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Abstract: In this paper, we consider the problem of estimating unknownparameters of the model of
an induction motor in a sensorless environment. A common practice consists in performing estimation
through a series of bench tests, by letting the motor operatein steady-state. This way of proceeding,
however, does not take into account the high sensitivity of some parameters to the motor operating
condition. The issue, then, is to set-up an automaticestimator, able to to supply reliable estimates of the
parameters from measurements taken from the actual functioning of the motor. Two different estimation
paradigms are compared, namely the Prediction Error (PE) paradigm, which has become a standard in
the practice of system identification, and the recently introduced Two-Stage (TS) paradigm. Advantages
and drawbacks of such methods in the context of induction motors are spotted out by means of simulation
experiments. It turns out that the TS method may offer a validalternative to the PE method.

Keywords:Parameter estimation, Grey-box identification, TS method,Prediction Error Methods.

1. INTRODUCTION

The target of this paper is to discuss the use of parameter
estimation techniques for the setup from experimental dataof
models of induction motors in a sensorless environment.
Like all motors, induction motors have a fixed stator and a
mobile rotor, but, differently from the others, they are charac-
terized by a poly-phase stator windings besides a three-phase
rotor windings. Feeding the windings of the stator with a sym-
metrical alternating voltage, a magnetic field is generatedwhich
induces a current flow in the windings of the rotor. This current
generates an additional magnetic field which tends to oppose
to the stator current. While the motor is kept powered, this
effort produces an electromagnetic torque which makes the
rotor move.
Many different sets of equations describing the behavior ofan
induction motor can be found in the literature, Leonhard (1985),
Krause (1986). In this paper, we consider the following well
known fifth order model taking into account both the dynamics
of the stator currents and of the rotor fluxes, see e.g. Marino
et al. (1993):
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In this model, all variables refers to the fixed reference frame
of the rotor. The state variables are the rotor speedω , the rotor
fluxes(ψa,ψb), and the stator currents(ia, ib). The currentsia
andib are also the measurable outputs of the system, whileua
andub, denoting the stator voltages, are the control inputs.Tl
instead is the load torque and can be regarded as an external,not
measurable, disturbance. The model depends on a number of
parameters, that is the rotor moment of inertiaJ, the resistances
(Rr ,Rs) and the inductances(Lr ,Ls) of the rotor and stator
windings, and the mutual inductanceM. In the model equations,
the following notation was adopted:α = Rr

Lr
, β = M

σLr
, µ = M

JLr
,

σ = Ls(1− M2

LsLr
).

Model (1) provides a description of an induction motor which
is accurate enough for most applications, as discussed in many
contributions such as Lin et al. (2000), Feemster et al. (2001),
Marino et al. (1993, 2000, 2005, 2008). Yet, the problem of
determining the values of parametersJ, Rr , Rs, Lr , andLs, in
order to fit the model to the real motor data, arises.
According to the literature, Leonhard (1985), Krause (1986),
Feemster et al. (2000), the unknown parameters are typically
estimated through a series of bench-tests by letting the system
operate in steady-state with nominal inputs. The sought values
for the parameters are then retrieved by processing measured
signals, according to equations derived from a simplified model
of the motor steady-state operating condition.
This way of proceeding typically returns estimates which are
reliable for many situations of interest, so that it has become
a standard in the practice of electrical motors. On the other
hand, it may present serious limitations. To be precise, bench-
tests basically assume that parameters are constant, without
taking into account the high sensitivity of some of them to
the working condition of the motor. For instance, it is well
known that resistive parameters may vary with temperature up



to 100% of their nominal value. In turn, temperature depends
in a nontrivial way on the motor state variables, the applied
load torque, and other exogenous sources of variation, so that
temperature is subject to unpredictable changes. In a sensorless
framework (where e.g. the temperature cannot be measured by
means of a dedicated sensor), and in those applications where
the motor working conditions may have a considerable varia-
tion (see e.g. Lin et al. (2000), Feemster et al. (2001), Marino
et al. (2000, 2005, 2008)), parameters must be estimated based
on input/output measurements taken during the actual operating
condition of the system. This calls for more sophisticated pa-
rameter estimation methods, and this paper aims at discussing
advantages and drawbacks of a recently developed method in
comparison with more standard techniques.
The estimation problem we want to tackle is a grey-box (some-
times also called white-box, Bohlin (2006)) identificationprob-
lem, Ljung (1999), Bohlin (2006), being the model of the sys-
tem completely given and the uncertainty restricted to the lack
of knowledge of a number of parameters with physical mean-
ing. Moreover, the system is continuous-time and highly non-
linear. Here, we consider two different estimation paradigms
which seem to better fit with the problem at hand. Precisely, we
will consider both the Prediction Error (PE) paradigm, which
has become a standard in the practice of system identification,
Ljung (1999), and the Two-Stage (TS) paradigm, which has
been recently introduced in Garatti and Bittanti (2008), Bittanti
and Garatti (2008) and which is specifically tailored to grey-
box identification problems like the one discussed here.
The remainder of the paper is organized as follows. Section 2
provides a description of the PE and TS paradigms. Then, the
experimental setting is given in Section 3, while the simulation
results and the comparison between PE and TS are presented in
Section 4. Some conclusions are eventually drawn in Section5.

2. ESTIMATION METHODS

We will adopt the following notation. Lettingt0 be the sam-
pling starting time andT the sampling period,u(k) = [ua(t0+
kT) ub(t0 + kT))]′ is the sampled input vector, whiley(k) =
[ia(t0 + kT)) ib(t0 + kT))]′ + e(k) the sampled output vector
corrupted by some measurements noise. We assume thatN
measurements are collected. The vector of unknown parameters
will be denoted byθ ∈ R

q, whereq is the number of uncertain
parameters (for model (1)q may range from 1 to 5).
The estimation problem is solved by designing a suitable esti-
mator, that is a function̂f : R4N→ R

q mapping the measured
observationDN = {y(1),u(1), . . . ,y(N),u(N)} into an estimate
θ̂ for the unknown parameter vectorθ . The quality of the de-
signed estimator must be then evaluated based on its capability
of making the estimation error‖θ̂−θ‖ small forθ ranging over
a suitable domain, but also on its computational complexity,
that is the time required to compute the estimate from available
observations. This latter is a somewhat overlooked aspect which
however is of great importance in practice, especially when
estimation is required for real-time applications.
The problem of parameter estimation is of vital importance
and it has been considered since the early days of IFAC. In
the proceedings of the first World Congress in Moscow, 1960,
one can already find a paper on this issue written by John
Westcott, one of the signers of the IFAC resolution of 1956,
Bittanti (2008). Further seminal works are Åström and Bohlin
(1965), Mayne (1966). A solid estimation framework is the of
Prediction Error (PE) methods, see Ljung (1999). Although the

PE method has proven effective in a number of applications,
its main criticality is that the estimator̂f is implicitly defined,
and this can possibly lead to a computationally demanding
algorithm unless a severe deterioration of the estimation error
is accepted, See next Section 2.1.
To prevent this drawback of PE, which is common to many
other estimation approaches, a second estimation paradigmis
introduced, namely the Two-Stage paradigm which aims at
finding anexplicit estimator by means of intensive simulations
of the motor model. The TS paradigm thus operates in a com-
plementary way with respect to the PE paradigm and it may
offer a valid alternative in some cases, see Section 2.2.

2.1 Prediction Error method

In the Prediction Error method the loss function

V(θ ) =
N

∑
i=1
‖y(i)− ŷ(i,θ )‖2

is considered, wherêy(i,θ ) is a predictor of the system output
derived from the model equations and based on the input/output
data up to timei − 1. The estimate ofθ is then obtained by
minimizingV(θ ), viz.

θ̂ = argmin
θ

V(θ ),

so that the estimator̂f mapping observations into estimates is
implicitly defined by the optimization problem itself. Thislatter
is typically tackled by resorting to gradient-like methods.
The PE paradigm has been around for decades and has been
analyzed in great detail. It has become the mainstream in
black-box identification problems, but it applies to grey-box
identification as well, with no conceptual twisting.
The main advantages of such approach are the solid theoretical
background for consistency analysis, Ljung (1999), Söderström
and Stoica (1989) and its general applicability. As for thislatter
aspect, observe that the gradient of the prediction error can be
computed with generality once a model of the plant is available,
possibly via numerical approximations.
However, the PE paradigm may suffer from computational
drawbacks mainly due to the fact thatV(θ ) can be non-convex
with many local minima which may trap the numerical solution
far away from the true minimizer, Bohlin (1971), Söderström
(1975), Ljung (1999). Ignoring this problem would lead to
biased (inconsistent) estimates, so that minimization is carried
out by means of multiple attempts, i.e. by running the numerical
resolution method many times with different initializations
chosen from a grid in the parameter space. As is clear, the
finer the grid, the better the chance to converge to the global
minimizer, but in this case one may run into the curse of
dimensionality leading to a high computational complexity.

2.2 Two Stage paradigm

The TS method resorts to the system model to synthetically
generate bysimulationinput/output data for a number of dif-
ferent values of the unknown parameterθ , sayθ1,θ2, . . . ,θm,
extracted from the uncertainty domain. That is, we collectN
measurements

DN
1 = {y1(1),u1(1), . . . ,y1(N),u1(N)}

for θ = θ1; N measurements
DN

2 = {y2(1),u2(1), . . . ,y2(N),u2(N)}

for θ = θ2; and so on. By repeated simulation experiments one



θ1 DN
1 = {y1(1),u1(1), . . . ,y1(N),u1(N)}

θ2 DN
2 = {y2(1),u2(1), . . . ,y2(N),u2(N)}

...
...

θm DN
m = {ym(1),um(1), . . . ,ym(N),um(N)}

Table 1.The simulated data chart as the starting point of the
TS method.

can eventually work out a set ofmpairs{θi ,DN
i } as summarized

in Table 1. Such set of data is referred to as thesimulated data
chart.
From the simulated data chart,f̂ : R4N → R

q is reconstructed
as that map minimizing the mean square estimate error over
simulated data. That is,

f̂ ←min
f

1
m

m

∑
i=1

∥∥∥θi− f (yi(1),ui(1), . . . ,yi(N),ui(N))
∥∥∥

2
. (2)

Should f̂ be found, then theθ corresponding to actual measure-
mentsDN = {y(1),u(1), . . . ,y(N),u(N)} is estimated as

θ̂ = f̂ (y(1),u(1), . . . ,y(N),u(N)).

As is clear, solving Problem (2) requires the preliminary choice
of a suitable class of functionsF within which performing
optimization. This is indeed a critical issue, since ifF is a class
of low-complexity functions, then it is difficult to replicate the
relationship linkingDN to θ for all values ofθ (bias error); on
the opposite, ifF is a class of high-complexity functions, then
the over-fitting issue arises (variance error), see Ljung (1999),
Söderström and Stoica (1989).
Due to the high dimensionality of the problem (f , indeed,
depends upon 4N variables, normally a very large number if
compared to the number of experimentsm), a direct selection
of F that achieves a sensible compromise between bias and
variance errors is difficult to perform. In the TS method, hence,
the selection of the family of functionsF is split in two steps.
This splitting is the key to determine a proper classF and, in
turn, to obtain a good estimator̂f .
To be more precise, the objective of the first step is to reducethe
dimensionality of the estimation problem, by generating a new
data chart. The new chart is composed again ofm sequences;
however, each sequence is constituted by a limited numbern
of samples (n≪ N). We will call such sequencescompressed
artificial data sequencesand the corresponding chart thecom-
pressed artificial data chart. In the second step, the map be-
tween the compressed artificial observations and parameterθ
is identified. By combining the results of the two steps, the map
f̂ is finally unveiled.
We now give more details on each of the two stages.

First stage. The first step consists in a compression of the
information conveyed by measured input/output sequencesDN

i

in order to obtain data sequencesD̃n
i of reduced dimensionality.

While in the dataDN
i the information on the unknown parame-

ter θi is scattered in a long sequence ofN samples, in the new
compressed artificial datãDn

i such information is compressed
in a short sequence ofn samples (n≪ N). This leads to a

θ1 D̃n
1 = {α

1
1 , . . . ,α

1
n}

θ2 D̃n
2 = {α

2
1 , . . . ,α

2
n}

...
...

θm D̃n
m = {αm

1 , . . . ,αm
n }

Table 2.The compressed artificial data chart.

new compressed artificial data chart constituted by the pairs
{θi , D̃n

i }, i = 1, . . . ,m, see Table 2.
The compressed artificial data sequenceD̃n

i can be derived
from DN

i by resorting to a standard identification method.
To be precise, one can fit a simple model to each sequence
DN

i = {yi(1),ui(1), . . . ,yi(N),ui(N)}; then, the coefficients of
this model, sayα i

1,α
i
2, . . . ,α

i
n, are seen as compressed artificial

data, i.e.̃Dn
i = {α i

1, . . . ,α
i
n}.

To fix ideas, we suggest the following as a typical method
for the generation of compressed artificial data. For eachi =
1,2, . . . ,m, the data sequence

DN
i = {yi(1),ui(1), . . . ,yi(N),ui(N)}

can be concisely described by a Multi-Input-Multi-Output
(MIMO) ARX model (here, eachα i

k is a 2×2 matrix):

yi(t) = α i
1yi(t−1)+ · · ·+α i

ny
yi(t−ny)+

α i
ny+1ui(t−1)+ · · ·+α i

ny+nu
ui(t−nu),

with a total number of coefficientsn= ny+nu. The coefficients
α i

1, . . . ,α
i
n of this model can be worked out by means of the

Least Squares algorithm, Ljung (1999), Söderström and Stoica
(1989).
Note that the simple model class selected to produce the com-
pressed artificial data does not need to have any physical mean-
ing; this class plays a purely instrumental and intermediary role
in the process of finding a function̂g : R4N→R

4n transforming
each simulated data sequenceDN

i into the a new sequence of
compressed artificial datãDn

i conveying the information onθi .
Since as compressed artificial data we take the coefficients of
a simple model, identified fromDN

i , functionĝ turns out to be
defined by the chosen class of simple models together with the
corresponding identification algorithm.

Second stage. Once the compressed artificial data chart in Ta-
ble 2 has been worked out, problem (2) becomes that of finding
a map̂h :R4n→R

q which fits the set ofmcompressed artificial
observations to the corresponding parameter vectors, i.e.

ĥ←min
h

1
m

m

∑
i=1

∥∥∥θi−h(α i
1, . . . ,α

i
n)
∥∥∥

2
. (3)

Function minimization in (3) is reminiscent of the original
minimization problem in (2). However, beingn small, the bias
versus variance error trade-off is no more a big issue as before,
and it is possible to resort to one of the many methods available
in the literature for function fitting.
As for the choice ofh one can e.g. select a suitable Neural
Networks or a NARX model, while the minimization in (3) can
be performed by resorting to the back-propagation algorithm
or to other standard algorithms developed for these classes
of nonlinear functions. At this stage, cross-validation can be
profitably employed to select the network/NARX model order.

Use of the TS estimator. The TS estimator is based on two
functions: ĝ and ĥ. The former is thecompression function,
transforming simulated data into compressed artificial data. The
latter is thefitting functionproviding the map from compressed
artificial data to the parameter estimate. Whileĝ is chosen
by the designer by selecting the intermediary identification
algorithm in the first stage, in the second stage the designer
chooses a suitable class of functions andĥ is identified by
fitting the extracted parameter values to the correspondingcom-



pressed artificial data. The estimatorf̂ mapping input/output
data into the estimate forθ is eventually given bŷh(ĝ(·)), i.e.
by the composition of̂g and ĥ. When the actual input/ouput
sequenceDN = {y(1),u(1), . . . ,y(N),u(N)} is observed, the
corresponding unknown parameter can then be estimated as:
θ̂ = ĥ(ĝ(DN)). See Figure 1 for a pictorial representation.

Fig. 1.The estimator function composition.

Although the training of the TS estimator relies on intensive
simulations of the model, this computational effort is relegated
to the training of the estimator only, and it is worth stressing
that the estimator eventually provided by the TS method is a
map f̂ = ĥ(ĝ(·)) which is explicitly given and which permits
to generate estimates, by evaluatingf̂ in correspondence of the
seen data sequence, at extremely low computational cost. This
is in contrast with other estimation methods, where, beingf̂
implicitly defined, each generation of an estimate requiresa
computationally demanding data processing.
Remark 1.(Sampling issues). An implementation choice the
user is required to perform in TS method regards the sampling
of the parameter vectorθ . The idea is to randomly extract
values for the unknown parameter vectorθ over the range of
interest. While in general uniform distribution can be consid-
ered, other probability distributions can be used if some a-priori
information is available (see e.g. Tempo et al. (2005) for algo-
rithms to perform random extractions from various probability
distribution).
The issue, then, is how many samples need to be randomly
extracted to ensure a given accuracy, that is to ensure that the
empirical estimation error variance

1
N

N

∑
i=1
‖θi−h(α i

1, . . . ,α
i
n)‖

2

is close enough to its probabilistic counterpart

E‖θ −h(α1, . . . ,αn)‖
2
.

If this was the case, indeed, the map reconstructed by optimiz-
ing the empirical cost would be satisfactory not only for the
extractedθi , but also for other, unseen, instances ofθ . In the
context of the TS paradigm, the easiest way is to resort to cross-
validation to a-posteriori assess the accuracy of the obtained
estimator.
It is perhaps worth remarking, however, that the convergence of
the empirical cost to the probabilistic one does not depend on
the dimensionality ofθ , i.e. convergence does not suffer from
the curse of dimensionality. The reason is the same why Mon-
tecarlo methods are successful in computing multiple integrals:
the overall effort for computing an integral in high dimensional
spaces is the same as for a 1-dimensional integral. This is the
magic of randomization, Tempo et al. (2005).

3. EXPERIMENTAL SETTING

The induction motor model in (1) was implemented and simu-
lated inMATLAB and both the PE and the TS estimation meth-
ods were applied to retrieve the parameters from measurements
of input and output signals. More precisely, we manipulated
the voltages applied to stator windings by means of a square-
wave three-phase inverter controller, while, according toour

sensorless framework, we assumed that stator currents could be
measured only. In order to take into account possible measure-
ment errors, we added to each output a zero mean white noise
with suitable variance (standard deviation= 100mA).
The assumed uncertainty was in line with Lin et al. (2000),
Marino et al. (2008).
Among other parameters, the rotor resistanceRr is the one
that is more affected by uncertainty due its sensitivity to tem-
perature1 . We hence assumed thatRr was unknown and that
its range of variability was[0.5Rrn,2Rrn], whereRrn = 3.3Ω
represents the resistance nominal value. This is typical for a
number of motors and applications as revealed by experimental
tests. For simplicity, all other parameters were supposed to be
constant and equal to their nominal value (that is,Lr = 0.375H,
Ls = 0.365H, J = 0.0075kgm2, andM = 0.34H).
BesidesRr , we supposed that another source of uncertainty was
present, namely the imprecise knowledge of the load torqueTl
being this latter dependent on the particular use of the motor.
To be precise, the range of variability forTl was[0.88Tln,5Tln],
whereTln = 5.104Nmis the nominal value forTl .
Note that the load torqueTl is not properly a model parameter
although it can be treated as such.Tl indeed is a constant dis-
turbance input whose lack of knowledge makes the estimation
problem even more difficult. As such,Tl was not required to
be estimated. Rather, the target of our problem was that of
estimatingRr robustly with respect to the values taken byTl .

3.1 PE estimator

The PE method was implemented by resorting to functionpem
of the System Identification Toolbox ofMATLAB, Ljung (2009).
This function required to specify (by means of theidnlgrey
data-structure) the output-prediction model of the motor.This
latter can be derived from equations (1), taking into account
the disturbances acting on the system: the load torqueTl and
the error measurements on the output. Since computing the
predictor model with respect to both these two disturbances
is quite complicated, we decided to treatTl as an unknown
parameter and let thepem function estimate bothRr and Tl .
This way, the model became a standard output error model from
which computing the predictor model is trivial.
As for the initialization of the PE algorithm, 3 different ini-
tializations chosen at random from the parameter uncertainty
domain were used so as to compromise between computational
complexity and avoidance of local minima.

3.2 Training of the TS estimator

In order to apply the TS method,m= 2500 values forθ = Rr
were extracted uniformly from the interval[0.5Rrn,2Rrn] and,
correspondingly, we ran 2500 simulations of the motor model,
each time adopting the control returned by the square-wave
three-phase inverter controller as input and a constant value
randomly chosen from[0.88Tln,5Tln] as torque load. This way
we trained the TS estimator to be robust with respect to the
imprecise knowledge ofTl .
By sampling at 1kHzthe input and output signals, we obtained
2500 input/output sequences eachN = 1000 samples long:

ui(1),yi(1),ui(2),yi(2), . . . ,ui(1000),yi(1000),

1 It is worth noticing that the stator resistanceRs presents the same sensitivity
to temperature. Yet,Rs can be trivially estimated being the measurements of
both stator voltages and currents available.



i = 1,2, . . . ,2500. These sequences together with the 2500
extracted values forθ formed the simulated data chart.
For the generation of the compressed artificial data chart a
MIMO ARX(3,3) model was considered:

yi(t) = α i
1yi(t−1)+ · · ·+α i

3yi(t−3)+

α i
4ui(t−1)+ · · ·+α i

6ui(t−3).

The parametersα i
1,α

i
2, . . . ,α

i
6, i = 1,2, . . . ,2500, obtained by

performing identification over the sequence

ui(1),yi(1),ui(2),yi(2), . . . ,ui(1000),yi(1000)
constituted the compressed artificial data chart.
The final estimator̂h(α i

1,α
i
2, . . . ,α

i
6) was instead derived by

resorting to a feed-forward 4-layers neural network, with atotal
of 15 neurons in the hidden layers and 1 linear neurons in the
output layer, Haykin (1998). The network weights were trained
by the usual back-propagation algorithm. The order as well as
the structure of the neural network was chosen by means of
cross-validation.
The entire process for the training of the TS estimator took
about 20 minutes on a standard 2.40 GHz dual-processor com-
puter, and it produced an explicit estimatorf̂ (·) = ĥ(ĝ(·)) de-
fined as the composition of the least squares algorithm and the
trained neural network.

4. SIMULATION RESULTS

In order to test both the PE estimators and the TS estimator, we
picked at random new 100 values for the uncertain parameter
Rr , and correspondingly we ran new 100 simulations of the
motor model with input generated by the square-wave three-
phase inverter controller and torque loadTl extracted uniformly
in [0.88Tln,5Tln]. The 100 data sequences obtained by sampling
input and output signals at 1kHzwere made available to the PE
and TS estimators so as to generate 100 PE estimates and 100
TS estimates. These estimates were eventually compared to the
true values of the parameters so as to evaluate the performance
of the two estimators.

Figures 2 and 3 depict the estimation results for the PE and
TS methods respectively. In each figure, the estimates ofRr
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Fig. 2.Estimation results for the PE method.

as returned by the corresponding estimator are plotted against
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Fig. 3.Estimation results for the TS method.

the true parameter values. That is, for each point, thex-axis is
the extracted value for the resistance parameterRr , while they-
axis is the corresponding estimate supplied by the implemented
estimation method. Of course, a good estimator must return
points displaced nearby the plot bisector.
As it can be seen, both estimators are unbiased and provide
satisfactory results for most of the cases. However, the behavior
of PE and TS is quite different.
If on one hand in the 90% of the cases the PE and TS methods
return comparable results (admittedly, with PE estimates which
are closer to the true values in many cases), on the other hand, in
the other 10% of cases, the PE estimates are completely unreli-
able with an estimation error that can even reach 5Ω. TS instead
provides better overall results, with an estimation error which is
more uniformly distributed and anyway bounded by 0.6Ω. The
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Fig. 4.Estimation errors - PE = dashed lined, TS = continuous line

difference between PE and TS can be also appreciated in Figure
4 where the estimation errors of PE and TS are plotted on the
same graph.
The presence of unreliable PE estimates has to be ascribed to
the problem of local minima, which in some cases trap the
solution far away from the parameter true value in spite of the
redundancy of initializations adopted. To reduce the number of
incorrect estimates one could increase the number of initial-
izations of the PE algorithm for each estimate. Yet, this would
increase the PE computational effort, which is already quite



high if compared to that required by the TS estimator.
Computational time is indeed another important aspect to take
into account in order to provide a fair evaluation of the perfor-
mance of an estimator. In this respect, note that, on a standard
2.40 GHz dual-processor computer, the PE method took 1311
seconds (i.e. about 22 minutes) to generate the whole 100 esti-
mates with an average of 13 seconds per estimate, while the TS
method overall required 2.11 seconds only with an average of
0.021 seconds per estimate. Thus, the required computational
effort for the TS estimator is 3 orders of magnitude below that
for the PE method.
The overall performances of PE and TS are summarized in

ARE MRE AET
TS: 0.0230 0.1201 0.021s
PE: 0.0352 1.0163 13s

Table 3.PE performances vs. TS performances

Table 3 where the following acronyms are used: ARE = Av-
erage Relative Error, MRE = Maximum Relative Error, AET =
Average Estimation Time.

5. CONCLUSIONS

In this paper, the well known Prediction Error (PE) paradigm
and the recently introduced Two Stage (TS) paradigm for pa-
rameter estimation have been evaluated in the context of grey-
box identification of a model for an induction motor. Both the
estimation error and and the estimator computational complex-
ity have been taken into account. Although PE provides good
results most of times, occasionally it returns completely unre-
liable estimates as due to the obnoxious problem of local min-
ima. Multiple initializations may alleviate this problem,at the
price, however, of increasing the already high computational
complexity. The TS paradigm instead presents a better overall
behavior, with an estimation error more uniformly distributed
and in the worst case much smaller than in the PE method. As
for the computational complexity, the TS estimator turns out to
be 3 orders of magnitude faster than the PE method.
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