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Abstract: In previous contributions, Calafiore and Campi (2006) and Campi et al. (2009b), it
has been shown that the scenario approach is a handy methodology to design control systems
having robustness properties that are otherwise difficult to design along more standard methods.
On the other hand, it has also been noted that the sample complexity of the scenario approach
rapidly increases with the number of optimization variables and this may pose a hurdle to its
applicability to medium and large scale problems. We here introduce FAST (Fast Algorithm for
the Scenario Technology), a variant of the scenario optimization algorithm with reduced sample
complexity. The price one pays with FAST is that the obtained solution may be suboptimal.
However, practical evidence shows that this suboptimality is often negligible and thus FAST
offers a practical alternative to the standard scenario approach.
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1. INTRODUCTION

Many problems in systems and control with uncertain
knowledge of the environment can be formulated as un-
certain convex-optimization programs, that is programs in
which the constraint is imprecisely known:

UP : min
x

cTx

subject to: x ∈ Xδ, Xδ ⊆ R
d. (1)

In (1), x is the design parameter, δ is the uncertain
parameter belonging to an uncertainty domain ∆, and Xδ

is a convex and closed set for every δ ∈ ∆. Linearity in the
objective function is without loss of generality since any
problem with generic convex objective can be rewritten as
in (1), see Boyd and Vandenberghe (2004). A particular
instance of (1), which often arises in systems and control
problems, is the following (Calafiore and Campi (2006) and
Campi et al. (2009b)):

min
γ,h

h

subject to: `(γ, δ) ≤ h,

where γ is e.g. the controller parameter, δ the unknown
plant parameter, and `(γ, δ) a cost measuring the per-
formance of γ when applied to δ. h upper-bounds the
performance and the optimization problem is such that
γ is chosen so as to squeeze h down as much as possible.
Uncertain programs UP cannot be seen as a complete

formalization of the design problem, since there is no
indication on how to deal with the uncertainty. Different
choices are possible. A robust solution to (1) is a solution
that satisfies all the constraints obtained for all possible
values of δ, i.e. it belongs to the set

⋂
δ∈∆ Xδ, see e.g.

Ben-Tal et al. (2010). Alternatively, one can view ∆ as
a probability space endowed with a σ-algebra D and a
probability measure P (i.e. δ is a random element) and
be interested in finding a chance-constrained solution sat-
isfying the constraint x ∈ Xδ with “high probability”,
see Prékopa (1995, 2003), Vajda (1972). Both robust and
chance-constrained optimization are notoriously hard to
solve in general, even though there are notable exceptions
where the solution can actually be computed, see Ben-
Tal and Nemirovski (1998, 1999), El Ghaoui and Lebret
(1998), El Ghaoui and Niculescu (2000), Prékopa (1995,
2003), Henrion and Strugarek (2008).

The scenario optimization approach, introduced in Cala-
fiore and Campi (2005, 2006), is an innovative technol-
ogy to find chance-constrained solutions to problem (1),
and has been successfully applied to a number of system
and control problems in Calafiore and Campi (2006) and
Campi et al. (2009b). Along this approach, a finite number
N of uncertainty instances δ(1), . . . , δ(N) are randomly
sampled according to P independently one of another 1 ,
and only the constraints x ∈ Xδ(i) are enforced, corre-
sponding to the sample program:

1 See Calafiore et al. (2000), Calafiore and Dabbene (2002), and
Tempo et al. (2005) for algorithms to perform random sampling.
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SPN : min
x

cTx

subject to: x ∈
⋂

i∈{1,...,N}

Xδ(i) . (2)

SPN is a standard convex optimization program with
a finite number of constraints and its solution x∗

N can
be obtained by resorting to standard optimization tools.
Moreover, as shown in Calafiore and Campi (2005, 2006)
and Campi and Garatti (2008), x∗

N satisfies the vast major-
ity of the constraints in ∆, even those that have not been
sampled and that therefore have had no role in computing
x∗
N , provided that N is suitably chosen. More precisely,

the scenario solution x∗
N satisfies constraints with high

probability 1− ε, that is, it is chance-constrained feasible
at level ε.
The issue of evaluating the sample size N of sample
programs is of great importance, as discussed in many
contributions, Calafiore and Campi (2005, 2006), Campi
and Garatti (2008), Alamo et al. (2009). In the context of
(2) the fundamental result has been established in Campi
and Garatti (2008), where a necessary and sufficient con-
dition on N for x∗

N to be feasible at level ε was given.
It turns out that the required N is inversely proportional
to ε and is proportional to d, the number of optimization
variables, i.e. N scales as 1

ε
· d, see Calafiore (2009) and

Alamo et al. (2010) which provide explicit expression for
N . In Nemirovski and Shapiro (2006) and Oishi (2007),
it has been observed that the dependence of N on d

ε
may

result in too many constraints to sample for large scale
problems having large d, thus posing a difficulty for the
practical use of the method. The present paper proposes a
new sample-based algorithm called FAST (Fast Algorithm
for the Scenario Technology) to overcome this difficulty.
The main advantage of FAST is that the dependence of
N on 1

ε
and d becomes additive, i.e. N scales as 1

ε
+ d.

This significantly improves the applicability of the scenario
approach.

1.1 New Idea behind FAST

The idea behind FAST is as follows. Suppose that one
a priori knows a point x̄ that is robustly feasible, i.e. x̄ ∈⋂

δ∈∆ Xδ. This assumption is verified in many situations of

interest 2 . It is perhaps worth stating explicitly that there
are no requirements on x̄ other than it is robustly feasible,
in particular there are no requirements on the performance
value cT x̄.
Based on x̄, FAST constructs a quasi-optimal solution in
two steps. First, a moderate number N1 of constraints are
sampled and the optimal solution x∗

N1
which satisfies these

N1 constraints is determined, see Fig. 1(a). This first step
is accomplished at low computational effort due to the
moderate number of constraints involved; on the other
hand, x∗

N1
is not guaranteed to meet the desired violation

level ε since N1 is too low. Then, a detuning step is started:
N2 additional constraints are sampled and x∗

N1
is updated

2 In e.g. robust feedback controller synthesis, as in Campi et al.
(2009b), one can take x̄ corresponding to zero control. Similarly, a
suitable x̄ can be easily determined in applications as IPMs (Interval
Predictor Models), see Campi et al. (2009a), and robust Chebyshev
FIR equalization, see Mutapcic et al. (2007). In other more general
contexts, one can resort to sequential randomized algorithms, see e.g.
Polyak and Tempo (2001), Fujisaki et al. (2003), Oishi (2007).

optimization

direction

x∗
N1

(a)

optimization

direction

x∗
N1

x∗

x̄

(b)

Figure 1. Illustration of FAST.

by moving it along the line segment connecting x∗
N1

to x̄
until the updated solution x∗ satisfies all the N2 newly
sampled constraints, see Fig. 1(b).
In this construction, N1 and N2 scale as d and 1

ε
respec-

tively, leading to an overall number of constraints N =
N1+N2 which is typically much smaller than that required
by the “classical” scenario approach. Moreover, choosing
a small ε does not affect N1 and only results in a large
N2 value which corresponds to having many constraints
in the detuning step, which is a one-dimensional program
and can therefore be efficiently solved even for large values
of N2.

1.2 Organization of the paper

The remainder of the paper is organized as follows. Sec-
tion 2 provides some mathematical background on the
“classical” scenario approach which is required to correctly
formalize the FAST algorithm. Such a formalization and a
discussion on the properties of FAST are given in Section 3.
The proofs are provided in Section 4, while an illustrative
simulation example is given in Section 5.

2. BACKGROUND MATERIAL ON THE SCENARIO
APPROACH

Throughout, we make the following assumption.

Assumption 1. Every optimization problem subject to a
finite subset F of constraints, i.e.

min
x

cTx

subject to: x ∈
⋂

δ∈F⊆∆

Xδ, (3)

is feasible, and its feasibility domain has a nonempty
interior. Moreover, the solution of (3) exists and is unique.
∗

Although this assumption can be relaxed, see Campi and
Garatti (2008), it is here made to avoid technical compli-
cations that have little conceptual importance.
The following notion of violation probability is fundamen-
tal.

Definition 2. (violation probability). The violation proba-
bility of a given x ∈ X is defined as V (x) = P{δ ∈ ∆ : x /∈
Xδ}. ∗
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One issue of major interest is whether the violation V (x∗
N )

of the scenario solution x∗
N of problem (2) is below a user-

chosen level ε. Note that V (x∗
N ) is a random variable since

x∗
N depends on the random extractions δ(1), . . . , δ(N), so

that the statement V (x∗
N ) ≤ ε has a probabilistic nature,

i.e. V (x∗
N ) ≤ ε holds with a certain probability. An exact

quantification of the probability of “bad” extractions of
δ(1), . . . , δ(N) such that V (x∗

N ) > ε is given in Campi and
Garatti (2008), where the following relation is proved:

P
N{V (x∗

N ) > ε} ≤
d−1∑

i=0

(
N

i

)
εi(1 − ε)N−i, (4)

where P
N indicates the product probability measure on

∆N according to which multi-samples (δ(1), . . . , δ(N)) are
extracted. This quantification is “exact” in that the in-
equality ≤ in (4) is an equality = for a whole class of
problems - the so-called fully-supported problems, see Defi-
nition 3 in Campi and Garatti (2008) - so that the result in
(4) cannot be improved. The right hand side of (4) is the
so-called incomplete Beta function ratio, see e.g. Gupta
and Nadarajah (2004). For brevity, in the sequel we will
use the notation

BN,d
ε =

d−1∑

i=0

(
N

i

)
εi(1 − ε)N−i. (5)

One can fix an arbitrarily small confidence parameter β
and find the smallest integer N such that BN,d

ε ≤ β. Due
to (4), this N entails PN{V (x∗

N ) > ε} ≤ β, that is solving
SPN returns a chance-constrained feasible solution at level
ε with high confidence 1− β.
In practice, one can find the number of constraints N
by numerically solving the inequality BN,d

ε ≤ β, e.g.
by means of the bisection method. To this end, in e.g.
MATLABTM the value of BN,d

ε can be efficiently computed
by calling the betainc function as follows: betainc(1−ε,N−
d + 1, d). In alternative, one can use an explicit formula
for N , at the price of introducing some conservatism: in
Calafiore (2009) it is shown that BN,d

ε ≤ β provided that

N ≥
2

ε

(
d+ ln

1

β

)
. (6)

This formula reveals that N bears a logarithmic depen-
dence on β so that β can be made very small, say 10−9,
without increasing N too much. That is, confidence has
little practical importance. Once β is fixed, the dependence
on d and ε given by (6) is linear in d

ε
; indeed this is provably

the correct dependence for relation BN,d
ε ≤ β to hold.

3. FAST

The FAST algorithm is given first, followed by a discus-
sion.

3.1 FAST algorithm

- INPUT:
• ε ∈ (0, 1), violation parameter;
• β ∈ (0, 1), confidence parameter;
• x̄ ∈

⋂
δ∈∆Xδ, robustly feasible point;

• N1, an integer ≥ d.
(1) Compute the smallest integer N2 such that

N2 ≥
lnβ − lnBN1,d

ε

ln (1− ε)
, (7)

where BN1,d
ε is as in (5).

(2) Sample N1 +N2 independent constraints
δ(1), . . . , δ(N1), δ(N1+1), . . . , δ(N1+N2), according to P.

(3) Solve the SPN1 problem in (2) with N = N1; let x
∗
N1

be the optimal solution.
(4) Let x̂[α] := (1 − α)x∗

N1
+ αx̄, α ∈ [0, 1], i.e. x̂[α]

describes the line segment connecting x∗
N1

with x̄.
Solve the following problem

DETUNINGN2 :

min
α∈[0,1]

cT x̂[α]

subject to: x̂[α] ∈
N1+N2⋂

i=N1+1

Xδ(i) ; (8)

let α∗ be the optimal solution.
- OUTPUT:

• x∗ := x̂[α∗].

The following theorem states that x∗ satisfies all con-
straints in ∆ but an ε-fraction at most, with probability
no smaller than 1− β. That is, x∗ is a chance-constrained
ε-feasible solution with high confidence 1− β.

Theorem 3. Under the current assumptions, it holds that

P
N1+N2{V (x∗) > ε} ≤ β.

∗

The proof of the Theorem 3 is given in Section 4.

3.2 Discussion

In FAST, the user first solves SPN1 with N1 constraints
and then computes N2 through (7). N1 is decided by the
user, while N2 depends on N1, ε, and β. In this section,
we discuss how to choose N1, how to compute N2, and
provide arguments on why FAST is a sensible optimization
algorithm.

Selection of N1

N1 should be chosen so as to achieve a fast computation
of x∗

N1
: if N1 is too large, finding x∗

N1
for medium or large

dimensional problems can be expensive and one loses the
advantages of using FAST. On the other hand, how large
N1 is impacts on the quality of the solution x∗

N1
, and if

N1 is too small, the final solution x∗ resulting from the
detuning phase may exhibit a poor objective value. As a
rule of thumb out of empirical experience, we suggest to
take N1 = 20d.

Computing N2

N2 is a function of N1, ε, and β. In many practical cases,
however, one can just use, in place of N2, the smallest

integer Ñ2 satisfying

Ñ2 ≥
lnβ

ln(1− ε)
, (9)

obtained from (7) by neglecting the term − lnB
N1,d
ε

ln (1−ε) which

is ≥ 0 so that Ñ2 ≥ N2. (9) can be further simplified to

Ñ2 ≥
1

ε
ln

1

β
, (10)
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obtained from (9) using relation − ln(1 − ε) ≥ ε. The
practical value of expressions (9) and (10) relies on that the
contribution ofBN1,d

ε in (7) is negligible whenN1 is smaller
than d

ε
. Thus, the first N1 constraints primarily serve the

purpose of obtaining a good initial solution x∗
N1

, while
the other N2 are responsible for securing the feasibility
guarantees of the solution.

Advantages with FAST

• Reduced sample size requirements
The FAST algorithm provides a cheaper way to find
solutions to medium and large dimensional problems
than the classical scenario approach. Indeed, one can
choose N1 = Kd, where K is a user-selected number
normally set to 20, while N2 can be approximated
by 1

ε
ln 1

β
, as already seen. Hence, a handy formula

to estimate the overall number of constraints needed
with FAST is

Kd+
1

ε
ln

1

β
.

A comparison with

2d

ε
+

2

ε
ln

1

β
,

the number of constraints needed with the classical
scenario approach, see (6), shows the key point that,
with FAST, the critical multiplicative dependence on
1
ε
· d is replaced by an additive dependence on 1

ε
and

d.
• Possibility to reduce ε to small values
The increasing of the number N2 of constraints to be
used in the DETUNINGN2 problem yields a moderate
increasing of the computational complexity, because
DETUNINGN2 is a 1-decision-variable problem which
can e.g. be solved by means of bisection. Thus, N2 can
be large and, correspondingly, ε can be reduced to
values much smaller than with the classical scenario
approach.

Suboptimality

The solution obtained through the classical scenario ap-
proach is superoptimal when compared to the optimal
robust solution, the solution that satisfies x ∈

⋂
δ∈∆ Xδ,

indeed the former is less constrained than the latter. This
property does not carry over to the solution of FAST, as il-
lustrated in Fig. 2. Nevertheless, empirical evidence shows
that in many situations 3 the constraints tend to concen-
trate and cluster in a way that, by only slightly moving
away from x∗

N1
in the direction of x̄, one soon “emerges”

above the newly sampled N2 constraints. Consequently, x
∗

is only little away from x∗
N1

and the suboptimality is mi-
nor, often negligible. Moreover, the algorithm provides us
with a handy instrument to confirm in hindsight whether
this is indeed the case: the difference cTx∗ − cTx∗

N1
is an

upper bound to the possible suboptimality with respect to
the robust solution.

3 See e.g. the case of IPMs, Campi et al. (2009a), or Campi et al.
(2009b) for problems in control.

optimization

direction x̄

x∗
N1

x∗

xrobust

Figure 2. Blank region: feasibility domain for the robust
problem. The detuning step updates the solution x∗

N1

(always superoptimal) by moving it towards x̄. The
final solution x∗ can be suboptimal for the robust
problem.

4. PROOF OF THEOREM 3

Define for brevity δ
n
m := (δ(m), δ(m+1), . . . , δ(n)).

We aim to compute the probability of the event where
V (x∗) > ε, i.e. we are interested in the probability of the
set B of “bad” extractions formally defined as follows:

B =
{
δ
N1+N2
1 ∈ ∆N1+N2 : V (x∗) > ε

}
.

According to the current notation, we indicate with
P
N1+N2{B} this probability.

Given x̄ and x∗
N1

, consider the half-line in R
d defined as

x̂[α] := (1 − α)x∗
N1

+ αx̄, α ∈ (−∞, 1] (this extends the
line segment at point 4 of the FAST algorithm in Section
3 beyond x∗

N1
). Now, consider the set Z of points on this

half-line with a violation bigger than ε:

Z = {x̂[α] : α ∈ (−∞, 1] and V (x̂[α]) > ε}.

Note that Z is a random set, depending on δ
N1
1 through

x∗
N1

. We need the following lemma.

Lemma 4. The function V (x̂[α]) is nonincreasing in α ∈
(−∞, 1]. ∗

Proof. Let α1 and α2 be two reals in the interval (−∞, 1]
with α1 < α2. Letting γ = α2−α1

1−α1
one can easily check by

substitution that x̂[α2] = (1 − γ)x̂[α1] + γx̄, i.e. x̂[α2] is
a convex combination of x̂[α1] and x̄. Take a δ such that
x̂[α1] ∈ Xδ. Since also x̄ ∈ Xδ and Xδ is convex, it follows
that x̂[α2] ∈ Xδ. Therefore, a constraint satisfied by x̂[α1]
is also satisfied by x̂[α2] and this leads to the conclusion
that V (x̂[α1]) ≥ V (x̂[α2]). �

Lemma 4 implies that Z is a half-line (see Fig. 3). Next,
we state a property which fully characterizes the set B.

Property 5. δ
N1+N2
1 ∈ B if and only if V (x∗

N1
) > ε and

Z ∩ Xδ(i) 6= ∅,∀i ∈ {N1 + 1, . . . , N1 +N2}. ∗

Proof. Looking at Fig. 3, the DETUNINGN2 problem
in step 4 of the FAST algorithm looks for the point

18th IFAC World Congress (IFAC'11)
Milano (Italy) August 28 - September 2, 2011

9239



optimization

direction

Z : V (x̂[α]) > ε
Xδ(i)

x∗
N1

= x̂[0]

x̄ = x̂[1]

Figure 3. Optimization domain for DETUNINGN2 .

x∗ ∈ x∗
N1

x̄ closest to x∗
N1

such that x∗ ∈ Xδ(i) , ∀i ∈ {N1+
1, . . . , N1 + N2}. If V (x∗

N1
) > ε and Z ∩ Xδ(i) 6= ∅,

∀i ∈ {N1 + 1, . . . , N1 + N2}, this point falls in Z so

that δ
N1+N2
1 is in B. Viceversa, if either V (x∗

N1
) ≤ ε or

Z ∩ Xδ(̄i) = ∅ for some ī ∈ {N1 + 1, . . . , N1 + N2}, then

x∗ /∈ Z and δ
N1+N2
1 is not in B, and Property 5 remains

proven. �

Based on Property 5 we proceed now to bound the
probability of B:

P
N1+N2{B}

= [1 = indicator function]

=

∫

∆N1+N2

1{V (x∗
N1

) > ε and Z ∩ Xδ(i) 6= ∅,

∀i ∈ {N1 + 1, . . . , N1 +N2}}P
N1+N2{dδN1+N2

1 }

=

∫

∆N1+N2

1{V (x∗
N1

) > ε}1{Z ∩ Xδ(i) 6= ∅, ∀i ∈

{N1 + 1, . . . , N1 +N2}}P
N1{dδN1

1 }PN2{dδN1+N2

N1+1 }

= [using Fubini’s theorem]

=

∫

∆N1

1{V (x∗
N1

) > ε}

[∫

∆N2

1{Z ∩ Xδ(i) 6= ∅, ∀i ∈

{N1 + 1, . . . , N1 +N2}}P
N2{dδN1+N2

N1+1 }

]
P
N1{dδN1

1 }.

(11)

As we are going to show, the inner integral in this latter
equation is bounded by (1− ε)N2 for every δ

N1
1 , so that

P
N1+N2{B} ≤ (1− ε)N2

∫

∆N1

1{V (x∗
N1

) > ε}PN1{dδN1
1 }.

(12)
The integral in (12) is exactly P

N1{V (x∗
N1

) > ε}, a

quantity that can be bounded by BN1,d
ε , according to

the classical theory of the scenario approach reminded in
Section 2, see Theorem 1 in Campi and Garatti (2008).
Hence,

P
N1+N2{B} ≤ (1− ε)N2 ·BN1,d

ε . (13)

From (13) the thesis follows by observing that formula (7)
implies (1− ε)N2 ·BN1,d

ε ≤ β.
Thus, to complete the proof we have to show that the inner
integral in (11) is bounded by (1 − ε)N2 . In what follows,

we take a fixed δ
N1
1 - so that x̂[α], α ∈ (−∞, 1], has to be

thought of as a fixed half-line - and the result is proven by
working conditionally with respect to δ

N1
1 .

By the independence of extractions,
∫

∆N2

1{Z ∩ Xδ(i) 6= ∅,

∀i ∈ {N1 + 1, . . . , N1 +N2}}P
N2{dδN1+N2

N1+1 }

=

(∫

∆

1{Z ∩ Xδ 6= ∅}P{dδ}

)N2

= (P{Z ∩ Xδ 6= ∅ })N2 .

Let
αε = sup

α∈(−∞,1]

{α : V (x̂[α]) > ε}, (14)

and note that Z can be written as

Z = {x̂[α] : α ∈ (−∞, αε)}.

Also, introduce

Zn =
{
x̂[α] : α ∈

(
−∞, αε −

1
n

]}
,

a sequence of sets closed to the right and such that Zn ↑ Z.
Clearly, {δ ∈ ∆ : Zn∩Xδ 6= ∅} = {δ ∈ ∆ : x̂[αε−

1
n
] ∈ Xδ},

that is for Zn ∩ Xδ to be non empty, the extreme point
x̂[αε −

1
n
] of Zn must be in Xδ. Now, by the Definition 2

of violation probability, P{δ ∈ ∆ : x̂[αε −
1
n
] ∈ Xδ} = 1 −

V (x̂[αε −
1
n
]), and applying the property of continuity of

probability measures, we conclude that

P {Z ∩ Xδ 6= ∅} = P

{
∞⋃

n=1

{Zn ∩ Xδ 6= ∅}

}

= lim
n→∞

(
1− V

(
x̂
[
αε −

1
n

]))
≤ 1− ε,

where the last inequality follows from the fact that
V (x̂[αε−

1
n
]) ≥ ε, ∀n, see (14). Thus, (P {Z ∩ Xδ 6= ∅})N2 ≤

(1 − ε)N2 and since this holds for any δ
N1
1 the proof is

complete. �

5. AN EXAMPLE

5.1 Uncertain program

The following UP with 200 optimization variables and LMI
(Linear Matrix Inequality) constraints resembles problems
arising in robust control, see Boyd and Vandenberghe
(2004), and well illustrates the procedure developed in this
paper.

UP : min
x∈R200

200∑

j=1

xj

subject to:

200∑

j=1

Rj(δ)B(δ)Rj(δ)
Txj � I

δ ∈ ∆ = [0, 1]4;

where

I =

(
1 0
0 1

)
; B(δ) =

(
δ1 δ2
δ2 δ3

)
;

Rj(δ) =




cos

(
2π

j − 1

T (δ)

)
− sin

(
2π

j − 1

T (δ)

)

sin

(
2π

j − 1

T (δ)

)
cos

(
2π

j − 1

T (δ)

)


 ,
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for j = 1, . . . , 200, and T (δ) = 200 + 2002δ4.

B(δ) is a stochastic matrix and Rj(δ) is a rotation matrix
whose period T (δ) is also stochastic.

5.2 Classical Scenario Approach vs FAST

Consider P uniform in [0, 1]4 and take ε = 0.01 and β =
10−9. In the classical scenario approach using (4) we write∑199

i=0

(
N
i

)
εi(1 − ε)N−i ≤ 10−9 which yields N = 29631,

leading to the following sample program

SPN : min
x∈R200

200∑

j=1

xj

subject to:

200∑

j=1

Rj(δ
(i))B(δ(i))Rj(δ

(i))Txj � I,

i = 1, . . . , 29631. (15)

Turning to FAST, we take N1 = 20·d = 4000, as suggested
in Section 3.2, and, according to (7), we obtain N2 = 2062.

5.3 Results

Running SPN1 we obtained a solution x∗
N1

with objective

value
∑200

j=1 x
∗
N1,j

= −1.076. Next, we selected x̄ = 0, so

that x̂[α] = (1 − α)x∗
N1

, and solved the DETUNINGN2

problem:

DETUNINGN2 :

min
α∈[0,1]

(1− α)
200∑

j=1

x∗
N1,j

subject to: (1 − α)

200∑

j=1

Rj(δ
(i))B(δ(i))Rj(δ

(i))Tx∗
N1,j

� I,

i = N1 + 1, . . . , N1 +N2.

The optimal detuning value was α∗ = 0.048, yielding the
final solution x∗ = (1−α∗)x∗

N1
= 0.952x∗

N1
with objective

value 0.952 · (−1.076) = −1.024.
Going back to the classical scenario approach, we solved
(15) which took an execution time about 20 times longer
than with FAST and yielded an objective value −1.052.
With smaller value of ε, the comparison between the
execution times is further unbalanced in favor of FAST:
FAST continues to offer a viable approach while the
classical scenario approach becomes rapidly impractical.
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