finding an exact solution to the chance-constrained
problem (5) is generally beyond reach due to the associated
overwhelming computational difficulties. If optimality
cannot be reached, one can aim for good, even though
suboptimal, selections of∆ε. This is the route this paper
follows and the focus of PART II is towards designing
algorithms to obtain this result.

One aspect that deserves a mention at this point is
that parameterε should not be seen as a fixed value, rather
it is a “knob” the user can tune. The biggerε, the better
the performance, but the higher the risk of performance
violation. Thus, the level of robustness is adjustable,
corresponding to a “variable robustness control” (VRC)
approach. The choice of a suitableε stays with the user,
who will select it depending on his attitude to the risk. Our
principal goal in PART II is to provide the user with tools
that allow him to make the selection on solid quantitative
grounds (refer back to Figure 1).

The paradigm here described of optimization under
probabilistic constraints has received to date almost no
attention by the systems and control community, with
perhaps only the exception of [13], [1], [2]. In our
appreciation, this state of things is due to two different
reasons.
(i) One is tradition. As said above, robustness in control
originated in the 1980s out of concerns for stability. When
dealing with stability, a performance-risk compromise can
hardly be accepted, and thus worst-case was the adopted
approach in this context. Since then, robustness and worst-
case have traveled hand in hand becoming almost synonyms
in the control community. Meanwhile, stochastic control
theorists have been working with the average cost approach.
(ii) One second crucial fact is that the chance-constrained
approachhas so far lacked suitable algorithmic methods to
practically find solutions, a circumstance that has by and
large hindered the applicability of this synthesis paradigm.

Our thrust with this paper is to introduce the chance-
constrained/VRC paradigm to the large audience of
scientists working in systems and control. Due to a new
scheme rooting in randomization, we shall try to open
algorithmic routes to address robustness along this paradigm



in an attempt to crack the so far fundamental obstacle posed
by practical computability.

B. A look at the different robustness paradigms in the
optimization domain

Worst-case, average and chance-constrained approaches
can be best visualized in the domain where the costℓ is
displayed against the design variableθ.

For a given uncertainty instanceδ, ℓ(θ, δ) is a deterministic
function of the design variableθ. One such function is
profiled in Figure 4. Asδ is let vary, functionsℓ(θ, δ) form
a cloud, as shown again in Figure 4. The top border of this

Fig. 4. Oneℓ(θ, δ) and the cloud ofℓ(θ, δ) asδ is let vary.

Fig. 5. θ∗
WC

and θ∗average.

cloud represents the worst-case performance, while cutting
the cloud vertically corresponding to a givenθ and taking
average over theδ’s returns E∆ [ℓ(θ, δ)]. Worst-case and
average designs are then obtained as indicated in Figure 5.

Moving to the chance-constrained approach, for a givenθ,
maxδ∈∆ε

ℓ(θ, δ) where ∆ε is optimally chosen so as to
improve the cost corresponds to theℓ value that leaves an
ε portion of the cloud above it.1 Picking e.g.ε = 1% and

1Said more formally,maxδ∈∆ε
ℓ(θ, δ) is the(1−ε)-level of the quantile

function of the random variableℓ(θ, ·).

Fig. 6. Chance-constrained cost functions for different values ofε.

letting θ vary, maxδ∈∆1%
ℓ(θ, δ) describes the curve with

index 1% in Figure 6. For a givenθ, a 1%-fraction of the
ℓ(θ, δ) functions parameterized inδ fare aboveℓ and these
functions represent our risk not to meet performanceℓ. The
chance-constrained solutions atε = 1% is the minimizer
of this curve. Asε assumes different values, one obtains a
full range of risk-performance possibilities, as visualized in
Figure 6.

C. Discussion about VRC

Before moving to PART II dealing with algorithms, we feel
it is advisable to pose a moment to better put VRC into
perspective with other methods.

Robustness along the worst-case approach has been a
successful story in control. When the uncertainty level
is moderate enough so that a controller exists securing
an adequate performance for all uncertainty instances,
the worst-case paradigm indicates the route. Yet, at times
uncertainty goes beyond this point. This can be true for
structural uncertainty, and it is almost invariantly true when
uncertainty stays with external disturbance signals that
normally range over a vast support. Developing proper
designs requires in these cases to follow a route alternative
to the worst-case method. The average approach is one valid
alternative that has been used for long mainly to deal with
disturbance signals, but which has also been imported into
structural uncertainty by the works [50], [51]. VRC follows
a different route of finding solutions carrying a guaranteed
performance-risk tradeoff.

To pursue a performance-risk tradeoff, a simpler route
than VRC can in principle be conceived. Indicating by
ρ · ∆, ρ ∈ [0, 1], a re-sizing of the uncertainty set (if e.g.
∆ is the unitaryH∞ ball, ρ · ∆ is the ball of radiusρ, and
if ∆ is a unitary box hosting the parameters,ρ · ∆ is the
box of sideρ) one can explore the worst-case solution for
various values ofρ to find a compromise. This is in general
a loosing approach however. What one typically finds is
that theρ-performance plot is something as shown in Figure
7. To improve performance,ρ has to be decreased to, say,



Fig. 7. ρ-performance plot.

0.7 or less, which however can correspond to a dramatic
drop in terms of probability or volume. E.g. in a box in10
dimensions,ρ = 0.7 shrinks the volume down from1 to
0.710 = 0.028 < 3%, that is a97% portion is left out.
On the other hand, concentrating on the whole set∆ and
using VRC can well show that the same performance as for
ρ = 0.7 is attainable by leaving out a small portion of∆
only. This portion is hardly the outer shell of∆ (this is what
the ρ · ∆ re-sizing approach leaves out) andthe reduced
set ∆ε has to be determined based on an inspection of
the optimization problem. Figure 8 illustrates the situation.

Fig. 8. Shaded region is the portion to be left out.

The region to be left out is represented as having an
elongated shape to visualize that it typically has a small
volume despite it can have a significant linear extension.2

This state of things has been previously observed in [32]
where the fortunate terminology “icicle geometry” has been
introduced to indicate this phenomenon. In general, finding
a suitable region to leave out is a formidable task and the
VRC Algorithm of PART II explores using randomization
to this purpose.

III. PART II – VARIABLE ROBUSTNESSCONTROL:
ALGORITHMS

In this second part we develop an algorithm for the
implementation of the VRC logic. The idea is to replace
the infinite set∆ with a finite approximant obtained by
randomization and to further remove elements of this
approximant so as to improve the performance value.

2For example, in the box[0, 1]10, the region[0, 1
2
]10 stretches from one

corner to the center of the box but has only volume1
210 < 0.1%.

The algorithm, and its theoretical properties, are derived
under the following assumption of convexity.

Assumption 1 (convexity):For every δ, function ℓ(θ, δ)
is convex with respect toθ. ∗

Instead, the dependence ofℓ(θ, δ) on δ can be arbitrary.
Albeit convexity in x represents a limitation to the use of
the algorithm, this condition applies naturally to a number
of problems, and, moreover, many problems are susceptible
of convex reformulation via e.g. LMIs (Linear Matrix
Inequalities), [7], [23], [3], [4], [40], [41].

For simplicity, we will also make the assumption to
follow which guarantees that every optimization problem
we will encounter in the sequel admits a unique solution.

Assumption 2:The solution of every minimax problem
where max is taken over afinite uncertainty setF =
{δ1, δ2, . . . , δp} ⊆ ∆, i.e. the solution of every problem of
the type

min
θ∈Rd

[
max
δ∈F

ℓ(θ, δ)

]
,

exists and is unique. ∗

Though this assumption could be relaxed, we prefer to
maintain it to avoid technical complications that have little
conceptual interest.

The approach of the present paper builds on the so-
called “scenario approach” introduced in [8], and further
developed in [9], [14], [15]. Moving a fundamental step
ahead with respect to these contributions, we in this
paper consider constraints removal to trade guarantees for
performance. An alternative, complementary, approach is
presented in the most interesting paper [2] which allows
for non-convex cost functions, provided they have finite
Vapnik-Chervonenkis dimension, [49], [48].

A. The VRC Algorithm

Let δ(1), δ(2), . . . , δ(N) beN uncertainty instances, hereafter
called “scenarios”, extracted independently of each other
from ∆ according to probability Pr.3 This set of scenarios
is used as a “surrogate”, or a descriptor, of∆ and it comes
handy in the development of practical algorithms because
it only contains finitely many elements. What is crucial
is that a procedure like VRC which is only based on
δ(1), δ(2), . . . , δ(N) comes with precise guarantees related to
the whole∆ set even though the procedure totally neglects
the vast majority of theδ ∈ ∆ (see Theorem 1 below). This
is the “magic” of randomization.

The rest of this section III-A is structured as follows.
We first introduce a “Procedure for computingθ∗k and ℓ∗k”,

3See [11], [10], [47] for algorithms to perform random extractions.



whereθ∗k andℓ∗k are the design parameters and performance
levels obtained after the removal of an increasing number
k of scenarios. This procedure is then embedded in the
complete “VRC Algorithm”; the VRC Algorithm also
delivers complementary probabilistic guarantees that the
performance levels be achieved.

procedure for computing θ∗

k
and ℓ∗

k

Replacing ∆ with δ(1), δ(2), . . . , δ(N) in the worst-case
approach of (2) yields

min
θ∈Rd

[
max

i=1,...,N
ℓ(θ, δ(i))

]
.

The solutionθ∗0 of this problem is the starting point for the
procedure.

Moving from θ∗0 , the procedure executes a progressive
elimination of scenarios according to a greedy logic. To be
specific, letGk be the set of “survived” scenarios after the
elimination ofk scenarios, and letθ∗k (also called thedesign
at levelk) be the solution of the problem

min
θ∈Rd

[
max
i∈Gk

ℓ(θ, δ(i))

]
,

and ℓ∗k := maxi∈Gk
ℓ(θ∗k, δ(i)) be the corresponding

performance level. To updateGk, one has to select
which scenario has to be removed next. To this aim, the
procedure scans one by one the scenarios inGk and selects
the one that, if removed, gives the largest improvement in
performance. Eliminating this scenario fromGk givesGk+1.

The following pseudo-code implements the above scheme.

Procedure for computing θ∗

k
and ℓ∗

k
for k = 0, 1, . . . , k

1: setG0 = {1, 2, . . . , N};
solve program

min
θ∈Rd

[
max
i∈G0

ℓ(θ, δ(i))

]
; 4

let θ∗0 be the optimal solution andℓ∗0 =
maxi∈G0 ℓ(θ∗0 , δ

(i)) the optimal value;
setZ = G0, θ̂ = θ∗0 , and ℓ̂ = ℓ∗0;

2: FOR k := 1 TO k

2.1: setA =
{
j ∈ Z : ℓ(θ̂, δ(j)) = ℓ̂

}
;5

2.2: FOR j ∈ A

solve program

min
θ∈Rd

[
max

i∈Z−j
ℓ(θ, δ(i))

]
;

let θ̂j be the optimal solution and̂ℓj =
maxi∈Z−j ℓ(θ̂j , δ(i)) the optimal value;

4This convex problem and that in2.2 can be efficiently solved via
standard solvers, such as the openly distributedCVX, [25], [24], orYALMIP,
[34].

5A contains the “active scenarios”.

IF ℓ̂j < ℓ̂ THEN set θ̂ = θ̂j and ℓ̂ = ℓ̂j;

END FOR
2.3: setZ =

{
i ∈ {1, 2, . . . , N} : ℓ(θ̂, δ(i)) ≤ ℓ̂

}
;

2.4: IF |Z| > N − k THEN GOTO 2.1
% (|Z| = cardinality of setZ)

ELSE setGk = Z, θ∗k = θ̂, andℓ∗k = ℓ̂;

END FOR

The FOR cycle in 2.2 removes one by one the scenarios
in search of the one whose elimination gives the largest
improvement in the cost value; the search is restricted to
the δ(j) such thatℓ(θ̂, δ(j)) = ℓ̂ (the “active scenarios”)
since the elimination of nonactive scenarios cannot possibly
improve the cost value. Upon exiting theFOR cycle in2.2,
the solution is stored in̂θ and the corresponding optimal
value is ℓ̂. The procedure, however, does not immediately
updateGk at this stage, this is due to a detail that has
been omitted in the discussion made before the procedure.
Indeed, θ̂ is only a potential solution at levelk since
removing one scenarioδ(j) can generate a pair(θ̂, ℓ̂) such
that ℓ(θ̂, δ(i)) ≤ ℓ̂ for some previously removed scenario
δ(i). If so, we can reinstateδ(i) and proceed further to
eliminate another scenario before outputting the designθ∗k
at levelk, and point2.4 executes the test to decide if this
is the case. The outerFOR in point 2 cycles over thek
values, and point1 is an initialization.
The procedure comes to termination whenever in the
FOR cycle in 2.2 a scenario is found whose elimination
improves the cost value. For this not to be true, theℓ(θ, δ(i))
functions must cluster in an anomalous way, and termination
of the algorithm with probability one with respect to the
δ(1), δ(2), . . . , δ(N) extractions is assumed throughout the
following.

The procedure for computingθ∗k and ℓ∗k implements the
idea of discarding scenarios so as to improve performance.
Scenarios discarding is according to a greedy logic, and this
makes the procedure computationally feasible.

The procedure operates over a finite set of scenarios
δ(1), δ(2), . . . , δ(N) and the sole interpretation ofℓ∗k that is
available at this point is thatℓ∗k bounds the costℓ(θ∗k, δ)
for δ ∈ Gk. Scenariosδ(1), δ(2), . . . , δ(N) are the “visible”
uncertainty instances, those the procedure uses, and this is
only a tiny portion of the total uncertainty set∆. From a
higher perspective, a question arises now quite naturally
as how guaranteed the performance levelℓ∗k is for the vast
multitude of the other unseenδ ∈ ∆. This is the question
of inferring the invisible from the visible, and this issue is
addressed in the VRC Algorithm that is next developed.

VRC Algorithm
We start with the following definition.

Definition 1 (performance violation probability):Given a



design variablēθ and a performance level̄ℓ, theperformance
violation probabilityof (θ̄, ℓ̄) is defined as

V (θ̄, ℓ̄) := Pr{δ ∈ ∆ : ℓ(θ̄, δ) > ℓ̄},

i.e. V (θ̄, ℓ̄) is the probability with which the cost obtained
with θ̄ is bigger than level̄ℓ. ∗

Hence, being able to quantifyV (θ̄, ℓ̄) corresponds to
the ability of ascertaining the level of robustness that
performanceℓ̄ has relative to the whole uncertain set∆
when the design variable is̄θ. The VRC Algorithm outputs
θ∗k andℓ∗k as the procedure before and it additionally returns
εk, a tight upper bound forV (θ∗k, ℓ∗k). Thus, it succeeds
in providing a design and further complementing it with
solid performance guarantees, the ingredients to build the
plot of Figure 1. In a real application, the user inspects the
numerical valuesℓ∗k against the probabilitiesεk to meet a
suitable tradeoff before “buying” the appropriate solution
designθ∗k.

The algorithm requires three inputs, namelȳε, α%,
andβ, which have the following interpretation:
1. ε̄ sets an upper bound forε0, the performance violation
probability for k = 0;
2. α% is the proportion of the total numberN of scenarios
discarded upon exiting the algorithm;
3. β is a so-called confidence parameterwhose
understanding requires a bit of additional explanation
provided here. Due to randomization,θ∗k andℓ∗k are random
quantities depending onδ(1), δ(2), . . . , δ(N) and so is the
result thatV (θ∗k, ℓ∗k) ≤ εk so that one cannot totally exclude
that V (θ∗k, ℓ∗k) be bigger thanεk for some unfortunate
extractions δ(1), δ(2), . . . , δ(N). The input β allows the
user to exercise his option to reduce the chance for this to
happen below a desired levelβ. Although necessary from
a theoretical point of view,β has a very minor practical
relevance because selecting a fairly small value forβ (e.g.
β = 10−7, or even smaller) only very modestly affect the
computational burden of the algorithm as discussed later in
Section III-B.

VRC Algorithm
INPUT: ε̄, α%, β

OUTPUT: θ∗k, ℓ∗k, εk

1: compute the smallest integerN ≥ d (recall thatd is the
size ofθ) such that

d∑

i=0

(
N

i

)
ε̄i(1 − ε̄)N−i ≤

β

α% · N + 1
; 6 (6)

let k := ⌊α% · N⌋, the integer part ofα% · N ;
2: sample N independent scenariosδ(1), δ(2), . . . , δ(N)

from ∆ according to probability Pr;

6N can be computed via thebetainc function of MATLAB, a complete
code is provided in Appendix D.

3: run the “Procedure for computingθ∗k and ℓ∗k for k =
0, 1, . . . , k”;
RETURN θ∗k andℓ∗k for k = 0, 1, . . . , k;

4: for k = 0, 1, . . . , k solve forεk equation
(

d + k

k

) d+k∑

i=0

(
N

i

)
εi

k(1 − εk)N−i =
β

k + 1
; 7 (7)

RETURN εk for k = 0, 1, . . . , k.

The role of εk, and the fact that it indeed bounds
V (θ∗k, ℓ∗k), is analyzed in the next theorem.

Theorem 1:Relation V (θ∗k, ℓ∗k) ≤ εk holds true
simultaneously for allk = 0, 1, . . . , k with probability
at least1 − β. ∗

The proof of the theorem rests on establishing the fundamen-
tal result that the left-hand-side of equation (7) bounds the
probability thatV (θ∗k, ℓ∗k) > εk. This quantity is set equal
to β

k+1
so thatV (θ∗k, ℓ∗k) ≤ εk holds true simultaneously for

all k = 0, 1, . . . , k with probability1−
∑k

k=0
β

k+1
= 1− β.

The technical proof is given in Appendix A.

B. Further comments onN and εk

sample complexity N
The sizeN of the scenario set is the most significant factor
in determining the computational complexity of the VRC
Algorithm. It can be proved (see Appendix B) that theN
given in point1 of the VRC Algorithm is bounded by

N ≤

⌊
2

ε̄

(
d + ln

1

β
+ 1

)
+

4

ε̄
ln

(
2

ε̄

(
d + ln

1

β
+ 1

))⌋
+ 1,

(8)
where this formula is valid for any value of parameterα%.

(8) exhibits an approximately linear dependence on1
ε̄

and
a logarithmic dependence on1

β
. Thus,β can be made very

small (e.g.β = 10−7 or even smaller) with no significant
increase of the computational complexity.
One remarkable fact is that the design problem to which
VRC is applied only enters (8) throughd, the size of the
design variables; the dependence ond is linear. Instead,
N does not depend on the uncertainty set∆. This is in
contrast with approximation schemes based on a gridding
of ∆, an approach which suffers from the so-called curse
of dimensionality. This opens up the possibility of a wide
usage of the VRC Algorithm irrespective of the form of the
uncertainty entering the problem.

performance violation parameter εk

εk given by point4 of the VRC algorithm is bounded by

εk ≤
k

N
+

d + h +
√

h2 + 2(d + k)h

N
, (9)

where

h = ln(k + 1) + ln
1

β
+ d ·

[
1 + ln

d + k

d

]

7Appendix E provides a MATLAB code for this computation.



(see Appendix C for a proof).
(9) reveals important features ofεk. The first term in the
bound is k

N
, the empirical violation of the solution at level

k. Due to stochastic fluctuation, one cannot expect that the
real violation be belowk

N
with high confidence1 − β, and

the second term accounts for this.
As N increases, the second term goes to zero approximately
as O( 1√

N
), so that, fork = γ · N , εk approachesγ as

N grows. This behavior is depicted in Figure 9, whereεk

Fig. 9. εk as a function ofN for k = 0.2 · N (d = 2, β = 10−7, and
k = 0.2 · N ).

given by (7) is profiled againstN whenk = 0.2 · N (other
parameters wered = 2, β = 10−7, andk = 0.2 · N ).

C. An easy to implement VRC Algorithm

In this section, we present a simplified version of the
VRC Algorithm that requires less intervention by the user
and makes VRC more practical to implement.

A first simplification is obtained by providing explicit
values forN andεk. The idea is as follows. An inspection
of the original VRC Algorithm reveals that the result in
Theorem 1 continues to hold if one chooses

i. anyN ≥ d that satisfies the inequality in point1 of the
VRC Algorithm, not necessarily the smallest one;

ii. εk values bigger than those given by the solution of the
equation (7) in point4 of the VRC Algorithm.

Plainly, some price is paid by choosingN and εk as
indicated in i. and ii., both in terms of an increased
computational complexity (N is larger than required), as
well as because the probabilistic guaranteesεk become
looser. The choices ofN andεk that we suggest to use are
given by the right-hand-side of equations (8) and (9).
To further streamline the usage of the algorithm, we drop
β from the set of inputs the user has to assign. Indeed,
this parameter has a minor impact on the computational
complexity of the algorithm and can therefore be set to
a fixed low value. Specifically, we pickedβ = 10−7, a
number small enough to be negligible for practical purposes.8

810−7 is below the proportion of airplane crashes over the number of
flights. So, traveling by plane entails neglecting probabilities of this order
of magnitude.

The following “VRC – easy to implement Algorithm”
implements the above simplifications. Inputsε̄ andα% and
all outputs have the same meaning as in the original VRC
Algorithm.

VRC – easy to implement Algorithm
INPUT: ε̄, α%
OUTPUT: θ∗k, ℓ∗k, εk

1: set

N =

⌊
2

ε̄
(d + 17.2) +

4

ε̄
ln

(
2

ε̄
(d + 17.2)

)⌋
+ 1;

% (⌊·⌋ = integer part)
let k := ⌊α% · N⌋;

2: sample N independent scenariosδ(1), δ(2), . . . , δ(N)

from ∆ according to probability Pr;
3: run the “Procedure for computingθ∗k and ℓ∗k for k =

0, 1, . . . , k”;
RETURN θ∗k andℓ∗k for k = 0, 1, . . . , k;

4: for k = 0, 1, . . . , k set

εk =
k

N
+

d + h +
√

h2 + 2(d + k)h

N
,

where

h = ln(k + 1) + 16.2 + d ·

[
1 + ln

d + k

d

]
;

RETURN εk for k = 0, 1, . . . , k.

IV. A SIMULATION EXAMPLE

An example is presented to illustrate the methodology
introduced in this paper. The example is simple enough so
that different aspects can be easily explained and visualized.

Consider the following ARMA (Auto-Regressive Moving-
Average) system

yt+1 = ayt + but + c1wt + c2wt−1, (10)

where ut and yt are input and output, andwt is a
WN(0, 1) (white noise with zero mean and unitary

Fig. 10. The feed-forward compensation scheme.

variance) disturbance;a, b, c1, and c2 are real parameters,
with |a| < 1 (stability condition) andb 6= 0 (controllability
condition), whose values are not precisely known.



We assume thatwt is measured, and the objective is
to design a feed-forward compensator with structure

ut = θ1wt + θ2wt−1

that minimizes the asymptotic variance ofyt, see Figure 10.

If the system parametersa, b, c1, and c2 were known,
an optimal compensator would be easily found. Indeed,
substitutingut = θ1wt + θ2wt−1 in (10) gives

yt+1 = ayt + (c1 + bθ1)wt + (c2 + bθ2)wt−1,

from which the expression for the asymptotic variance ofyt

is computed as

E[y2
t ] =

(c1 + bθ1)
2 + (c2 + bθ2)

2 + 2a(c1 + bθ1)(c2 + bθ2)

1 − a2
.

Hence, the values ofθ1 andθ2 minimizing E[y2
t ] are seen

to be
θ1 = −

c1

b
and θ2 = −

c2

b
, (11)

resulting inE[y2
t ] = 0.

On the other hand, the system parameter values are not
always available in practical situations. More realistically,
the parameters are only partially known, and they take
value in a given uncertainty set∆, so that the choice of
the compensator parametersθ1 and θ2 have to be made
taking into account the different dynamical behaviors that
the system can possibly have.
As an example, suppose thatδ has two componentsσ1

and σ2 both ranging in[−1, 1], that is δ = (σ1, σ2) and
∆ = [−1, 1]2, and that the system parameters are expressed
as:

a =
3.5σ2

1 − 0.2

3σ2
1 + 0.3

· (0.32σ1 + 0.6),

b = 1 +
σ1σ

2
2

10
,

c1 =
−0.01 + (σ1 + σ2

2)2

0.02 + (σ1 + σ2
2)2

·

(
1 −

(σ1 − 1)(σ2 − 1)

2

)
,

c2 =
0.05

0.025 + (σ1 + σ2 − 2)2
.

The nominal values forσ1 and σ2 are σnom
1 = 0 and

σnom
2 = 0 corresponding toanom = −0.4, bnom = 1,

cnom
1 = −0.25, and cnom

2 = 0.0124. Based on (11), the
ensuing nominal compensator has parametersθnom

1 = 0.25
andθnom

2 = −0.0124. Figure 11 shows the output obtained

Fig. 11. Outputs obtained with the nominal compensator (left: nominal
system; right: perturbed system).

when this compensator is connected to thenominal system

and to another system (perturbed system) picked at random
in the uncertainty domain. The dramatic deterioration in
performance for the latter does not come as a surprise since
the nominal compensator is conceived with no concern for
uncertainty.

Moving to VRC we setε̄ = 0.5%, β = 10−7, α% = 3%,
and run the VRC Algorithm in Section III-A where Pr was
uniform over [−1, 1]2. N was N = 5427. The obtained
performance-violation plot is displayed in Figure 1.k by k

the plot offers the user different trade-off choices: the solid
curve represents the value ofE[y2

t ] which is guaranteed for
all systems but anεk proprotion, as displayed by the dashed
curve.

Based on an inspection of the curves, we selected
k = 60, a choice which is largely subjective and others
could have opted for a different choice. With this choice,
ε60 = 2.5% and ℓ∗60 = 1.42, with an improvement of76%
over the initial performance value of6.04 obtained for
k = 0. The compensator parameters wereθ∗1,60 = −0.24 and
θ∗2,60 = −0.59. According to Theorem 1, with probability
1 − β = 1 − 10−7 (in practice with probability 1) the
compensatorut = −0.24wt − 0.59wt−1 guarantees that
E[y2

t ] ≤ 1.42 for all plants in the uncertainty set∆ but a
small proportion of size no more thanε60 = 2.5%. Figure

Fig. 12. Region where the cost value is not guaranteed.

12 depicts the region in the∆ domain where the cost value
1.42 is not met, the volume of the region is1.2% of the total
volume of the uncertainty domain[−1, 1], below threshold
2.5%. What is fundamental is that the VRC Algorithm has
been able to determine a region of small volume whose
elimination guarantees a large improvement in the cost
value. This has been achieved by letting the problem speak,
while an a priori choice of∆ε obtained e.g. by a re-sizing
of the ∆ domain as discussed in Section II-C would have
instead produced little benefit.9

Figures 13–15 depict the value ofE[y2
t ] achieved for

9For completeness, we also considered a re-sizing of∆ = [−1, 1]2

to [−0.9874, 0.9874]2 (which leaves out a2.5% of the total volume),
and found that the robust compensator for[−0.9874, 0.9874]2 achieved
performance5.46.



the various systems in∆ by the nominal compensator
(Figure 13), and the compensators obtained by VRC for
k = 0 (Figure 14) and fork = 60 (Figure 15). In figure

Fig. 13. E[y2
t ] for nominal compensator.

Fig. 14. E[y2
t ] for compensator obtained fork = 0.

Fig. 15. E[y2
t ] for compensator obtained fork = 60.

15, the flat zone close to the corner(1, 1) corresponds to
the region where the performance is not guaranteed (so that
E[y2

t ] is in reality above the cutting value1.42 represented
in the figure).

Injecting a disturbance in the nominal and in the perturbed

systems as done in Figure 11 but this time using the
compensator obtained fork = 60 we measured the outputs
shown in Figure 16. Not surprisingly, the performance with

Fig. 16. Outputs obtained with the compensator obtained fork = 60 (left:
nominal system; right: perturbed system).

the nominal system becomes worse, while the performance
with the perturbed system improves, in line with the
provided guarantees.

APPENDIX

A. Proof of Theorem 1

To shorten the notation letδ := (δ(1), . . . , δ(N)). Note that
θ∗k, ℓ∗k are stochastic elements depending onδ, although such
a dependence is not explicitly indicated to ease the reading.
Define

B =
{
δ ∈ ∆N : ∃k ∈ {0, 1, . . . , k}

such thatV (θ∗k, ℓ∗k) > εk

}
,

i.e. B is the set of “bad” multi-extractionsδ from ∆N

leading for somek to a violation bigger thanεk. In these
notations, the theorem statement writes PrN{B} ≤ β.
Letting

Bk =
{
δ ∈ ∆N : V (θ∗k, ℓ∗k) > εk

}

be the event where the performance violation probability for
a givenk is bigger thanεk, we have thatB =

⋃k
k=0 Bk,

leading to the bound

PrN{B} ≤
k∑

k=0

PrN{Bk}. (12)

The theorem will be proved by computing PrN{Bk} for k =
0, 1, . . . , k, and then by summing overk.
Anticipating the result, we will show that

PrN{Bk} ≤

(
d + k

k

) d+k∑

i=0

(
N

i

)
εi

k(1 − εk)N−i, (13)

so that the thesis follows by substitution in (12):

PrN{B} ≤
k∑

k=0

[(
d + k

k

) d+k∑

i=0

(
N

i

)
εi

k(1 − εk)N−i

]

= [thanks to (7)]

=

k∑

k=0

β

k + 1
= β.

Thus, to complete the proof, we have to establish the
fundamental relation (13).



Fix a value for k. Given a subsetI = {i1, . . . , ik} of
k indexes from{1, . . . , N} (I = ∅, the empty set, ifk = 0),
let θ∗I be the solution to the minimax problem where the
scenarios with index inI have been removed, i.e.

θ∗I := arg min
θ∈Rd

max
i∈{1,...,N}−I

ℓ(θ, δ(i)), (14)

and letℓ∗I be the corresponding cost value, i.e.

ℓ∗I := max
i∈{1,...,N}−I

ℓ(θ∗I , δ(i)).

Moreover, let

∆N
I = {δ ∈ ∆N : ℓ(θ∗I , δ(i)) > ℓ∗I , ∀i ∈ I}.

Thus, aδ is in ∆N
I if the performance valueℓ∗I is violated

in correspondence of all the scenarios inI that have been
removed in the construction (14) ofθ∗I .
Since the pairθ∗k, ℓ∗k generated by the VRC Algorithm are
such that the performance valueℓ∗k is violated in correspon-
dence of exactlyk scenarios, it is clear that(θ∗k, ℓ∗k) =
(θ∗I , ℓ∗I) for someI such thatδ ∈ ∆N

I . Thus,

Bk = {δ ∈ ∆N : V (θ∗k, ℓ∗k) > εk}

⊆
⋃

I∈I
{δ ∈ ∆N

I : V (θ∗I , ℓ∗I) > εk} (15)

up to a zero probability set, whereI is the collection of all
possible choices ofk indexes from{1, . . . , N}.
The sought bound for PrN{Bk} is now obtained by first
bounding PrN{δ ∈ ∆N

I : V (θ∗I , ℓ∗I) > εk}, and then
summing overI ∈ I.

Fix an I = {i1, . . . , ik}, and write

PrN{δ ∈ ∆N
I : V (θ∗I , ℓ∗I) > εk}

=

∫

(εk,1]

PrN
{
∆N

I

∣∣∣ V (θ∗I , ℓ∗I) = v
}

dFV (v)

=

∫

(εk,1]

PrN
{

ℓ(θ∗I , δ(i)) > ℓ∗I , ∀i ∈ I
∣∣∣

V (θ∗I , ℓ∗I) = v
}

dFV (v), (16)

where FV is the cumulative distribution function of the
random variableV (θ∗I , ℓ∗I), and PrN{∆N

I | V (θ∗I , ℓ∗I) = v}
is the conditional probability of the event∆N

I under the
condition thatV (θ∗I , ℓ∗I) = v (see eq.(17),§ 7, Chapter II
of [42]).
To evaluate the integrand in (16), remind thatV (θ∗I , ℓ∗I) = v

means that Pr{δ : ℓ(θ∗I , δ) > ℓ∗I} = v; then, owing to
the independence of the scenarios, the integrand equalsvk.
Substituting in (16) yields

PrN{δ ∈ ∆N
I : V (θ∗I , ℓ∗I) > εk} =

∫

(εk,1]

vk dFV (v).

(17)

To proceed, we have now to appeal to a result onFV from
[14]:

FV (v) ≥ F̄V (v) := 1 −
d∑

i=0

(
N − k

i

)
vi(1 − v)N−k−i. 10

This inequality is tight, i.e. it holds with equality for a
whole class of problems, that called “fully-supported” in
[14], Definition 3.
Now, the integrandvk in (17) is an increasing function ofv,
so thatFV (v) ≥ F̄V (v) implies that

∫

(εk,1]

vk dFV (v) ≤

∫

(εk,1]

vk dF̄V (v). (18)

This can be verified by the calculation:

∫

(εk,1]

vk dFV (v)

= [Theorem 11,§6, Chapter II of [42]]

= 1 − εk
kFV (εk) −

∫

(εk,1]

FV (v)kvk−1 dv

≤ 1 − εk
kF̄V (εk) −

∫

(εk,1]

F̄V (v)kvk−1 dv

=

∫

(εk,1]

vk dF̄V (v).

Hence, PrN{δ ∈ ∆N
I : V (θ∗I , ℓ∗I) > εk} can finally be

bounded as follows:

PrN{δ ∈ ∆N
I : V (θ∗I , ℓ∗I) > εk}

≤ [use (17) and (18)]

≤

∫

(εk,1]

vk dF̄V (v)

= [the density ofF̄V is

(N − k − d)

(
N − k

d

)
vd(1 − v)N−k−d−1]

=

∫

(εk,1]

(N − k − d)

(
N − k

d

)
vk+d(1 − v)N−k−d−1 dv

= [integration by parts]

=

(
N−k

d

)
(

N
d+k

)
d+k∑

i=0

(
N

i

)
εi

k(1 − εk)N−i. (19)

10To be precise, this result follows from Theorem 1 in [14] by noting
that the minimax problemminθ∈Rd maxi∈{1,...,N}−I ℓ(θ, δ(i)) can be
rewritten as

min
θ∈Rd,h∈R

h

subject to:ℓ(θ, δ(i)) ≤ h, i ∈ {1, . . . , N} − I,

i.e. a program withd + 1 optimization variables andN − k constraints.



To conclude the proof, go back to (15) and write:

PrN{Bk} ≤
∑

I∈I
PrN{δ ∈ ∆N

I : V (θ∗I , ℓ∗I) > εk}

= [I contains

(
N

k

)
choices]

=

(
N

k

)
· PrN{δ ∈ ∆N

I : V (θ∗I , ℓ∗I) > εk}

≤ [use (19)]

≤

(
N

k

)(
N−k

d

)
(

N
d+k

)
d+k∑

i=0

(
N

i

)
εi

k(1 − εk)N−i

=

(
d + k

k

) d+k∑

i=0

(
N

i

)
εi

k(1 − εk)N−i,

which is (13). ∗

B. Proof of (8)

Letting

M :=

⌊
2

ε̄

(
d + ln

1

β
+ 1

)
+

4

ε̄
ln

(
2

ε̄

(
d + ln

1

β
+ 1

))⌋
+ 1,

we have

M ≥
2

ε̄

(
d + ln

1

β
+ 1

)
+

4

ε̄
ln

(
2

ε̄

(
d + ln

1

β
+ 1

))

= [put µ = d + ln
1

β
+ 1]

=
2µ

ε̄
+

2

ε̄
· 2 · ln

(
2µ

ε̄

)

≥ [since2 ≥
µ

µ − 1
]

≥
2µ

ε̄
+

2

ε̄
·

µ

µ − 1
ln

(
2µ

ε̄

)

≥
2

ε̄
·

µ

µ − 1

[
µ − 1 + ln

(
2µ

ε̄

)]

=
1

ε̄
2 − 1

2µ
ε̄

[
µ − 1 + ln

(
2µ

ε̄

)]
,

which implies

M
ε̄

2
≥ µ − 1 + ln

(
2µ

ε̄

)
+

1
2µ
ε̄

M

≥ [since1 −
2µ

ε̄
≤ 0]

≥ µ − 1 + ln

(
2µ

ε̄

)
+

1
2µ
ε̄

(M + 1 −
2µ

ε̄
)

≥ [since ln(x) +
1

x
(y − x) ≥ ln(y)]

≥ µ − 1 + ln(M + 1)

= d + ln
1

β
+ ln(M + 1).

Hence,

M
ε̄

2
− d ≥ ln

M + 1

β

⇓ [since
(Mε̄ − d)2

2Mε̄
≥ M

ε̄

2
− d]

(Mε̄ − d)2

2Mε̄
≥ ln

M + 1

β

⇓

e−
(Mε̄−d)2

2Mε̄ ≤
β

M + 1
,

which, by applying the Chernoff’s bound for the Binomial
tail, see [17] or [49], gives

d∑

i=0

(
M

i

)
ε̄i(1 − ε̄)M−i ≤

β

M + 1
≤

β

α%M + 1
.

Thus, M satisfies (6); since theN selected in point1 of
the VRC Algorithm is the smallest integer satisfying (6), we
haveN ≤ M . ∗

C. Proof of (9)

If εk < k+d
N

, then (9) is trivially true.
If insteadεk ≥ k+d

N
, then the well-known Chernoff bound

for the Binomial tail (see [17] or [49]) applies, yielding

d+k∑

i=0

(
N

i

)
εi

k(1 − εk)N−i ≤ e
− (Nεk−d−k)2

2Nεk .

Moreover, it holds that
(

d + k

k

)
≤

(d + k)ded

dd
,

and so the left-hand-side of (7) is bounded by
(d+k)ded

dd e
− (Nεk−d−k)2

2Nεk . Hence,

(d + k)ded

dd
· e

− (εkN−d−k)2

2Nεk ≥
β

k + 1
.

This inequality can be rewritten as

(Nεk − d − k)2 ≤ 2Nεk · ln

[
k + 1

β
·
(d + k)ded

dd

]
,

which, made explicit forεk, gives

εk ≤
k

N
+

d + h +
√

h2 + 2(d + k)h

N
,

where we have posed

h = ln

[
k + 1

β
·
(d + k)ded

dd

]

= ln(k + 1) + ln
1

β
+ d ·

[
1 + ln

d + k

d

]
.

∗



D. MATLAB code to computeN

Function inputs:eps = ε̄; alph = α%; bet = β; d =
no. of design variablesd.
Notes: in the function,N is computed by bisection;N1 is
the initial lower-bound, whileN2 is the initial upper-bound
and corresponds to formula (8).

function findN

function N = findN(eps,alph,bet,d)

N1 = d;
N2 = floor( 2/eps*(d+log(1/bet)+1) +
4/eps*log(2/eps*(d+log(1/bet)+1)) ) + 1;

while N2-N1>1

N = floor((N1+N2)/2);
if betainc(1-eps,N-d,d+1)
> bet/(alph*N+1)
N1=N;
else
N2=N;
end

end

N = N2;

E. MATLAB code to computeεk

Function inputs:k = no. of removed scenariosk; N = no.
of scenariosN ; kmax = k; bet = β; d = no. of design
variablesd.

function findepsk

function epsk = findepsk(k,N,kmax,bet,d)

eps1 = 0;
eps2 = 1;
coeff = 1/(d*beta(k+1,d));

while eps2-eps1 > 1e-10

epsk = (eps1+eps2)/2;
if coeff*betainc(1-epsk,N-k-d,d+k+1)
> bet/(kmax+1)
eps1 = epsk;
else
eps2 = epsk;
end

end

epsk = eps2;
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