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Abstract: We study the problem of approximating a stochastic, possibly hybrid, system by
means of some abstracted model to the purpose of simplifying the analysis of properties such
as probabilistic safety and reachability. We suppose that the property to be analyzed depends
on the behavior of some output signal of the system and that the model is designed in order to
reproduce that signal as close as possible, for the different possible realizations of the stochastic
input affecting the system. The idea developed in this paper is to assess the quality of a model
as an approximation of a stochastic system by testing how close are their output signals over
a finite number of input realizations. Under suitable assumptions, we show that, with high
confidence, the quality assessed on a few input realizations is guaranteed to hold also for all the
unseen ones except for a set of pre-defined probability ǫ. The proposed approach can be applied
to an arbitrary system, the only requirement being to be able to run multiple simulations of its
behavior for different input realizations.
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1. INTRODUCTION

Stochastic hybrid systems (SHS) represent a powerful
modeling framework for describing complex, large scale
systems that involve the interaction between continu-
ous dynamics, discrete dynamics and probabilistic uncer-
tainty. Because of their versatility, SHS have been ef-
fectively adopted in diverse application domains such as
control of telecommunication networks, air traffic man-
agement, manufacturing, biology and finance (see, for ex-
ample, Blom and J. Lygeros [2006], Cassandras and J.
Lygeros [2006] for an overview).

The verification of properties related to the system evo-
lution, like, e.g., safety and reach/avoid properties, is
typically addressed through numerical methods involving
state-space gridding (Abate et al. [2010]), and, as such, is
affected by an exponential growth of the computational
effort as a function of the state-space dimension. To the
purpose of scaling-up numerical methods for system veri-
fication, it is then important to find a way of introducing
simpler descriptions of a given SHS that mimic the behav-
ior of the original system and can be used in place of it to
assess the property of interest.

This motivates our work in this paper, where we study the
problem of approximating a stochastic, possibly hybrid,
system by means of some (simpler) model, see Julius et al.
[2006], Petreczky and Vidal [2007], Julius and Pappas
[2009]. The interested reader is referred to Lygeros and
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Prandini [2010] for a discussion on further challenges in
the advancement of analysis and control methods for SHS.

We adopt a setting that is similar to that in Julius and
Pappas [2009], Julius et al. [2006], where a notion of
approximate stochastic (bi)simulation is introduced for
SHS. More specifically, we consider a system S that is
characterized in terms of some stochastic output signal yS

and suppose that the candidate abstracted model M gen-
erates a signal yM that takes values in the same set as yS.
The system and the model are fed by the same stochastic
input which may influence both the continuous evolution
within each mode and the spontaneous transitions between
modes. The initial state is supposed to be stochastic.

According to the notion of approximate (bi)simulation
in Julius and Pappas [2009], the quality of M as an
approximate abstraction of S can be assessed by evaluating
the maximal distance between the system and the model
output realizations over all possible input realizations and
initial conditions except for a set of probability ε. Let γ
be this distance. If we are interested in evaluating the
probability that yS enters some unsafe set A, then, we
can suitably enlarge A so as to obtain a set Aγ such that
if yS enters A, then, yM enters Aγ . The probability that
yS enters A can then be upper bounded by the probability
that yM enters Aγ increased by ε.

Differently from Julius and Pappas [2009], we suppose that
the property of interest depends on the system behavior
over a finite horizon and we provide a computational
method that is of general applicability and not restricted
to some specific class of systems.



The key idea is to assess the quality of a model M as
an approximation of a stochastic system S by testing its
behavior over a finite number of realizations of the initial
state and of the stochastic input affecting the system.
Under suitable assumptions, the quality assessed on a few
scenarios is guaranteed to hold also for all unseen scenarios
except for a set of probability ǫ, with high confidence. This
idea was first mentioned in Campi et al. [2009] as one
of the possible applications of the scenario approach to
systems and control design, and is further elaborated here,
leading to a significant improvement in terms of problem
formulation and extent of the results with respect to Abate
and Prandini [2011].

The proposed approach should be combined with compu-
tational verification techniques to allow for the analysis
of probabilistic safety and reachability properties of large
scale stochastic systems.

Interestingly, the computational complexity of the ap-
proach in terms of number of scenarios to consider depends
on the complexity of the model to be designed and not on
that of the system S to be approximated. Indeed, the only
assumption on S is that one should be able to run multiple
executions of S and to determine the corresponding output
realizations. If feasible, one could even run experiments
on the real system without the need of determining a
mathematical description and building a simulator for it.

The rest of the paper is organized as follows. We start
by formulating the problem of approximating a stochastic
system S in Section 2, where we precisely define the
issues of performance assessment and optimization of an
abstracted model M of S. In Section 3, we develop a
simulation-based approach to address both these issues.
Final conclusions are drawn in Section 4.

Notation: Throughout the paper, we use small letters
like s to denote a signal defined over the look-ahead time
horizon [0, T ], and st to denote the value taken by s at
time t ∈ [0, T ]. For each t ∈ [0, T ], st takes value in the
space S. S may be e.g. R

n or, when we are dealing with
hybrid systems and st has both a continuous and a discrete
component, R

n × {1, 2, . . . , q}. S [0,T ] denotes the set of
all signals defined over the time interval [0, T ] and taking
values in S at each time instant t ∈ [0, T ].

2. PROBLEM FORMULATION

System S is described as an operator that maps the initial
state x0 and the input signal w on the time horizon [0, T ]
into the signal yS of interest:

yS = fS(x0, w).

x0 and w are defined over X ×W [0,T ] and are assumed to
be stochastic with known probability measure P. Signal yS

takes values in Y [0,T ].

Model M is defined as follows

yM = fM(x0, w),

where yM ∈ Y [0,T ].

Note that function fM defining M depends on the initial
condition x0 of S. This does not mean that the state
space of M has the same size as that of S but that fM

incorporates the mapping from the initialization of the

state of S to that of the (possibly lower-dimensional) state
of M .

Example 1. (JLSS). Consider a stochastic system S with
state xt ∈ R

n that evolves within [0, T ] according to the
following Stochastic Differential Equation (SDE):

dxt = Axtdt + FxtdBt, (1)

in-between the jump times 0 = τ0 < τ1 < · · · < τi < · · · ≤
T of a Poisson process P with rate λ > 0. The Brownian
motion B in equation (1) is assumed to be independent
of the Poisson process P . At each jump time τi > 0, the
state is reset according to

xτi
= R lim

s→τ
−

i

xs, (2)

whereas xτ0
= x0. The initial state x0 ∈ X := R

n

is independent of the stochastic input w = (B, P ) that
includes both the Brownian motion B and the Poisson
process P and takes values in W = R × Z+ at each time
t ∈ [0, T ].

This system is known as Jump Linear Stochastic System
(JLSS) since its evolution between jump times is charac-
terized by a SDE with drift and diffusion terms that are
linear in xt, and the state resets at the jump times are
linear in xt as well.
A JLSS can be seen as a SHS with a single operating mode
characterized by a SDE. When a (auto)transition occurs,
the continuous state is subject to some deterministic reset
and the continuous dynamics keeps unchanged after the
transition.
The output signal of interest yS

t takes values in Y = R
p

and is given by

yS

t = Cxt.

A reduced model of the system with output signal

yM

t = C̃zt

can be obtained by taking only a subset zt of the state
variables xt and appropriately re-defining the matrices
entering the original JLSS definition. The resulting jump
diffusion process zt ∈ R

ñ (with ñ < n) satisfies the SDE

dzt = Ãztdt + F̃ ztdBt, (3)

in-between the jump times 0 = τ0 < τ1 < · · · < τi < · · · ≤
T , and is reset according to

zτi
= R̃ lim

s→τ
−

i

zs (4)

at the jump times τi > 0. The initial condition zτ0
= z0 is

a function of x0: z0 = l(x0). 2

The quality of M as an approximation of S is evaluated
by looking at the similarity of the signals yM and yS of the
two systems. To this purpose, we introduce a quasi-metric

D : Y [0,T ] × Y [0,T ] → R+

to assess how close signal yM is to yS. For example, letting
d be any metric defined over Y, the metric

D(yS, yM) = sup
t∈[0,T ]

d(yS

t , yM

t ),

can be used if we are interested in yS and yM being close
each other at each time instant. If, otherwise, we are
interested in the distance between trajectories only, the
directional Hausdorff metric can be used

D(yS, yM) = sup
t∈[0,T ]

inf
τ∈[0,T ]

d(yS

t , yM

τ ).



As for the metric d, it highly depends on the space Y
and on the problem itself. For example, if Y = R

p it is
customary to use the Euclidean metric d(yS

t , yM

t ) = ‖yS

t −
yM

t ‖. If instead Y = R
p × {1, 2, . . . , q} so that yt ∈ Y

has both a continuous and a discrete component, say
yt = (yc

t , y
d
t ), the metric d can be

d(yS

t , yM

t ) =

{

+∞ if yS,d
t 6= yM,d

t

‖yS,c
t − yM,c

t ‖ otherwise.

The meaning of this metric is that we want first to check
whether S and M are in the same operation mode, and
then, if so, how close the continuous components of the y
variables are.

When evaluating the quality of M as an approximation of
S, we can require either that yM is close to yS for every
and each realization of x0 and w or, alternatively, that yM

is close to yS for all realizations of x0 and w except a set
of pre-specified probability ε ∈ (0, 1). This latter approach
is adopted in Julius and Pappas [2009] and presents the
advantage that if there exist some “bad” but quite unlikely
realizations that would over-penalize the performance of
M as an approximation of S, then, they can be discarded.

Definition 1. System M is said to be an ε-abstraction of
S with accuracy function h : X → R+ if

P {D (yS, yM) ≤ h(x0)} ≥ 1 − ε. (5)

Note that, according to Definition 1, D(yS, yM) is upper
bounded by some positive function h(x0) of the initial
condition x0. This means that different initializations are
allowed to correspond to a different similarity level of yM

and yS, which can avoid the conservativeness of using a
uniform bound.

Remark 1. Evidently, the performance assessed over a set
of realizations of measure 1 − ε improves as ε grows, but
becomes meaningless if ε is too close to 1. The probability
ε has then to be chosen so as not to penalize performance,
while leading to sensible statements on the properties of
S through the analysis of M .

2.1 Abstraction performance assessment

In this case we suppose that both the operators fS and
fM defining S and M are given and the objective is to
assess the performance of M as an ε-abstraction of S.
This entails to determining an accuracy function h(x0)
so that the condition (5) is satisfied. Clearly, the solution
of this problem is not unique, and we are interested in
determining the “smallest possible” h(x0). Since x0 is
stochastic, a sensible measure of the size of h(x0) is its
expectation. This leads naturally to the following chance-
constrained optimization problem:

min
h(·)∈H

E[h(x0)] (6)

subject to: P {D (yS, yM) ≤ h(x0)} ≥ 1 − ε,

where H is a set of functions from X to R+.

Remark 2. In Julius and Pappas [2009] a method is pro-
posed for finding a h(x0) which is feasible for (6) (i.e.
a h(x0) that satisfies the probabilistic constraint). This
method is based on the introduction of the so-called
stochastic (bi-)simulation functions and provides no guar-
antees about the optimality of the obtained h(x0). This

may lead to a severe underestimation of the abstraction
capabilities of M and to conservative results.

Remark 3. Note that if the accuracy function h(x0) is
assumed to be constant, then the problem reduces to

min
h∈R

h

subject to: P {D (yS, yM) ≤ h} ≥ 1 − ε,

which was previously considered in Abate and Prandini
[2011] that can be seen as a particular case of our setting.

2.2 Abstraction performance optimization

In this second case, fM is no more given and our goal is
to design M so that M is an ε-abstraction of S with the
smallest possible accuracy h(x0). The problem becomes:

min
fM∈F ,h(·)∈H

E[h(x0)] (7)

subject to: P {D (yS, yM) ≤ h(x0)} ≥ 1 − ε,

where F is some given family of operators and H is a set
of functions from X to R+

3. SCENARIO IMPLEMENTATION

The optimization problems introduced in Sections 2.1
and 2.2 are called chance-constrained problems since we
have to minimize a cost function subject to a constraint
which holds in probability. Unfortunately, the constraint
P {D (yS, yM) ≤ h(x0)} ≥ 1 − ε is in general non-convex
even in the case when the constraint D (yS, yM) ≤ h(x0)
is convex with respect to the optimization variables for
every realization of x0 and w. For this reason, chance-
constrained problems are usually hard to solve and, indeed,
they are NP-hard with few exceptions.

The scenario approach, Calafiore and Campi [2005, 2006],
Campi and Garatti [2008], Campi et al. [2009], Campi
and Garatti [2011], is a recent paradigm for computing
approximate solutions to chance-constrained problems at
relatively low computational effort when the constraint
D (yS, yM) ≤ h(x0) and the cost function E[h(x0)] are con-
vex in the optimization variables. Algorithmically speak-
ing, the scenario approach builds on a very intuitive and
basic idea: a number, say N , of realizations of x0 and w, say

x
(i)
0 and w(i) for i = 1, 2, . . . , N , are extracted according to

the underlying probability measure P and optimization is
performed over this finite number of instances of x0 and w
only. More precisely, letting α be a user chosen parameter

such that 0 ≤ α < ε, and letting yS,(i) = fS(x
(i)
0 , w(i))

and yM,(i) = fM(x
(i)
0 , w(i)), i = 1, 2, . . . , N , the Scenario

Algorithm described in Algorithm 1 aims at finding a
solution that violates the condition

D
(

yS,(i), yM,(i)
)

≤ h(x
(i)
0 )

⌊αN⌋ times out of N , i.e. with an empirical probability
equal to α (⌊·⌋ = integer part).

In Algorithm 1, the constraints to be violated are selected
by progressively discarding one constraint at a time, that
one giving the largest immediate cost improvement (greedy
algorithm). This way, the obtained solution is not the best
possible one violating ⌊αN⌋ constraints out of N , yet a
fair sub-optimality is achieved while keeping the compu-
tational effort at a reasonable level. Each optimization



Algorithm 1 The Scenario Algorithm (SA)

1: Solve problem

min E[h(x0)]

subject to: D
(

yS,(i), yM,(i)
)

≤ h(x
(i)
0 ),

i ∈ {1, 2, . . . , N}.

Store the solution.
2: Find the constraints violated by the stored solution,

i.e. find the indexes i such that

D
(

yS,(i), yM,(i)
)

> h(x
(i)
0 ).

Let these indexes be j1, j2, . . . , jp (if {j1, j2, . . . , jp} =
∅, then take p = 0). If p = ⌊αN⌋, then halt the
algorithm and return the stored solution.

3: Find the active constraints for the stored solution, i.e.
find the indexes i such that

D
(

yS,(i), yM,(i)
)

= h(x
(i)
0 ).

Let these indexes be i1, i2, . . . , im.
4: for k = 1, 2, . . . , m

Solve problem

min E[h(x0)]

subject to: D
(

yS,(i), yM,(i)
)

≤ h(x
(i)
0 ),

i ∈ {1, 2, . . . , N}/{ik, j1, j2, . . . , jp}.

If the obtained cost is better than the cost of the
stored solution, then delete this latter and store
the last computed solution.

end
5: Goto 2.

problem which is required to be solved in the algorithm
is of standard type, i.e. with a finite number of convex
constraints, and is amenable to a resolution via standard
solvers like CVX, Grant and Boyd [2011], and YALMIP,
Löfberg [2004]. Algorithm 1 comes to termination as long
as each time Step 3 is called one active constraint whose
removal improves the cost can be found. This condition
is satisfied in normal situation and is assumed here for
granted.

Although obtained based on a finite number of samples of
x0 and w only, the scenario solution comes with precise
guarantees about its feasibility for the original chance-
constrained problem, i.e. the problem with the probabilis-
tic constraint over the whole infinite domain X ×W [0,T ].
This is the main feature of the scenario approach that
hence can be reliably (as opposed to empirically) used
to tackle chance-constrained problems otherwise deemed
intractable. The following theorem precisely states this
feasibility property and can be derived quite directly from
Theorem 2.1 in Campi and Garatti [2011].

Theorem 1. (Feasibility of the scenario solution). If N is
big enough so that (r is the dimensionality of the opti-
mization variable)

(

⌊αN⌋ + r

⌊αN⌋

) ⌊αN⌋+r
∑

i=0

(

N

i

)

εi(1 − ε)N−i ≤ β, (8)

then the scenario solution is such that

P {D (yS, yM) ≤ h(x0)} ≥ 1 − ε

with confidence 1 − β.

Unfortunately, we cannot guarantee that the scenario
solution is always feasible, because it depends on the

N extracted samples x
(i)
0 , w(i) and it may well happen

that these samples are not enough representative. Yet,
this latter case is very unlikely for large N and, indeed,
Theorem 1 says that if N is chosen as indicated, then, the
probability of such a bad event is no greater than β. It
can be shown that the smallest N satisfying (8) increases
logarithmically with β. Hence, we can enforce a very small
value for β – like β = 10−7 or even β = 10−10 which
guarantee the achievement of P {D (yS, yM) ≤ h(x0)} ≥
1 − ε beyond any reasonable doubt – without affecting
N too much.

Remark 4. (Choice of α). As for the choice of the empir-
ical probability of violation α, one should note that the
closer α to the desired violation probability ε the better
the approximation of the chance-constrained solution; yet,
at the same time, it holds that N → ∞ as α → ε.
Intuitively, if α equals ε, then, P {D (yS, yM) ≤ h(x0)}
will fluctuate around 1 − ε depending of the extracted
samples of x0 and w, and it is not possible to guarantee
that P {D (yS, yM) ≤ h(x0)} is bigger than 1− ε with high
confidence for a finite N . The ultimate choice for α remains
to the user, who selects its own best comprise between the
accuracy required by the application and computational
tractability.

Summarizing, the scenario approach provides a reliable
and computationally low demanding tool by means of
which the chance-constrained problems in Sections 2.1 and
2.2 can be tackled. Clearly, its application requires that the
convexity assumption is verified and this, in turn, poses
some conditions on the choices of H and F , the class of
accuracy functions and of candidate abstracted models
over which optimization is performed. These choices are
now discussed in the next two sections.

3.1 Abstraction performance assessment

In performance assessment, the sole optimization variable
is h(·) ∈ H, H being a parametric class of positive
functions, while fM defining the model is given and fixed.

No restrictions have to be posed on fS and fM , which
hence can be arbitrary.

Let hϑ(·) denote the parameterized version of h(·). In order
to apply the scenario approach, we need to ensure both the
convexity of E[hϑ(x0)] and of the constraint D (yS, yM) ≤
hϑ(x0) with respect to ϑ, for every value of x0 and w.
Since the convexity E[hϑ(x0)] is achieved when hϑ(x0) is
a convex in ϑ, while the convexity of D (yS, yM) ≤ hϑ(x0)
requires that hϑ(x0) is concave in ϑ, the sole possibility is
that hϑ(x0) is linearly parameterized in ϑ.

One possibility is that of considering as H the class
of positive quadratic hybrid functions of the continuous
part of x0. More precisely, letting x0 = (xc

0, x
d
0) be the

decomposition of x0 into its continuous part xc
0, taking

value in R
n, and its discrete part xd

0, taking value in the
finite alphabet {1, 2, . . . , q}, hϑ(·) can be parameterized as
follows

hϑ(x0) =

q
∑

k=1

[

xc
0
′ΘA

k xc
0 + 2Θb

kxc
0 + Θc

k

]

1[xd
0
=k],



where 1[·] is the indicator function.

Let us define the (n + 1) × (n + 1) symmetric matrix:

Θk =

[

ΘA
k Θb

k

′

Θb
k Θc

k

]

.

Then, we have that

xc
0
′ΘA

k xc
0 + 2Θb

kxc
0 + Θc

k =
[

xc
0
′ 1

]

Θk

[

xc
0
1

]

,

and the condition of positiveness of hϑ(x0) simply trans-
lates into a positive semi-definite condition on the matrices
Θk, i.e. Θk � 0, k = 1, 2, . . . , q, which is a linear constraint
on Θk. Moreover, E [hϑ(x0)] can be expanded as follows:

E [hϑ(x0)] = E

[

q
∑

k=1

tr

(

[

xc
0
′ 1

]

Θk

[

xc
0
1

]

1[d0=k]

)

]

= E

[

q
∑

k=1

tr

(

Θk

[

xc
0
1

]

[

xc
0
′ 1

]

1[xd
0
=k]

)

]

=

q
∑

k=1

tr

(

ΘkE

[[

xc
0x

c
0
′ xc

0

xc
0
′ 1

]

1[xd
0
=k]

])

=

q
∑

k=1

tr

(

ΘkE

[[

xc
0x

c
0
′ xc

0

xc
0
′ 1

]

∣

∣

∣
xd

0 = k

])

P(xd
0 = k),

where the conditional expectation in the last equality can
be computed from the knowledge of P. In the case when
x0 ∈ R

n, i.e. the state has no discrete component, then

the parametrization simplifies to hϑ(x0) =
[

x0
′ 1

]

Θ

[

x0

1

]

,

Θ � 0, while E[hϑ(x0)] = tr

(

ΘE

[

x0x0
′ x0

x0
′ 1

])

.

The scenario implementation for the abstraction perfor-
mance assessment is given in Algorithm 2.

Algorithm 2 SA for abstraction performance assessment

1: Choose ε ∈ (0, 1), β ∈ (0, 1), and α ∈ [0, ε). Let N the
smallest integer satisfying (8).

2: Extract N realizations of the stochastic input w(i),

i = 1, 2, . . . , N , and of the initial condition x
(i)
0 , i =

1, 2, . . . , N ;
3: Run the corresponding N executions of S and M to

compute via simulation N realizations of the output
signals

yS,(i) = fS(x
(i)
0 , w(i)), i = 1, 2, . . . , N

yM,(i) = fM(x
(i)
0 , w(i)), i = 1, 2, . . . , N.

Compute D(yS,(i), yM,(i)), i = 1, 2, . . . , N .
4: Run the Scenario Algorithm with the following cost

function

min
Θ1�0,...,Θq�0

q
∑

k=1

tr

(

ΘkE

[[

xc
0x

c
0
′ xc

0

xc
0
′ 1

]

1[xd
0
=k]

])

and constraints

D(yS,(i), yM,(i)) ≤

q
∑

k=1

[

xc
0
′ 1

]

Θk

[

xc
0
1

]

1[xd
0
=k].

The class of positive quadratic function of the continuous
part of x0 seems to be rich enough for many situations
of interest, where, for each mode xd

0, the approximation

capability of model M is better for a certain initial
condition xc

0 = x̄c
0 and decreases as xc

0 moves away from x̄c
0.

Yet, another possible parametrization for non-quadratic
functions is

hϑ(x0) =

r
∑

k=1

ϑkhk(x0),

where hk(x0), k = 1, 2, . . . , r, are given positive basis
functions 1 , subject to the linear condition ϑk ≥ 0, ∀k.
A scenario implementation, similar to Algorithm 2, can
be given in this case too.

3.2 Abstraction performance optimization

In order to apply the scenario approach to the chance-
constrained optimization problem (7), we need to parame-
terize both the accuracy function h(·) and the model M (as
specified by fM) such that both the average performance
E[h(x0)] and the sample constraint D (yS, yM) ≤ h(x0) are
convex as a function of the optimization variables.

If, on one hand, for h(·) the considerations made in the
previous section continue to hold, the convexity of the
constraint D (yS, yM) ≤ h(x0) poses some restrictions on
the problems that can be addressed. In particular, if we
denote with fM

λ (x0, w) a parametrization of M , we have
to ensure that D (yS, yM) = D (yS, fM

λ (x0, w)) is convex as
a function of λ, for all the values taken by x0 and w. Note
that a sufficient condition is that fM

λ (x0, w) is linear in λ
and D (yS, yM) is convex in yM .

This poses quite restrictive conditions on the admissible
parametrization of the candidate abstracted models M .
No restrictions apply instead to the system S that can be
considered.

Here, we shall focus on the setting of Example 1 and
address the JLSS model optimization.

Example 2. (JLSS optimization). Consider the system S
and the model M described in Example 1. Let function D
be defined through the standard Euclidean metric on R

p.
Clearly, D is convex in yM .

Suppose that the matrices Ã, F̃ , C̃, and R̃, defining the
dynamics of M , are given, while we want to optimize the
function l : R

n → R
ñ that maps the initial state x0 of S

into the initial state z0 of M .

Given that the JLSS is characterized by linear drift and
diffusion terms and by a linear reset map, it is easily
seen that if we linearly parameterize function l through a
ñ× n matrix L by setting l(x0) = Lx0 then, the resulting
function fM

λ (x0, w) is linear in λ = L and the scenario
approach can be applied to optimize the performance of
M as an abstraction of S, with respect to the parameters
λ (and ϑ).

Before introducing the scenario implementation of the
chance-constrained optimization, we need to specify how
to determine yM = fM

λ (x0, w) as an explicit function of λ =
L for each pair of initial condition x0 and input realization
w. To this purpose one can simulate ñ executions of
equations (3) and (4), each with the same input w and

1 E.g., if x0 ∈ R
n, hk(x0) = exp(−(x0 −mk)′Vk(x0 −mk)) with mk

and Vk given.



for the ñ initial conditions z0 = e1, . . . , z0 = eñ, where
ei is the vector with all elements equal to 0 except for
the i-th element equal to 1. Then, yM can be obtained
as a linear combination of these executions according to
Lx0. More precisely, letting ξi,t be the execution of (3)
and (4) associated with the initial condition ei at time t,
and letting

Ξt = [ξ1,t ξ2,t · · · ξñ,t]

be the matrix with ξi,t as columns, then we have yM

t =

C̃ΞtLx0, ∀t ∈ [0, T ].

This eventually leads to Algorithm 3. 2

Algorithm 3 SA for abstraction performance optimiza-
tion
1: Choose ε ∈ (0, 1), β ∈ (0, 1), and α ∈ [0, ε). Let N the

smallest integer satisfying (8).
2: Extract N realizations of the stochastic input w(i),

i = 1, 2, . . . , N , and of the initial condition x
(i)
0 , i =

1, 2, . . . , N ;
3: Run the corresponding N executions of S to compute

via simulation N realizations of the system output

yS,(i) = fS(x
(i)
0 , w(i)), i = 1, 2, . . . , N

4: for i = 1, . . . , N
Run ñ executions of (3) and (4) with varied initial
conditions z0 = e1, . . . , z0 = eñ and same input

equal to w(i) so as to generate Ξ
(i)
t .

end
5: Run the Scenario Algorithm with the following cost

function

min
Θ�0,L

tr

(

ΘE

[

x0x0
′ x0

x0
′ 1

])

and constraints

D(yS,(i), yM,(i)) ≤
[

x
(i)
0

′
1

]

Θ

[

x
(i)
0
1

]

where y
M,(i)
t = C̃Ξ

(i)
t Lx

(i)
0 , t ∈ [0, T ].

4. CONCLUSIONS

In this paper, we propose a simulation-based approach
to the analysis and design of an approximate abstraction
of a SHS. This approach rests on recent results on the
randomized solution to chance-constrained programs via
the scenario method.

A main advantage of the proposed approach is that it
does not require specific assumptions on the system S
to be approximated. In the design part, however, some
restrictions are posed on the admissible parameterizations
of the candidate abstracted model class. This is due to the
assumptions needed for the scenario method to provide
(probabilistic) guarantees on the obtained randomized
solution.

It is worth noticing that some of the approaches in the
literature to the design of simpler abstracted models of a
hybrid system (non necessarily stochastic) do not provide
a quantification of the accuracy of the obtained abstracted
model, see e.g. Mazzi et al. [2008]. A possibility is then to
adopt a two-step approach, where, in the first step, some
method – possibly based on some heuristic – is adopted

to obtain an abstracted model of the system, and, in the
second step, the proposed simulation-based method is used
for assessing the performance of the designed abstraction.
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