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Abstract: Control science is basically a model based discipline. The performance of control is determined by the accuracy of the
model representing data. Therefore the successes of identification reflects into the successes of control. This is why identification
and control have had a never-ending interplay over so many decades. In this paper we try to outline such interplay by making
reference to one of the main problems encountered in control engineering modeling: the estimation of unknown or uncertain
parameters in the plant equations.
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1 Introduction and problem position

In the development of modern control science and tech-
nology, the first World Congress of the International Fed-
eration of Automatic Control (IFAC) represents a milestone.
Held in Moscow in the summer of 1960, that congress was
gifted with the participation of many outstanding control en-
gineers, such as, in alphabetical order, G. Axelby, R. Bell-
man, G. Evangelisti, A.A. Feldbaum,A.F. Filippov, E.I. Jury,
R.E. Kalman, N.N. Krasovski, C.T. Leondes, A. Lepschy,
N.B. Nichols, E. Popov, A. Ruberti, G. Quazza, J. Song, T.
Vamos, M. Thoma, J. Westcott, H. Zemanek, J.G. Ziegler,
and many others, all hosted at the Ukraina Hotel. Interest-
ingly enough, Norbert Wiener was also in Moscow during
the congress days, as confirmed by Manfred Thoma in pri-
vate conversations with the first author of this paper. Thoma
and Wiener met various times in the lobby of the hotel. Sur-
prisingly enough, there is no Wiener papers in the Congress
Proceedings. However, by sure he gave a seminar in a set of
three lectures organized as a side event of the congress, the
three lecturers being Solomon Lefschetz, Rudolph Kalman,
and, as already said, Norbert Wiener (this information was
passed to the first author of this paper in a private communi-
cation with Kalman).

Among the fundamental contributions presented at that
congress, there was the celebrated Kalman’s paper “On the
General Theory of Control Systems”, [20],which had to pro-
duce a paradigm shift in control, as well as in many other
engineering disciplines. In that paper, the derivation of the
control law was based on a rigorous pattern starting from the
mathematical model of the plant. Ever since, control had to
became more and more a model based discipline.

Fifty years later, in the summer of 2011, the 18th IFAC
World Congress was held in Milan, with an exceptionally
high number of attendees, more than 2800. In the last day of
the Congress, a panel session entitled “Plugging into the ori-
gins of IFAC: The IFAC World Congress of 1960” was held
with a wide audience as the last plenary event. The video
of that session is available at the web site ifac2011.org. The
goal of this historical session was to evoke the early days
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of IFAC by the accounts of a team of distinguished schol-
ars, including Rudolph Kalman. During his commemorative
speech, Kalman said:

Fifty years is a fairly long time and one should certainly
look back and see what the picture looks like at that point
as regard the future and now, since the future is arrived, say
something about what the final developments were that was
started at the congress.

Then, Kalman remarked that

In any engineering application the success of control is
determined by the accuracy with which the model represents
data, and this leads to the realm of identification.

His conclusion was that, 50 years later, the field of identi-
fication is far from being settled.

In this paper, we would like to corroborate Kalman state-
ment by illustrating the difficulties one can encounter even
today to solve elementary identification problems. We will
make reference to one of the simplest.

Parameter estimation problem in white box models:
the model of the system is completely given and the uncer-
tainty is restricted to the lack of knowledge of a parameter
appearing in it.

This estimation problem is very frequently encountered in
all fields of applications, as any control engineer knows very
well. Some examples are in order.

Induction motor
A typical description of an inductionmotor consists of a state
space model with 5 state variables: two rotor fluxes, two sta-
tor currents and the angular velocity. The model is nonlinear
since various products of state variables appear in it. The
parameters of the model are typically estimated through a
series of bench-tests by letting the system operate in steady-
state with nominal inputs. The values for the parameters
are then retrieved by processing measured signals, accord-
ing to equations derived from a simplified model of the mo-
tor steady-state operating condition. This way of proceeding
typically returns estimates which are reliable for many sit-
uations of interest, so that it has become a standard in the
practice of electrical motors. On the other hand, it presents
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serious limitations which may prevent its use in some cases.
To be precise, bench-tests basically assume that parameters
are constant, without taking into account the high sensitivity
of some of them to the working condition of the motor. For
instance, the resistive parameters are subject to large vari-
ations with temperature. In turn, temperature depends in
a nontrivial way on the motor state variables, the applied
load torque, and other exogenous sources of variation, so
that temperature is subject to unpredictable changes. In a
sensorless framework (where e.g. the temperature cannot be
measured by means of a dedicated sensor), and in those ap-
plications where the motor working conditions may have a
considerable variation (see e.g. [23, 10, 28, 29, 30]), pa-
rameters must be estimated based on measurements of input
and output taken during the actual operating condition of the
system. This leads to the need for more sophisticated pa-
rameter estimation methods other than bench-tests, and this
paper aims at discussing advantages and drawbacks of some
estimation methods developed by the system identification
community. �

Tyre parameters
A typical model of a tyre relating the lateral force at the tyre
to the steering angle, is provided by the so-called magic for-
mula of Pacejka, [32], which constitute a basic ingredient of
most vehicle dynamic models. In this Pacejka’s model, the
dependence of the lateral force upon the steering angle in-
volves various trigonometric expressions with a number of
unknown parameters depending on the tyre size, the infla-
tion pressure and other conditions. The issue is to estimate
such parameters from lab data or from data collected during
specific manoeuvres. �

The parameter estimation problem has been studied in
the systems and control community since long time. In the
same Proceedings of the IFAC World Congress of 1960 in
Moscow, one can find an article by John Westcott entitled
“The Parameter Estimation Problem”, [41], addressing ex-
actly this problem. By the way, John Westcott, now in his
nineties, is one of the signers of the IFAC resolution of 1956,
where the creation of IFACwas promoted by a small team of
gifted and far-seeing scholars. Actually Westcott is the only
one among the 18 signers who is still alive. See also [5] for
a survey on many advances in the field of identification.

For parameter estimation, there are two main approaches.
The first one is based on least squares techniques in the pre-
diction error identification framework (maximum likelihood
methods in the statistical field), the second one is based on
extended Kalman filter concepts. By the way, the subject of
the lecture given by Kalman in the set of the three side semi-
nars given at the IFACWorld Congress of 1960 was filtering
and prediction in the state space framework.

The aim of the present paper is that of surveying these
existing estimation methods. By means of a test bed prob-
lem, we will show that they may fail to provide sensible re-
sults. Then, we present a new estimation paradigm, namely
the two-stage (TS) approach, which has been recently in-
troduced by the authors of this paper to prevent some of the
drawbacks of existing methods, [4, 11, 12]. Clearly, our con-
tention is not that the TS paradigm always outperforms pre-

viously proposed approaches, since each method has its own
range of applicability, with successes and flaws. Yet, the
proposed test bed problem reveals that the TS method may
be a valid alternative. An application of the TS method to
a more concrete estimation problem in induction motors is
also given.

2 Parameter estimation: formal problem position

Let P (θ) be a dynamical system (continuous time or dis-
crete time, linear or nonlinear, finite or infinite dimensional,
noise free or subject to disturbances) depending on a certain
parameter vector θ ∈ R

q , as pictorially depicted in Figure 1.
Here, u(t) and y(t) are the input and output measurable sig-

Figure 1: The data generating system.

nals while e(t) is a nonmeasurable exogenous input. For
simplicity, we will assume that u(t) and y(t) take value in
R, i.e. P (θ) is SISO (single-input-single-output).
We assume that an exact mathematical model (and a cor-
responding simulator) for P (θ) is available. The current
value of parameter θ, however, is unknown and it has to
be retrieved based on an experiment on the plant (white-
box identification, [7]). To this purpose, the system be-
havior is observed for a certain time interval over which
a number N of input and output observations D̄N =
{ȳ(1), ū(1), ȳ(2), ū(2), . . . , ȳ(N), ū(N)} are collected (in
case of continuous-time systems, observations has to be in-
tended as sampled data points, e.g. ȳ(i), ū(i) = ȳ(t0 +
iT ), ū(t0 + iT ), where t0 is the initial time and T is the sam-
pling period). The issue, then, is how to exploit the informa-
tion contained in the data in order to obtain a fair estimate of
the uncertain parameter θ.

To be more concrete, we will consider a test bed problem
where the mathematical model of system P (θ) is as follows:

x1(k + 1) =
1

2
x1(k) + u(k) + v11(k)

x2(k + 1) = (1 − θ2) sin(50 θ2) · x1(k) − θ · x2(k) +

+
θ

1 + θ2
· u(k) + v12(k)

y(k) = x2(k) + v2(k), (1)

where θ is an unknown real parameter in the range
[−0.9, 0.9] and v11 ∼ WGN(0, 1), v12 ∼ WGN(0, 1), and
v2 ∼ WGN(0, 0.1) (WGN = White Gaussian Noise) are
mutually uncorrelated disturbances. We suppose that the ini-
tialization of system (1) is always x1(0) = 0 = x2(0).
In order to test the behavior of various estimation ap-
proaches, we extracted 200 values for the parameter θ uni-
formly in the interval [−0.9, 0.9] and, for each extracted
value of θ, we generated N = 1000 observations of the
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output variable y associated with an input u generated as
WGN(0, 1) uncorrelated with the disturbances. The N =
1000 pairs of input/output observations are given to the es-
timation algorithms, producing an estimate θ̂ for the corre-
sponding θ. Thus, for each estimation algorithm, we ob-
tain 200 estimates θ̂ which then are compared with the cor-
responding 200 true values of θ.

3 Existing estimation paradigms revisited

3.1 Kalman Filtering

In Kalman filter based methods, see e.g. [1, 39, 14, 35],
parameter θ is seen as a state variable by introducing an addi-
tional state equation of the type: θ(k+1) = θ(k) or θ̇(t) = 0,
depending if time is discrete or continuous1. Then, the es-
timation problem is reformulated as a state prediction prob-
lem.
As is well known, even if P (θ) were a linear model, the
resulting prediction problem would be nonlinear due to the
introduction of the additional state equation. Thus, one re-
sorts to nonlinear Kalman filtering.
Most common approaches are the Extended Kalman Filter
(EKF), [1, 13, 14], and the Unscented Kalman Filter (UKF),
[19, 40, 18]. For the EKF and UKF equations the reader is
referred to the literature, see e.g. [35].
Apart from the difficulties one can encounter when the sys-
tem is continuous-time and/or infinite dimensional, the ma-
jor issue of EKF and UKF is that an initial guess for the
initial estimation error mean and covariance matrix must be
supplied. However, the convergence of the parameter esti-
mate is very sensitive to the tuning of such initialization, and
there are celebrated (yet simple) examples showing the pos-
sible divergence/nonconvergence (see e.g. [25]). In general,
local convergence is achievable only, [25, 31, 38, 8, 33].
In order to obtain reasonable estimates, the initialization of
the algorithmmust be suitably tuned according to the current
value of θ. When, however, no accurate a-priori information
is available, such a tuning is performed by trial and error
empirical attempts, with questionable findings.

In order to apply both EKF and UKF to estimate the un-
known parameter in (1), the system was rewritten as:

x1(k + 1) =
1

2
x1(k) + u(t) + v11(k)

x2(k + 1) = (1 − x3(k)2) sin(50 x3(k)2) · x1(k) +

−x3(k) · x2(k) +
x3(k)

1 + x3(k)2
· u(t) +

+v12(k)

x3(k + 1) = x3(k) + w(k)

y(k) = x2(k) + v2(k),

where x3 is an additional state variable representing param-
eter θ. Herein, we will report the simulation results obtained
by taking as w(k) aWGN(0, 10−6).
For each extracted value of θ in the range [−0.9, 0.9],
the estimate was obtained as the 1-step ahead prediction

1Often the additional equation takes the form θ(k + 1) = θ(k) + w(k)
or θ̇(t) = w(t) where w is white noise with suitable variance so as to
improve the reactivity of the algorithm.

θ̂ = x̂3(1001|1000). Such a computation was carried over
with the EKF, UKF algorithms.

To provide a graphical visualization of the obtained re-
sults, we plot the obtained estimates against the true param-
eter values. In other words, for each point in the figures to
follows, the x-axis is the extracted value for θ, while the
y-axis is the corresponding estimate θ̂ supplied by the im-
plemented estimation method. Clearly, the more points dis-
placed nearby the bisector of the first and third quadrants,
the better the estimation result.

Figures 2,3 display the result of EKF and UKF in differ-
ent operating conditions. Precisely, Figure 2 depicts the
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Figure 2: Estimates of θ vs. true parameter values (large
initial variance) – EKF on the left, UKF on the right.

results obtained with the following initialization2: x̂1(0) =
x̂2(0) = 0, x̂3(0) = 0, and

P (0) =

⎡
⎣ 0.1 0 0

0 0.1 0
0 0 0.5

⎤
⎦ (2)

(P (0) is the initial covariance of the estimation error). Fig-

2Perhaps it is worth noticing that further simulations were performed
by changing the initialization of x̂3(0) (precisely, to −0.8, −0.3, 0.3, and
0.8), but such simulations are not reported here due to space limitations.
The results, however, were similar to those we have presented, and the con-
clusions drawn below remain still valid.
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Figure 3: Estimates of θ vs. true parameter values (small
initial variance) – EKF on the left, UKF on the right.

ure 3, instead, displays the results obtained when

P (0) =

⎡
⎣ 0.1 0 0

0 0.1 0
0 0 10−2

⎤
⎦ . (3)

As for the computational complexity, EKF took about 11
seconds to return the whole 200 estimates (with an average
time of 0.055 seconds per estimate), while UKF required
overall about 200 seconds (with an average time of 1 sec-
ond per estimate).
As it appears, the EKF and UKF behavior is quite differ-
ent from the optimal expected one. In many instances the
estimate does not converge to the true value of θ. Further-
more, the estimator behavior strongly depends on the choice
of x̂(0) and P (0), and, anyhow, local convergence can be
achieved at most.

Another approach, still settled in the Kalman Filter realm,
is the so-called Particle Filter (PF). PF basically reconstructs
the a-posteriori probability distribution of θ by letting a
cloud of possible parameter values evolve through the sys-
tem equations, [35]. Differently from EKF and UKF, PF has
the great advantage of guaranteeing the convergence of the
estimate, [9, 17], and this is one reason for its increasing pop-
ularity. On the other hand, the PF estimation algorithm re-
quires an intensive simulation of the model evolution before
returning an estimate for the unknown parameters. There-
fore, PF is very demanding from a computational point of

view, and in general its potentiality clashes with the limita-
tion on available resources.

As for the test bed problem, the PF paradigm results ob-
tained with 1000 particles are depicted in Figure 4.
As can be seen, PF provides more satisfactory estimates.
Although the performance can be further improved by in-
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Figure 4: Estimates of θ vs. true parameter values for the
Particle Filter estimator.

creasing the number of particles, the actual bottleneck of the
PF estimation method remains its computational complexity.
Indeed, PF took 4675.89 seconds to generate the estimates
with an average time of 23.38 seconds per estimate.

3.2 Prediction Error and Maximum Likelihood
paradigms

In the Prediction Error (PE) approach, [24], the loss func-
tion

V (θ) =

N∑
i=1

(ȳ(i) − ŷ(i, θ))2

is introduced, where ŷ(i, θ) is a predictor of the system out-
put derived through the model equation for P (θ) and the
available input/output data up to time i − 1. The estimate
of θ is obtained by minimizing V (θ), viz.

θ̂ = argminV (θ),

a problemwhich is typically tackled by resorting to gradient-
like methods.
The PE paradigm has been around for decades and has been
analyzed in great detail. It has become the mainstream in
black-box identification problems, but it applies to white-
box identification as well, with no conceptual twisting.
The main advantages of the PE approach are the solid the-
oretical background for consistency analysis and its general
applicability. As for this latter, observe that the gradient of
the prediction error can be computed with generality once
a model of the plant is available, possibly by numerical ap-
proximations.
However, the PE paradigm may suffer from computational
drawbacks as discussed in [7]. V (θ), indeed, is typically
a non-linear non-convex function with many local minima
which may trap the numerical solution far away from the
true minimizer, [6, 36]. Ignoring this problem would lead
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to biased (inconsistent) estimates. Hence, minimization is
typically carried out by means of multiple attempts, i.e. by
running the gradient-like method many times with different
initializations chosen from a grid in the parameter space and
then by choosing the estimate returning the smallest value
for the loss function. As is clear, the finer the grid, the better
the chance to converge to the global minimizer, but in this
case one runs into the curse of dimensionality for which – in
the words of [7] – “simulation would require supercomput-
ers, and optimization an order of magnitude more”.

The PEM estimation method was implemented for the
test bed problem by resorting to the idgrey models of the
System Identification Toolbox of Matlab, see
[26].
Figure 5 depicts the results obtained with a single initial-
ization of the PEM algorithm obtained by choosing a value
at random for θ in the interval [−0.9, 0.9] (note that initial
states were known, x1(0) = 0 = x2(0), and they needed not
to be estimated). Overall, calculations took 18.23 seconds
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Figure 5: Estimates of θ vs. true parameter values for PEM
estimator (1 initialization only).

with an average of 0.09 seconds per estimate. The returned
estimates are rather spread, revealing the presence of many
local minima trapping the PEM solution far away from the
true parameter value.
Then, we ran the PEM algorithm with 5 different initializa-
tions first and with 10 initializations later, and then we chose
the estimate returning the lowest loss. See Figure 6.
Although the performance is not the best one can hope for
even with 10 initializations, PEM provides better and bet-
ter results as the number of initializations is let increase.
However, time complexity get worse since the algorithm
with 5 initializations requires 94.28 seconds to generate the
200 estimates (with an average of 0.47 seconds per estimate),
while the algorithm with 10 initializations took 179, 14 sec-
onds (with an average of 0.9 seconds per estimate).

The maximum likelihood (ML) approach is another well
known estimation method taken from statistics, [3, 2, 15].
ML amounts to computing the likelihood of possible values
of θ given the observed data, and then finding the maximum
of such likelihood function.
In case of complex systems, ML suffers from major draw-
backs since it requires to reconstruct from the model equa-
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Figure 6: Estimates of θ vs. true parameter values for PEM
estimator – 5 initializations on the left, 10 initializations on
the right.

tions the probability density of observed data as a function
of the parameter θ. This is a hard task requiring full prob-
abilistic knowledge of disturbances, and it can be solved in
closed form in few exceptional cases only (basically, for lin-
ear systems with Gaussian disturbances). On top of that, the
maximization of the likelihood function presents the same
criticality in terms of local minima as in the PE paradigm,
see [6, 36]. Indeed, under suitable conditions, the negative
logarithm of the likelihood is equal to the PE cost function,
and hence the two optimization problems are equivalent.
Recently, an interesting ML approach based on Particle Fil-
tering and the so called EM algorithm has been proposed in
[34]. This approach gets rid of some of the drawbacks of
ML, but still its computational complexity remains very crit-
ical.

4 A new paradigm in parameter estimation: the
Two-Stage (TS) approach

Main Idea. The idea underlying the TS approach is to
resort to off-line intensive simulation runs in order to explic-
itly reconstruct the estimator, i.e. a function f̂ : R

2N → R
q

mapping measured input/output data into an estimate for the
parameter θ.
To be precise, we use the simulator of model P (θ) to gener-
ate input/output data for a number of different values of the
unknown parameter θ chosen so as to densely cover a certain
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range of interest. That is, we collectN measurements

DN
1 = {y1(1), u1(1), . . . , y1(N), u1(N)}

for θ = θ1; N measurements

DN
2 = {y2(1), u2(1), . . . , y2(N), u2(N)}

for θ = θ2; and so forth and so on, so as to work out a set of,

θ1 DN

1 = {y1(1), u1(1), . . . , y1(N), u1(N)}

θ2 DN

2 = {y2(1), u2(1), . . . , y2(N), u2(N)}
...

...
θm DN

m = {ym(1), um(1), . . . , ym(N), um(N)}

Table 1: The simulated data chart as the starting point of the
two-stage method.

say m, pairs {θi, D
N
i } as summarized in Table 1. Such set

of data is referred to as the simulated data chart.
From the simulated data chart, the function f̂ is recon-
structed as that map minimizing the estimation error over
simulated data, i.e.

f̂ ← min
f

1

m

m∑
i=1

∥∥∥θi−f(yi(1), ui(1), . . . , yi(N), ui(N))
∥∥∥2

.

(4)
Should f̂ be found, then the true θ corresponding to actual
measurements D̄N = {ȳ(1), ū(1), . . . , ȳ(N), ū(N)} is esti-
mated as

θ̂ = f̂(ȳ(1), ū(1), . . . , ȳ(N), ū(N)).

As is clear, solving (4) requires the preliminary choice of
a suitable class of functions F within which performing
optimization. This is indeed a critical issue, due to the
high dimensionality of the problem (f depends upon 2N

variables, normally a very large number if compared to the
number m of experiments). Correspondingly, the notorious
bias vs. variance dilemma arises, [24]: if F is a class of
low-complexity functions, then it is difficult to replicate the
relationship linking DN to θ for all values of θ (bias error);
on the opposite, if F is a class of high-complexity functions,
then the over-fitting issue arises (variance error).
In order to achieve a sensible compromise between the bias
and variance errors, the two-stage approach is proposed. In
this method, the selection of the family of functions F is
split in two steps. This splitting is the key to select a proper
family and, in turn, to obtain a good estimator f̂ .
To be more precise, the objective of the first step is to reduce
the dimensionality of the problem, by generating a new data
chart composed of m “short” sequences, each with n � N

points. We will call such sequences compressed artificial
data sequences and the corresponding chart the compressed
artificial data chart. In the second step, the map between
these artificial observations and parameter θ is identified.
By combining the results of the two steps, the estimator f̂ is
finally retrieved.
We give now more details on each of the two stages.

First stage. The first step consists in a compression

of the information conveyed by input/output sequences
DN

i in order to obtain new data sequences D̃n
i of reduced

dimensionality. While in the data DN
i the information on

the unknown parameter θi is scattered in a long sequence of
N samples, in the new compressed artificial data D̃n

i such
information is contained in a short sequence of n samples
(n � N ). This leads to a new compressed artificial data

θ1 D̃n

1 = {α1

1, . . . , α
1

n}

θ2 D̃n

2 = {α2

1, . . . , α
2

n}
...

...
θm D̃n

m = {αm

1 , . . . , αm

n }

Table 2: The compressed artificial data chart.

chart constituted by the pairs {θi, D̃
n
i }, i = 1, . . . , m, see

Table 2.
Each compressed artificial data sequence D̃n

i can be derived
from DN

i by resorting to standard identification proce-
dures. That is, one fits a simple model to each sequence
DN

i = {yi(1), ui(1), . . . , yi(N), ui(N)} and then takes the
parameters of this model, say αi

1, α
i
2, . . . , α

i
n, as compressed

artificial data, i.e. D̃n
i = {αi

1, . . . , α
i
n}.

To fix ideas, we suggest the following as a typical method.
For each i = 1, 2, . . . , m, the data sequence

DN
i = {yi(1), ui(1), . . . , yi(N), ui(N)}

is concisely described by an ARX model:

yi(t) = αi
1y

i(t − 1) + · · ·αi
ny

yi(t − ny) +

αi
ny+1u

i(t − 1) + · · · + αi
ny+nu

ui(t − nu),

with a total number of parameters n = ny + nu. The pa-
rameters αi

1, α
i
2, . . . , α

i
n of this model can be worked out by

means of the least squares algorithm ([37, 24]),
⎡
⎢⎣

αi
1

...
αi

n

⎤
⎥⎦ =

[ N∑
t=1

ϕi(t)ϕi(t)T
]
−1

·

N∑
t=1

ϕi(t)yi(t), (5)

ϕi(t) = [yi(t− 1) · · · yi(t− ny) ui(t− 1) · · ·ui(t−nu)]T ,

and are used as compressed artificial data. It is worth
noticing that, while P (θ) is a mathematical description of
a real plant, the simple model class selected to produce
the compressed artificial data does not have any physical
meaning; this class plays a purely instrumental and in-
termediary role in the process of bringing into light the
hidden relationship between the unknown parameter and
the original collected data. Hence, it does not matter if the
ARX models do not tightly fit data sequences DN

i ; what
really matters is that αi

1, α
i
2, . . . , α

i
n capture the variability

of the θi. In this connection, observe that the choice of the
ARX model order (which must be the same for all the data
sequences in the simulated data chart) is not very critical
and it can be performed by successive trials.
In conclusion, the first stage of the method aims at finding
a function ĝ : R

2N → R
n transforming each simulated
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data sequence DN
i into the a new sequence of compressed

artificial data D̃n
i conveying the information on θi. As

compressed artificial data we take the parameters of a
simple model, identified fromDN

i . In this way, function ĝ is
defined by the chosen class of simple models together with
the corresponding identification algorithm.

Second stage. Once the compressed artificial data
chart in Table 2 has been worked out, problem (4) becomes
that of finding a map ĥ : R

n → R
q which fits the m

compressed artificial observations into the corresponding
parameter vectors, i.e.

ĥ ← min
h

1

m

m∑
i=1

∥∥∥θi − h(αi
1, . . . , α

i
n)

∥∥∥2

. (6)

Function minimization in (6) is reminiscent of the original
minimization problem in (4). However, being n small, the
bias versus variance error trade-off is no more an issue, and
it is possible to resort to one of the many methods available
in the literature for function fitting.
As for the choice of h one can e.g. select a linear function:
h(αi

1, . . . , α
i
n) = c1α

i
1 + c2α

i
2 + . . . + cnαi

n, ci ∈ R
q ,

i.e. each component of h is just a linear combination of the
compressed artificial data αi

1, α
i
2, . . . , α

i
n. The parameters

ci appearing here can then be easily computed via least
squares, at a low computational cost. Of course such a way
of parameterizing h is computationally cheap but possibly
loose. Better results are expected by choosing a class of
nonlinear functions, such as Neural Networks, [16], or
NARX models. The minimization in (6) can be performed
by resorting to standard algorithms developed for these
classes of nonlinear functions.

Use of the two-stage method. The two-stage method
is based on two functions: ĝ and ĥ. The former is the
compression function, transforming simulated data into
compressed artificial data. The latter is the fitting function
providing the map from the compressed artificial data to
the unknown parameter. While ĝ is chosen by the designer
by selecting the intermediary identification algorithm in
the first stage, in the second stage the designer chooses a
suitable class of functions and ĥ is identified by fitting the
extracted parameter values to the corresponding compressed
artificial data.
Once ĝ and ĥ are available, the estimator f̂ mapping
input/output data into the estimate for θ is given by
ĥ ◦ ĝ = ĥ(ĝ(·)), i.e. by the composition of ĝ and ĥ

as pictorially represented in Figure 7. In this way, f̂ is

Figure 7: The estimator function composition.

explicitly given. When a new input/ouput sequence, say
D̄N = {ȳ(1), ū(1), . . . , ȳ(N), ū(N)}, is observed from
the real plant, the corresponding unknown parameter θ is
simply estimated as θ̂ = ĥ(ĝ(D̄N )).

Application to the test bed problem. According to the
previous discussion, the TS estimator was obtained bymeans
of a training over a set of simulation data. Once the training
was terminated, the performancewas tested against the same
200 experiments previously used for the other methods.
As for the training, m = 1500 new values of θ were ex-
tracted uniformly from the interval [−0.9, 0.9] and corre-
spondingly 1500 sequences of 1000 pairs of input/output
values were simulated so as to construct the simulated data
chart.
For each data sequence yi(1), ui(1) . . . , yi(1000), ui(1000),
i = 1, . . . , 1500, the compressed artificial data sequence was
obtained by identifying through the least squares algorithm
the coefficients αi

1, . . . , α
i
10 of an ARX(5,5) model (yi(t) =

αi
1y(t−1)+· · ·+αi

5y(t−5)+αi
6u(t−1)+· · ·+αi

10u(t−5)).
The final estimator ĥ(αi

1, . . . , α
i
10), instead, was computed

by resorting to a neural network with 10 inputs (αi
1, . . . , α

i
10)

and 1 output (θ̂). The network was a standard feed-forward
neural network with 2 layers (10 neurons in the first layer and
1 neuron in the second one which was also the output layer).
The networkwas trained with the 1500 artificial observations
by the usual back-propagation algorithm, [16]. Overall the
training took 31.45 seconds.
The obtained estimator was then applied to the 200 data se-
quences previously used3. Again, the returned 200 estimates
θ̂ were compared with the corresponding 200 values of θ.
The TS estimators required 1.95 seconds to generated the
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Figure 8: Estimates of θ vs. true parameter values for the TS
estimator.

whole 200 estimates (that is, an average time of 0.01 sec-
onds per estimate), while its performance can be appreciate
in Figure 8.
As it can be seen, the two-stage estimator works much bet-
ter than other methods, with time complexity some orders of
magnitude below.

5 Parameter estimation in induction motors

In this section, we discuss the use of the TS method for
the estimation from experimental data of the parameters of
an induction motor in a sensorless environment.

3Perhaps it is worth to stress that this 200 values of θ and correspond-
ing data sequences were not used in the training phase of the two-stage
approach.
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Model description and experimental setting
Many different sets of equations describing the behavior of
an induction motor can be found in the literature, [22, 21].
Here, we consider the following well known fifth order
model taking into account both the dynamics of the stator
currents and of the rotor fluxes, see e.g. [27, 23, 10, 28, 29,
30]:

dω
dt

= μ(ψaib − ψbia) − Tl

J
dψa

dt
= −αψa − ωψb + αMia

dψb

dt
= −αψb + ωψa + αMib

dia

dt
= −(Rs

σ
+ βαM)ia + 1

σ
ua + βαψa + βωψb

dib

dt
= −(Rs

σ
+ βαM)ia + 1

σ
ub + βαψb − βωψa

(7)
In this model, all variables refers to the fixed reference
frame of the rotor. The state variables are the rotor speed
ω, the rotor fluxes (ψa, ψb), and the stator currents (ia, ib).
The currents ia and ib are also the measurable outputs of the
system, while ua and ub, denoting the stator voltages, are
the control inputs. Tl instead is the load torque and can be
regarded as an external, not measurable, disturbance.
The model depends on a number of parameters, namely
the rotor moment of inertia J , the resistances (Rr, Rs) and
the inductances (Lr, Ls) of the rotor and stator windings,
and the mutual inductance M . In the above equations, the
following notation was adopted:

α =
Rr

Lr

, β =
M

σLr

, μ =
M

JLr

, σ = Ls(1 −
M2

LsLr

).

In our estimation problem, the stator voltages are ma-
nipulated by means of a square-wave three-phase inverter
controller, while, according to a sensorless framework, we
assume that the stator currents can be measured only. In
order to take into account possible measurement errors, a
zero mean white noise with standard deviation = 100mA is
added to each output. The assumed uncertainty was in line
with [23, 30].
Among other parameters, the rotor resistance Rr is the one
that is more affected by uncertainty due its sensitivity to tem-
perature4. We hence assume that Rr is unknown and that its
range of variability is [0.5Rrn, 2Rrn], where Rrn = 3.3Ω
represents the resistance nominal value. This is typical for
a number of motors and applications as revealed by exper-
imental tests. For simplicity, all other parameters are sup-
posed to be constant and equal to their nominal value (that
is, Lr = 0.375H , Ls = 0.365H , J = 0.0075kgm2, and
M = 0.34H).
Besides Rr, another source of uncertainty is present in the
model, namely the imprecise knowledge of the load torque
Tl, being this latter user-dependent. The range of variability
for Tl is [0.88Tln, 5Tln], where Tln = 5.104Nm is the nom-
inal value for Tl.
Note that the load torque Tl is not properly a model param-
eter although it can be treated as such. Tl indeed is a con-
stant disturbance input whose lack of knowledge makes the
estimation problem even more difficult. As such, Tl is not

4It is worth noticing that the stator resistance Rs presents the same sen-
sitivity to temperature. Yet, Rs can be trivially estimated being the mea-
surements of both stator voltages and currents available.

required to be estimated. Rather, the target of our problem is
that of estimating Rr from input/output data, robustly with
respect to the values taken by Tl.

Training of the TS estimator
In order to apply the TS method, m = 2500 values
for θ = Rr were extracted uniformly from the interval
[0.5Rrn, 2Rrn] and, correspondingly, we ran 2500 simu-
lations of the motor model, each time adopting the con-
trol returned by the square-wave three-phase inverter con-
troller as input and a constant value randomly chosen from
[0.88Tln, 5Tln] as torque load. This way we trained the TS
estimator to be robust with respect to the imprecise knowl-
edge of Tl.
By sampling at 1kHz the input and output signals, we ob-
tained 2500 input/output sequences eachN = 1000 samples
long:

ui(1), yi(1), ui(2), yi(2), . . . , ui(1000), yi(1000),

i = 1, 2, . . . , 2500. These sequences together with the 2500
extracted values for θ formed the simulated data chart.
For the generation of the compressed artificial data chart a
MIMO ARX(3,3) model was considered:

yi(t) = αi
1y

i(t − 1) + · · · + αi
3y

i(t − 3) +

αi
4u

i(t − 1) + · · · + αi
6u

i(t − 3).

The parametersαi
1, α

i
2, . . . , α

i
6, i = 1, 2, . . . , 2500, obtained

by performing identification over the sequence

ui(1), yi(1), ui(2), yi(2), . . . , ui(1000), yi(1000)

constituted the compressed artificial data chart.
The final estimator ĥ(αi

1, α
i
2, . . . , α

i
6)was instead derived by

resorting to a feed-forward 4-layers neural network, with a
total of 15 neurons in the hidden layers and 1 linear neurons
in the output layer, [16]. The network weights were trained
by the usual back-propagation algorithm. The order as well
as the structure of the neural network was chosen by means
of cross-validation.
The entire process for the training of the TS estimator took
about 20 minutes on a standard 2.40 GHz dual-processor
computer, and it produced an explicit estimator f̂(·) =

ĥ(ĝ(·)) defined as the composition of the least squares al-
gorithm and the trained neural network.

Simulation results
In order to test the TS estimator, we picked at random
new 100 values for the uncertain parameter Rr, and corre-
spondingly we ran new 100 simulations of the motor model
with input generated by the square-wave three-phase in-
verter controller and torque load Tl extracted uniformly in
[0.88Tln, 5Tln]. The 100 data sequences obtained by sam-
pling input and output signals at 1kHz were made available
to the TS estimator so as to generate 100 estimates. These
estimates are compared to the true values of the parameters
in Figure 9. As in the test bed example, the estimates of Rr

as returned by the TS estimator are plotted against the true
parameter values, and the closer the points to the plot bisec-
tor the better the estimation results.
As it can be seen, the TS method provided unbiased es-
timates with an estimation error which is no greater than
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Figure 9: Estimation results for the TS method.

0.6Ω. As for the computational complexity, on a standard
2.40 GHz dual-processor computer, the TS method required
2.11 seconds only to generate the whole estimates, with an
average of 0.021 seconds per estimate. The overall perfor-
mances of the TS approach are summarized in Table 3 where
the following acronyms are used: ARE = Average Relative
Error, MRE =Maximum Relative Error, AET = Average Es-
timation Time.

ARE MRE AET
TS: 0.0230 0.1201 0.021s

Table 3: TS estimation performances

6 Conclusions

The dawn of control science and engineering in modern
times can be traced back to the mid of past century. Ever
since the literature in the field has been flourishing more and
more, its evolution being appropriately outlined in the Pro-
ceedings of the 18 IFAC World Congresses held so far. The
interest for the field is now so wide that in the IFAC World
Congress of Milan, 2011, we counted 3629 submitted pa-
pers, for a total of 7140 authors of 73 nationalities.

A basic conclusion one can draw is that control sci-
ence and engineering is more and more a model based
field. In turn this implies that estimation and identifica-
tion is a fundamental pillar for control. Not surprisingly,
system identification has been the subject of many confer-
ences. Within IFAC, one can count 16 System Identifica-
tion symposia, the first being held 42 years ago, Prague,
The Check Republic (1970), only twelve years after the first
IFACWorld Congress of 1960. Then, the SYSID conference
was hosted in Hague/Delft, The Netherlands (1973), Tblisi,
URSS (1976), Darmstadt, Germany (1979), Arlington, USA
(1982), York, UK (1985), Beijing, China (1988), Budapest,
Hungary (1991), Copenhagen, Denmark (1994), Fukuoka,
Japan (1997), Santa Barbara, USA (2000), Rotterdam, The
Netherlands (2003), Newcastle, Australia (2006), St. Malo,
France (2009), Brussels, Belgium (2012). The next one in

the sequence is scheduled again in Beijing - October 2015.

Although many estimation and identification methods
have been developed and studied in half century of research
around the world, still there are very interesting unsettled
problems, and this paper tries to bring into light one of
them. Furthermore, new challenging problems will arise in
the forthcoming future, due to the new arising fields of con-
trol applications, such as intelligent transportation systems,
smart cities, systems biology, renewable energy systems, to
name but a few.
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