Parameter estimation in induction motors: a
comparison between the PE and the TS paradigm

S. Bittanti * S. Garatti * M. Sar ati

* Dipartimento di Elettronica e Informazione - PolitecnicoMilano, piazza
Leonardo da Vinci 32, 20133 Milano, Italia. (E-mails:
{bittanti,sgaratti}@let.polim.it,web-sites:
http://honme.dei.polim.it/sgaratti/,
http://home.dei.polim.it/bittanti/)

Abstract: In this paper, we consider the problem of estimating unknparameters of the model of
an induction motor in a sensorless environment. A commoatigeaconsists in performing estimation
through a series of bench tests, by letting the motor opénaséeady-state. This way of proceeding,
however, does not take into account the high sensitivityoofies parameters to the motor operating
condition. The issue, then, is to set-up an autorregionator able to to supply reliable estimates of the
parameters from measurements taken from the actual furmtgj@f the motor. Two different estimation
paradigms are compared, namely the Prediction Error (PEdjgam, which has become a standard in
the practice of system identification, and the recenthoithiced Two-Stage (TS) paradigm. Advantages
and drawbacks of such methods in the context of inductiomrsaire spotted out by means of simulation
experiments. It turns out that the TS method may offer a \adtifnative to the PE method.

Keywords:Parameter estimation, Grey-box identification, TS metRoddiction Error Methods.

1. INTRODUCTION In this model, all variables refers to the fixed referenceniza
of the rotor. The state variables are the rotor sp@ethe rotor

The target of this paper is to discuss the use of paramef#xes(Ya, Y), and the stator currents, ip). The currentsy
estimation techniques for the setup from experimental dhta andip are also the measurable outputs of the system, while
models of induction motors in a sensorless environment.  anduy,, denoting the stator voltages, are the control inpits.
Like all motors, induction motors have a fixed stator and #énstead is the load torque and can be regarded as an exteshal,
mobile rotor, but, differently from the others, they areglta measurable, disturbance. The model depends on a number of
terized by a poly-phase stator windings besides a thresephdarameters, that is the rotor moment of inedtithe resistances
rotor windings. Feeding the windings of the stator with a sym(Rr,Rs) and the inductancef.r,Ls) of the rotor and stator
metrical alternating voltage, a magnetic field is generateidh ~ windings, and the mutual inductanide In the model equations,
induces a current flow in the windings of the rotor. This cotre the following notation was adopted:= 5:, B= UMLr U= %
generates an additional magnetic field which tends to oppoge | ( M2 )
to the stator current. While the motor is kept powered, this — 3 '
effort produces an electromagnetic torque which makes t
rotor move.
Many different sets of equations describing the behavia

L
Irﬁéodel 1) prsoilides a description of an induction motor which
is accurate enough for most applications, as discussedriy ma
rof contributions such as Lin et al. (2000), Feemster et al. 1200

: : ; : Marino et al. (1993, 2000, 2005, 2008). Yet, the problem of
induction motor can be found in the literature, Leonhar@&)9 etermining the values of parametarsR., Rs, L, andLs, in

Krause (1986). In this paper, we consider the following weﬁjrderto fit the model to the real motor data. arises.

known fifth order model taking into account both the dynamic ) X
of the stator currents and of the rotor fluxes, see e.g. Mari%&cordmg to the literature, Leonhard (1985), Krause (1986
' eemster et al. (2000), the unknown parameters are typicall

et al.d(i)993). T estimate.d through a serie_s of bench—_tests by letting thersys
— = u(Waip— Ppia) — il operate in steady-state with nominal inputs. The soughiegl
dt J for the parameters are then retrieved by processing mahsure
% — —aPa— WP+ aMi signals, according to equations derived from a simplifiedeho
d% a a of the motor steady-state operating condition.

b ; This way of proceeding typically returns estimates whioha ar
ot~ 9%t ©YataMip @) reliable for many situations of interest, so that it has peeo
dia s .1 a standard in the practice of electrical motors. On the other
G = (G TRaM)ia+ —ua+ Baa+ Bwds hand, it may present serious limitations. To be precisehen
dip Rs .1 tests basically assume that parameters are constant,uvitho
T *(E +BaM)ia+ EUbJrBal.Ub*BwQUa taking into account the high sensitivity of some of them to

the working condition of the motor. For instance, it is well
* Paper supported by the MIUR national project “Identificatiind adaptive known that resistive parameters may vary with temperatpre u
control of industrial systems” and by CNR - IEEIT




to 100% of their nominal value. In turn, temperature depend3E method has proven effective in a number of applications,

in a nontrivial way on the motor state variables, the appliefls main criticality is that the estimatdris implicitly defined,
load torque, and other exogenous sources of variation,&to tlind this can possibly lead to a computationally demanding
temperature is subject to unpredictable changes. In a8esso algorithm unless a severe deterioration of the estimaticor e
framework (where e.g. the temperature cannot be measuredi§¥ccepted, See next Section 2.1.

means of a dedicated sensor), and in those applicationswhgp prevent this drawback of PE, which is common to many
the motor working conditions may have a considerable variather estimation approaches, a second estimation paragigm
tion (see e.g. Lin et al. (2000), Feemster et al. (2001), Mari introduced, namely the Two-Stage paradigm which aims at
et al. (2000, 2005, 2008)), parameters must be estimatedibaginding anexplicit estimator by means of intensive simulations
on input/output measurements taken during the actual tpgra of the motor model. The TS paradigm thus operates in a com-
condition of the system. This calls for more sophisticatad p plementary way with respect to the PE paradigm and it may

rameter estimation methods, and this paper aims at disgissbffer a valid alternative in some cases, see Section 2.2.
advantages and drawbacks of a recently developed method in

comparison with more standard techniques. 2.1 Prediction Error method

The estimation problem we want to tackle is a grey-box (some-

times also called white-box, Bohlin (2006)) identificatigrob- | the Prediction Error method the loss function
lem, Ljung (1999), Bohlin (2006), being the model of the sys- N

tem completely given and the uncertainty restricted to #o& | V() = Z”y(i) -, 9)||2

of knowledge of a number of parameters with physical mean- i=

ing. Moreover, the system is continuous-time and highly-nons considered, wherg(i, 8) is a predictor of the system output
linear. Here, we consider two different estimation parawig derived from the model equations and based on the inputioutp

which seem to better fit with the problem at hand. Precisedy, Wyata up to time — 1. The estimate o8 is then obtained by
will consider both the Prediction Error (PE) paradigm, vhic minimizingV (0), viz.

has become a standard in the practice of system identificatio ~ ,
Ljung (1999), and the Two-Stage (TS) paradigm, which has 6 =arg nng(e),
been recently introduced in Garatti and Bittanti (2008}taBiti

and Garatti (2008) and which is specifically tailored to greySC that the gstimato? mapping observations into estimates is
box identificzgltion pzroblems like the%ne diSC{ISSEd here. g y|SmpI|C|tIy defined by the optimization problem itself. THadter

The remainder of the paper is organized as follows. Section}%typica”y tackled by resorting to gradient-like methods
provides a description of the PE and TS paradigms. Then, t el PEdpgrad|gm hdas bleeln ﬁrourtw)d for dec;;ades and has been
experimental setting is given in Section 3, while the sirtiata alnai/zt;e '.r(‘j grgfgt letall. tbl as gcome t I('a malnstreatr)n n
results and the comparison between PE and TS are presentefllffk-Pox identification problems, but it applies to grayx

Section 4. Some conclusions are eventually drawn in Sestion!dentification as well, with no conceptual twisting. .
y The main advantages of such approach are the solid theadretic

background for consistency analysis, Ljung (1999), Sddars
2. ESTIMATION METHODS and Stoica (1989) and its general applicability. As for thiter
aspect, observe that the gradient of the prediction ernobea
computed with generality once a model of the plantis avéglab
possibly via numerical approximations.
However, the PE paradigm may suffer from computational

We will adopt the following notation. Lettingy be the sam-
pling starting time and™ the sampling periodj(k) = [ua(to +
KT) up(to + KT))] is the sampled input vector, whilgk) =

ia(to +KT)) ip(to + kT))]" + e(k) the sampled output vector .
([:g(rr%pted >t>)ybg8me rrzt)e]asurér%ents noisg. We agsumeNthafjr"’“’vbaCkS mainly due to the fact th&(@) can be non-convex

measurements are collected. The vector of unknown parmnetg;{havmvgn¥rlgr%a{r:2 'rt':[?ea :nvihr:icrgirzne?y érgﬁ"tr??lngug;a nggljse?g#lc?nq
will be denoted byd € RY, whereq is the number of uncertain y . '

(1975), Ljung (1999). Ignoring this problem would lead to
parameters (for model (]J_)may range from L to 5): o iased (inconsistent) estimates, so that minimizatioraisied
The estimation problemAls solved by designing a suitablie es utby means of multiple attempts, i.e. by running the nuoaéri
mator, that is a functiori : R*N — R9 mapping the measured ’

) . X resolution method many times with different initializat®
N _
observatioD™ = {y(1),u(1),...,y(N),u(N)} into an estimate pqosen from a grid in the parameter space. As is clear, the

6 for the unknown parameter vectér The quality of the de- finer the grid, the better the chance to converge to the global
signed estimator must be theg evaluated based on its cépabiminimizer, but in this case one may run into the curse of
of making the estimation errdi® — 8|| small for6 ranging over dimensionality leading to a high computational complexity

a suitable domain, but also on its computational complexity

that is the time required to compute the estimate from avigila 2.2 Two Stage paradigm

observations. This latter is a somewhat overlooked asp&ctw

however is of great importance in practice, especially wheThe TS method resorts to the system model to synthetically
estimation is required for real-time applications. generate bysimulationinput/output data for a number of dif-
The problem of parameter estimation is of vital importancéerent values of the unknown parametrsay 6, 6>, ..., 6m,

and it has been considered since the early days of IFAC. &xtracted from the uncertainty domain. That is, we collect
the proceedings of the first World Congress in Moscow, 196@peasurements

one can already find a paper on this issue written by John DN — {yl(l) ut(1),... yl(N) ul(N)}

Westcott, one of the signers of the IFAC resolution of 195(}, 6—6-N ' ¢ T ’
Bittanti (2008). Further seminal works are Astrém and Bohli ore = o, 'Lneasuremeg S 5

(1965), Mayne (1966). A solid estimation framework is the of DY = {y?(1),u*(1),...,y*(N),u*(N)}

Prediction Error (PE) methods, see Ljung (1999). Although t for 8 = 6,; and so on. By repeated simulation experiments one



6: | DY ={(D),ul(1),...,y*(N),ur(N)} new compressed artificial data chart constituted by thespair
6 | DY ={y’(1),\*(D),....y’(N),\*(N)} {6,DM},i=1,...,m, see Table 2.
: ; The compressed artificial data sequere can be derived
Bm | DN = {y™(1),u™(1),...,y"(N),u™(N)} from DN by resorting to a standard identification method.
Table 1.The simulated data chart as the starting point of the To be precise, one can fit a simple model to each sequence
TS method. DN = {y'(1),u'(1),...,y'(N),u'(N)}; then, the coefficients of

this model, sayr;, o, ..., o, are seen as compressed artificial
can eventually work out a set ofpairs{6,D]N} as summarized data,i.eD"={ai,...,a}}.
in Table 1. Such set of data is referred to asdimeulated data To fix ideas, we suggest the following as a typical method

chart N for the generation of compressed artificial data. For daeh
From the simulated data chaft, R*N — RY is reconstructed 1,2,....m, the data sequence

h imizing, th - _ ) _ .
as that map minimizing the mean square estimate error over DN = {yi(1),u'(1),...,y (N),u' (N)}

simulated data. That is, : ) ' i
can be concisely described by a Multi-Input-Multi-Output

fe mfi”%iue' (Y (1),U(2),...,Y (N), ui(N))HZ. (2) (MIMO) ARX model (here, each, is a 2x 2 matrix):

Shouldf\‘be found, then thé corresponding to actual measure- Y(t)=ay (t—1)+-+ap Y (t—ny) +
mentsD™ = {y(1),u(1),...,y(N),u(N)} is estimated as Gri1y+1ui (t—1) 4t ari1y+nuui (t—nw),

with a total number of coefficients= ny+ ny. The coefficients

6 = f(y(1),u(1),...,y(N),u(N)).
ail,...,a}, of this model can be worked out by means of the

Asis clgar, solving Problem _(2) requ_ire_s the _preliminargi_cb
of a suitable class of functiong within which performing Least Squares algorithm, Ljung (1999), Soderstrom and&toi

optimization. This is indeed a critical issue, sinc¢ifis a class (1989)
of low-complexity functions, then it is difficult to replitathe X
relationship linkingDN to 8 for all values of (bias error); on

the opposite, if# is a class of high-complexity functions, then

the over-fitting issue arises (variance error), see Ljurg99), . L AN an ;
Soderstrom and Stoica (1989). in the process of finding a functigi R™ — R*" transforming

Due to the high dimensionality of the problenfi, (indeed, each simulated.c.la.ta seq~uermﬁé intp the a.new sequence of
depends uponM variables, normally a very large number ifcqmpressed artificial daa_i“_ conveying the information pq.
compared to the number of experiments a direct selection Since as compressed artificial data we take the coefficidnts o

of Z that achieves a sensible compromise between bias aggmple model, identified froy’, functiong turns out to be
variance errors is difficult to perform. In the TS method, éen defined by the chosen class of simple models together with the

the selection of the family of functiong is split in two steps. CcOrresponding identification algorithm.

This splitting is the key to determine a proper cla8sand, in Second s o h d artificial data chart in T
turn, to obtain a good estimatér ond stage. Once the compressed artificial data chart in Ta-

To be more precise, the objective of the first step is to rethee ble 2 hAaS tieen worke_d ou_t, problem (2) becomes that qf.fi.nding
dimensionality of the estimation problem, by generatingan @ Maph: R™ — R which fits the set ofncompressed artificial
data chart. The new chart is composed agaimafequences: observations to the corresponding parameter vectors, i.e.
however, each sequence is constituted by a limited humber -~ .1 nn i i 12
d y hemhlnEZIHG.fh(a'l,...,ar']) 3)
i=

Note that the simple model class selected to produce the com-
pressed artificial data does not need to have any physical-mea
ing; this class plays a purely instrumental and intermgdiale

of samplestf < N). We will call such sequencempressed
artificial data sequenceand the corresponding chart them- ) L . . .
pressed artificial data chartin the second step, the map be_Fqn.cu.on minimization in 3) is reminiscent of the onglnal
tween the compressed artificial observations and pararfietefMinimization problem in (2). However, beimgsmall, the bias

is identified. By combining the results of the two steps, tiem Versus variance error trade-off is no more a big issue agéefo
fis finally unveiled and it is possible to resort to one of the many methods availab

; - in the literature for function fitting.

We now give more details on each of the two stages. As for the choice ofh one can e.g. select a suitable Neural

First stage. The first step consists in a compression of th :M(Sr?:)?rgreg 't\)lAlfé(s gggeligvmlg tlzl)qaecrlp-mrlgqlgag?igrl]na(ﬂmgﬁﬂ

information conveyed by measured input/output sequebfes P y 9! propag 9

_ ) ~ _ : ~7 or to other standard algorithms developed for these classes

in order to obtain dNata sequendof reduced dimensionality. ot nonlinear functions. At this stage, cross-validatiom e

While in the dateD;" the information on the unknown parame-profitably employed to select the network/NARX model order.

ter 6 is scattered in a long sequenceNdBamples, in the new

compressed artificial dat@]' such information is compressedUse of the TS estimator. The TS estimator is based on two

in a short sequence af samples if < N). This leads to a functions:§ and h. The former is thecompression functign

. . . transforming simulated data into compressed artificisd dElie

& D% = {O’g-“ *“g} latter is thefitting functionproviding the map from compressed

6 | Di={af,....a5} artificial data to the parameter estimate. Whijeés chosen

: ; by the designer by selecting the intermediary identificatio

Om | DL {al",...al} algorithm in the first stage, in the second stage the designer

Table 2.The compressed artificial data chart. chooses a suitable class of functions dnés identified by
fitting the extracted parameter values to the corresporaing




pressed artificial data. The estimatbmapping input/output Sensorless framework, we assumed that stator currents beul
measured only. In order to take into account possible measur

data into the estimate fd is eventually given by(g(.)), €. ment errors, we added to each output a zero mean white noise

by the composition ofj and h. When the actual input/ouput \\ith suitable variance (standard deviatierl0OMA).

N _ .
sequenceD™ = {y(1),u(1),...,y(N),u(N)} is observed, the The assumed uncertainty was in line with Lin et al. (2000),
corresponding unknown parameter can then be estimated gfsino et al. (2008).

6 =h(g(DV)). See Figure 1 for a pictorial representation.  Among other parameters, the rotor resistafeis the one

- 3 that is more affected by uncertainty due its sensitivityeim1
original & _ artificial é peraturé . We hence assumed th&t was unknown and that

data data its range of variability wag0.5Rm,2Rm], whereR, = 3.3Q
represents the resistance nominal value. This is typigahfo

Fig. 1.The estimator function composition. number of motors and applications as revealed by experahent
Although the training of the TS estimator relies on inteasiv€StS: For S'&npl'c't%" aIIho'gher pa}rarlnetlers V\;]erg s_ug%o;;élbt
simulations of the model, this computational effort is geleed  cOnstantand equal to their nominal value (thatis= 0.375H,

to the training of the estimator only, and it is worth stragsi Ls=0.365H,J = 0.007%gn?, andM = 0.34H). .

that the estimator eventually provided by the TS method is BESIdésRr, we supposed that another source of uncertainty was
~ o~ o ;. . . .. present, namely the imprecise knowledge of the load tofgue

map f = h(g(-)) which is explicitly given and which permits i s |atter dependent on the particular use of the moto

to generate estimates, by evaluatinm correspondence of the 14 pe precise, the range of variability frwas|0.88T,, 5Tjn)

seen data sequence, at extremely low computational coist. TiyhereT;,, = 5.104Nmis the nominal value fof;.

is in contrast with other estimation methods, where, béing Note that the load torqu§ is not properly a model parameter

implicitly defined, each generation of an estimate requéres although it can be treated as su@hindeed is a constant dis-

computationally demanding data processing. turbance input whose lack of knowledge makes the estimation

Remark 1(Sampling issues). An implementation choice théroblem even more difficult. As sucfi, was not required to

user is required to perform in TS method regards the samplifg estimated. Rather, the target of our problem was that of

of the parameter vectof. The idea is to randomly extract estimatingR; robustly with respect to the values takenhy

values for the unknown parameter vecébover the range of

interest. While in general uniform distribution can be ddrs 3.1 PE estimator

ered, other probability distributions can be used if sonpeiari

information is available (see e.g. Tempo et al. (2005) fgoal The PE method was implemented by resorting to fungiem

rithms to perform random extractions from various proligbil of the System Identification Toolbox MATLAB, Ljung (2009).

distribution). _ This function required to specify (by means of thénl gr ey

The issue, then, is how many samples need to be randomgta-structure) the output-prediction model of the mctbis

extracted to ensure a given accuracy, that is to ensurefteat {atter can be derived from equations (1), taking into actoun

empirical estimation error variance the disturbances acting on the system: the load tofiguad
1 N i - the error measurements on the output. Since computing the
N.Zl”e' —h(ay,....ap)| predictor model with respect to both these two disturbances
. 1= o is quite complicated, we decided to tréRtas an unknown
is close enough to its probabilistic counterpart parameter and let theem function estimate bottR, andT;.
E||6 —h(ay,...,an)|> This way, the model became a standard output error model from

If this was the case, indeed, the map reconstructed by gptim{VNich computing the predictor modelis trivial. N
D y o s for the initialization of the PE algorithm, 3 differentiin

ing the empirical cost would be satisfactory not only for the> '~ .
extractedd, but also for other, unseen, instancesofin the tializations chosen at random from the parameter unceytain

context of the TS paradigm, the easiest way is to resort tsero d0main were used so as to compromise between computational
validation to a-posteriori assess the accuracy of the obtai COMPIexity and avoidance of local minima.

estimator.

It is perhaps worth remarking, however, that the convergefic 3.2 Training of the TS estimator

the empirical cost to the probabilistic one does not depend o

the dimensionality oB, i.e. convergence does not suffer fromin order to apply the TS method) = 2500 values fof = R

the curse of dimensionality. The reason is the same why Momere extracted uniformly from the intervf.5R., 2R] and,
tecarlo methods are successful in computing multiple naleg  correspondingly, we ran 2500 simulations of the motor model
the overall effort for computing an integral in high dimemsal each time adopting the control returned by the square-wave
spaces is the same as for a 1-dimensional integral. Thi®is tthree-phase inverter controller as input and a constanteval

magic of randomization, Tempo et al. (2005). randomly chosen frorf0.88T,,5T;,] as torque load. This way
we trained the TS estimator to be robust with respect to the
3. EXPERIMENTAL SETTING imprecise knowledge of,.

By sampling at kHzthe input and output signals, we obtained
The induction motor model in (1) was implemented and simw500 input/output sequences edtk- 1000 samples long:
lated inMATLAB and both the PE and the TS estimation meth- i i i - i i
ods were applied to retrieve the parameters from measutemen W(1),¥(1),4(2),¥(2),...,1(1000,y (1000,
of input and output signals. More precisely, we manipulated ;s worth noticing that the stator resistarepresents the same sensitivity

the voltages applie_d to stator windings b)_/ means Of a Squaligtemperature. YetRs can be trivially estimated being the measurements of
wave three-phase inverter controller, while, accordin@iio both stator voltages and currents available.




i =12,...,2500. These sequences together with the 25( TS - Estimates of R

extracted values fof formed the simulated data chart. 8

For the generation of the compressed artificial data chart

MIMO ARX(3,3) model was considered: 7t
Y(t)=aly(t—1)+-+ay(t—3) + of

aju' (t—1)+ -+ agu (t—3).

The parameters},ab,...,al, i = 1,2,...,2500, obtained by
performing identification over the sequence

u'(1),¥(1),u(2),¥(2),...,u(1000,y (1000
constituted the compressed artificial data chart.
The final estimatoih(a},a,,...,ay) was instead derived by
resorting to a feed-forward 4-layers neural network, witatal
of 15 neurons in the hidden layers and 1 linear neurons in tl ‘ ‘ ‘ ‘ ‘ ‘
output layer, Haykin (1998). The network weights were tegin 1 2 3 4 5 6 7 8
by the usual back-propagation algorithm. The order as veell i RealRr
the structure of the neural network was chosen by means of
cross-validation. Fig. 3. Estimation results for the TS method.
The entire process for the training of the TS estimator tooke true parameter values. That is, for each pointxthsis is
about 20 minutes on a standard@ GHz dual-processor com- the extracted value for the resistance paranftgwhile they-
puter, and it produced an explicit estimatigqr) = h(g(-)) de- axis is the corresponding estimate supplied by the impléeden
fined as the composition of the least squares algorithm and thstimation method. Of course, a good estimator must return

Estimate Rr

trained neural network. points displaced nearby the plot bisector.
As it can be seen, both estimators are unbiased and provide
4. SIMULATION RESULTS satisfactory results for most of the cases. However, thalieh

of PE and TS is quite different.
In order to test both the PE estimators and the TS estimator, W on one hand in the 90% of the cases the PE and TS methods
picked at random new 100 values for the uncertain paramet@&turn comparable results (admittedly, with PE estimateishv
R:, and correspondingly we ran new 100 simulations of thare closer to the true values in many cases), on the other imand
motor model with input generated by the square-wave threthe other 10% of cases, the PE estimates are completely-unrel
phase inverter controller and torque IcRextracted uniformly able with an estimation error that can even res@hES instead
in [0.88T},,5Tj]. The 100 data sequences obtained by samplirgrovides better overall results, with an estimation errbioh is
input and output signals akHzwere made available to the PE more uniformly distributed and anyway bounded b§®. The
and TS estimators so as to generate 100 PE estimates and 100
TS estimates. These estimates were eventually comparee to t
true values of the parameters so as to evaluate the perfogman
of the two estimators.

TS vs PE - Estimation error of Rr

Figures 2 and 3 depict the estimation results for the PE and
TS methods respectively. In each figure, the estimatdg; of

PE - Estimates of Rr

Estimate Rr

Fig. 4.Estimation errors - PE = dashed lined, TS = continuous line

3r ] e 1 difference between PE and TS can be also appreciated ind=igur
AR 4 where the estimation errors of PE and TS are plotted on the
2} o » 1 same graph.
The presence of unreliable PE estimates has to be ascribed to
1 2 s ; : : . . the problem of local minima, which in some cases trap the
Real Rr solution far away from the parameter true value in spite ef th

redundancy of initializations adopted. To reduce the nurobe
incorrect estimates one could increase the number of lnitia
izations of the PE algorithm for each estimate. Yet, this ldou
as returned by the corresponding estimator are plottedsigaiincrease the PE computational effort, which is alreadyequit

Fig. 2.Estimation results for the PE method.



high if compared to that required by the TS estimator. Garatti, S. and Bittanti, S. (2008). Estimation of whitexbo
Computational time is indeed another important aspectk® ta model parameters via artificial data generation: a two stage
into account in order to provide a fair evaluation of the perf ~ approach. IfProceedings of the 17th IFAC World Congress
mance of an estimator. In this respect, note that, on a stdnda Seoul, Korea.
2.40 GHz dual-processor computer, the PE method took 13Haykin, S. (1998).Neural Networks: A Comprehensive Foun-
seconds (i.e. about 22 minutes) to generate the whole 180 est dation Prentice Hall, Upper Saddle River, NJ, USA.
mates with an average of 13 seconds per estimate, while the K&use, P. (1986) Analysis of electric machineryMcGraw-
method overall required.21 seconds only with an average of Hill, New York, NY.
0.021 seconds per estimate. Thus, the required computatioh&lonhard, W. (1985) Control of Electrical Drives Springer,
effort for the TS estimator is 3 orders of magnitude belowt tha Berlin, Germany.
for the PE method. Lin, Y., Fu, L., and Tsai, C. (2000). Non-linear sensorlest-i
The overall performances of PE and TS are summarized inrect adaptive speed control of induction motor with unknown
rotor resistance and loadinternational Journal of Adaptive
Control and Signal Processind4, 109-140.
Ljung, L. (1999). System Identification: Theory for the User
Prentice-Hall, Upper Saddle River, NJ.
Ljung, L. (2009). System Identification Toolbd% 7 — User
. Guide The Mathworks Inc.
Table 3 whgre the following acronyms are qsed: ARE = AVMarino, R., Peresada, S., and Valigi, P. (1993). Adaptive
erage Relative Error, MRE = Maximum Relative Error, AET = i, y0utput linearizing control of induction motor$EEE
Average Estimation Time. Transactions on Automatic Contr@8, 208—221.
Marino, R., Tomei, P., and Verrelli, C. (2000). A global tkéty
5. CONCLUSIONS control for speedsensorless induction motofsitomatica

; - . 40, 1071-1077.
In this paper, the well known Prediction Error (PE) paradigm, " . ; :

: - arino, R., Tomei, P., and Verrelli, C. (2005). A nonlinear
and the recently introduced Two Stage (TS) paradigm for pg/-l Lo SN N ;
rameter estimation have been evaluated in the context gf gre Zr?clig]%c_olrg;o; for sensorless induction motgkatomatica
box identification of a model for an induction motor. Both thelvlariﬁo R Toméi P., and Verrelli, C. (2008). An adaptive
estimation error and and the estimator computational cexapl Lo P e ' ; \
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ARE MRE AET
TS: | 0.0230 | 0.1201 | 0.021s
PE: | 0.0352 | 1.0163 13s
Table 3.PE performances vs. TS performances




