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Abstract— In this paper, we propose a novel randomized
approach to Stochastic Model Predictive Control (SMPC) for
a linear system affected by a disturbance with unbounded
support. As it is common in this setup, we focus on the case
where the input/state of the system are subject to probabilistic
constraints, i.e., the constraints have to be satisfied for all the
disturbance realizations but for a set having probability smaller
than a given threshold. This leads to solving at each timet a
finite-horizon chance-constrained optimization problem,which
is known to be computationally intractable except for few spe-
cial cases. The key distinguishing feature of our approach is that
the solution to this finite-horizon chance-constrained problem
is computed by first extracting at random a finite number of
disturbance realizations, and then replacing the probabilistic
constraints with hard constraints associated with the extracted
disturbance realizations only. Despite the apparent naivety of
the approach, we show that, if the control policy is suitably
parameterized and the number of disturbance realizations is
appropriately chosen, then, the obtained solution is guaranteed
to satisfy the original probabilistic constraints. Interestingly, the
approach does not require any restrictive assumption on the
disturbance distribution and has a wide realm of applicability.

I. INTRODUCTION

Model Predictive Control (MPC) is a control design
methodology that has been introduced to face infinite-horizon
constrained optimal control problems. The key idea of MPC
is to find an approximate solution to the original infinite-
horizon problem by solving at each sampling time a finite-
horizon constrained optimal control problem, and then imple-
menting the control law in accordance to a receding horizon
strategy.

The presence of disturbances is quite common in practice.
Recently, two different approaches have been introduced to
address this issue, namely, robust MPC and stochastic MPC.
In robust MPC (see [22], [29], [4], [3], [17], [28] and the
references therein), a min-max approach is taken where the
control cost is optimized against the worst disturbance real-
ization, while guaranteeing constraint satisfaction. Although
successful in many cases, the min-max strategy may lead
to conservative results, since the disturbance distribution
is not accounted for and all disturbance realizations are
treated as equally likely. Indeed, it might be the case that
low probability disturbance realizations cause a significant
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deterioration in the cost or even the infeasibility of some
constraint.

To overcome these limitations of robust MPC, an average
cost and probabilistic constraints are typically considered in
stochastic MPC (see, e.g., [2], [30], [12], [13], [27], [16],
[8]). In this setup, a violation of the constraint is accepted,
although this must happen for few disturbance realizations
only, having altogether probability no greater than a chosen
threshold. This rules out “bad” situations adversely affecting
the robust approach. Moreover, probabilistic constraintsare
the only way to avoid infeasibility of state constraints when
the disturbance has unbounded support.

Unfortunately, probabilistic constraints are in general non-
convex and more difficult to treat than usual non-probabilistic
constraints. The resulting finite-horizon optimization prob-
lem with probabilistic constraints belongs, indeed, to the
class of the chance-constrained optimization problems, [25],
[26], which are known to be hard to solve in general.

In the literature on stochastic MPC, solutions to the
chance-constrained problem have been proposed for stochas-
tic linear systems, under the assumption that the disturbance
either is a sequence of bounded and i.i.d. (independent and
identically distributed) random variables, [12], [13], [8], or
has a certain specific distribution, e.g. Gaussian [16]. Our
work in this paper aims to provide an alternative scheme
for the solution of the finite-horizon optimization problem
with probabilistic constraints, which rests on recent devel-
opments on the randomized solution to chance-constrained
optimization problems, [10]. The advantage with respect to
the existing schemes is that no assumption on the distur-
bance (boundedness, independence, Gaussianity) is required
whatsoever.

The paper is organized as follows. We first describe the
control problem in Section II, and then illustrate the ran-
domized resolution scheme in Section III. The performance
of the method is demonstrated in Section IV on a numerical
example. Concluding remarks are provided in Section V.

II. PROBLEM FORMULATION

Consider a linear system whose statext ∈ R
n evolves

according to the equation

xt+1 = Axt +But +wt ,

whereut ∈R
m is the control input andwt ∈R

n is a stochastic
disturbance with a possibly unbounded support.

We assume that the entire state vector of the system is
known at each time instant and address the problem of
designing a state-feedback control policy so as to optimize
the system performance over the look-ahead time horizon



[τ,τ +M], while satisfying some constraint on the input/state
along the same horizon. Here,τ represents the current time
instant andM > 0 the prediction horizon.

More precisely, letµτ+i : R
n×i → R

m, i ∈ {0,1, . . . ,M−1}
denote a measurable function mapping the state from time
τ to time τ + i into the control input to be applied at time
τ + i, i.e.,

uτ+i = µτ+i(xτ ,xτ+1, . . . ,xτ+i).

Our goal is to design a state-feedback control policy, i.e.,
a sequence of functions{µτ ,µτ+1, . . .µτ+M−1}, so as to
minimize the average quadratic cost

E

[

M

∑
i=1

xT
τ+iQixτ+i +

M−1

∑
i=0

uT
τ+iRiuτ+i

]

, (1)

with Qi and Ri symmetric positive definite matrices of ap-
propriate dimensions, subject to the probabilistic constraint:

P{ f (xτ+1, . . . ,xτ+M,uτ , . . . ,uτ+M−1) ≤ 0} ≥ 1− ε, (2)

where f : R
n×M+m×(M−1) → R

q is a q-dimensional measur-
able function and the inner inequality appearing in equation
(2) is interpreted componentwise. In the above expressions, P

denotes the probability distribution of the disturbance process
wτ ,wτ+1, . . . ,wτ+M−1 affecting the system evolution along
the time horizon[τ,τ +M]. E[·] is the expectation associated
to P.

Remark 1 (probabilistic constraints):In the probabilistic
constraint (2), conditionf (xτ+1, . . . ,xτ+M,uτ , . . . ,uτ+M−1)≤
0 is not required to hold for all possible disturbance re-
alizations. Parameterε ∈ (0,1) entering (2) quantifies the
extent to which the constraint on the state and input defined
through f can be violated. This sort of compromise is usually
unavoidable in a stochastic setting. Indeed, if the disturbance
has unbounded support, a hard constraint (i.e. a constraint
that must hold for all possible disturbance realizations with
no exceptions) on the input would generally lead to a too
conservative solution, whereas a hard constraint on the state
would generally be unfeasible.�

Remark 2 (input/state constraint function):In typical
cases, functionf defining the constraint in (2) is used to
force a saturation on the input or to pose a safety constraint
on the state. If e.g.f takes the form:

f (xτ+1, . . . ,xτ+M,uτ , . . . ,uτ+M−1) =





sup
i=0,...,M−1

‖uτ+i‖∞ − ū

sup
i=1,...,M

‖xτ+i‖∞ − x̄





then, (2) represents an input saturation and a safety constraint
that should hold jointly on a set of disturbance realizations
whose probability is at least 1− ε. �

Note that in the standard LQG setting, the problem of
minimizing the cost (1) without the constraint (2) can be
solved analytically, and the optimal solution is characterized
by µτi functions that are affine in the state. In presence of
constraints, or for an arbitrary distribution of the disturbance,
the problem of finding the optimal state-feedback policy be-
comes quite challenging. One can then look for a suboptimal
solution by parameterizing theµτ+i functions so as to obtain

an optimization problem with a finite number of optimization
variables. Inspired by the structure of the LQG solution, one
can chooseµτ+i to be affine in the state, [23], [5], [18].
In that case, the resulting control input turns also out to
be affine in the disturbance samples, since the disturbance
can be perfectly reconstructed from the state measurements
according to

wτ+i = xτ+i+1−Axτ+i −Buτ+i.

As a result, the control input can be directly parameterized
as an affine function of the disturbance

uτ+i = γi +
i−1

∑
j=0

θi, j wτ+ j , (3)

with γi ∈ R
m andθi, j ∈ R

m×n, which makes the closed-loop
control system to be designed equivalent to an open-loop
control system with a feedforward disturbance compensator,
[18].

To illustrate the advantages obtained by adopting this
parametrization, we first need to introduce some compact
notations for the system evolution along the reference time
horizon [τ,τ +M].

If we define the following vectors of state, input and
disturbance signals:

x+ =











xτ+1

xτ+2
...

xτ+M











u =











uτ
uτ+1

...
uτ+M−1











w =











wτ
wτ+1

...
wτ+M−1











then, it is easy to show that

x+ = Fxτ +Gu+Hw

u = Γ+ Θw,

where matricesF, G andH are given by

F =











A
A2

...
AM











G =













B 0n×m · · · 0n×m

AB B
. . .

...
...

. . .
. . . 0n×m

AM−1B · · · AB B













H =













In×n 0n×n · · · 0n×n

A In×n
. ..

...
...

. . .
. .. 0n×n

AM−1 · · · A In×n













,

whereasΓ and Θ contains the control law parameters and
are given by

Γ =











γ0

γ1
...

γM−1











Θ =













0m×n 0m×n · · · 0m×n

θ1,0 0m×n
. . .

...
...

. . .
. . . 0m×n

θM−1,0 · · · θM−1,M−2 0m×n













.



If we set

Q =







Q1 · · · 0n×n
...

. . .
...

0n×n · · · QM






R =







R0 · · · 0m×m
...

. . .
...

0m×m · · · RM−1







then, the control cost (1) can be expressed as follows

J(Γ,Θ) = E
[

xT
+Qx+ +uTRu

]

= (Fxτ +GΓ)TQ(Fxτ +GΓ)

+2(Fxτ +GΓ)TQ(H +GΘ) ·E [w]

+ tr
[

(H +GΘ)TQ(H +GΘ) ·E
[

wwT]]

+ ΓTRΓ+2ΓTRΘE [w]+ tr
[

ΘTRΘ ·E
[

wwT]] ,

which shows that is a convex function of the control policy
parametrization(Γ,Θ).

The optimization problem to be solved at timeτ is
then given by the following chance-constraint optimization
program:

min
Γ,Θ

J(Γ,Θ) subject to: (4)

P{ f (Fxτ +GΓ+(H +GΘ)w,Γ+ Θw)≤ 0} ≥ 1− ε

Note that the probabilistic constraint is generally not convex,
even for a convex functionf (·), which makes the chance-
constraint problem (4) hard to solve. Approximate solutions
resting on a convex over-approximation of the probabilistic
constraint can be worked out for certain disturbance dis-
tributions, like the Gaussian one (see, e.g., [16] and the
references therein). In the next section, we describe an
alternative method that is of quite general applicability since
it does not require any specific assumption on the disturbance
distribution.

III. THE SCENARIO-BASED SOLUTION

The scenario approach, [6], [7], [9], [11], [10], is a recent
paradigm for computing approximate solutions to general
chance-constrained problems

min
α∈Rnα

ℓ(α) (5)

subject to:Pω{ϕ(α,ω) ≤ 0} ≥ 1− ε,

at relatively low computational effort.
In problem (5),α is annα -dimensional optimization variable,
whereasω is the stochastic uncertainty parameter with
probability distributionPω .

The only assumption the scenario approach relies on is the
convexity of the costℓ(α) and the convexity ofϕ(α,ω) with
respect to the optimization variableα only (the dependence
on the stochastic parameterω can be arbitrary). In our
context α = (Γ,Θ) and ℓ(α) = J(Γ,Θ) which is convex
(indeed, it is quadratic) inα given the affine parametrization
of the control policy in (3). As for the second assumption,
we have that

ϕ(α,ω) = f (x+,u) = f (Fxτ +GΓ+(H +GΘ)w,Γ+Θw),

where the stochastic parameterω is the noise vectorw. Given
again the affine parametrization ofx+ andu, it is enough that

f (x+,u) is convex inx+,u. This latter condition is verified
in standard problems, e.g. for the functionf given in Remark
2.

On the algorithmic side, the scenario approach builds
on a very intuitive idea: a number, sayN, of realizations
of the noise vectorw, say w(i) for i = 1,2, . . . ,N, are
extracted according to the underlying probability measure
P and optimization is performed by taking into account this
finite number of instances ofw only. To be precise, letting
ε ′ be a user chosen parameter such that 0≤ ε ′ < ε, the
Scenario Algorithm aims at finding a solution that violates
the condition

f (Fxτ +GΓ+(H +GΘ)w(i),Γ+ Θw(i)) ≤ 0

⌊ε ′N⌋ times out ofN, i.e. with anempiricalprobability equal
to ε ′ (⌊·⌋ denotes the integer part). See Algorithm 1.

Algorithm 1 The Scenario Algorithm (SA)
1: Solve problem

min
Γ,Θ

J(Γ,Θ) subject to:

f (Fxτ +GΓ+(H +GΘ)w(i),Γ+ Θw(i)) ≤ 0,

i ∈ {1,2, . . . ,N}.

Store the solution.
2: Let i run over 1,2, . . . ,N and find the constraints violated

by the stored solution, i.e. find the indexesi such that

f (Fxτ +GΓ+(H +GΘ)w(i),Γ+ Θw(i)) > 0.

Let these indexes bej1, j2, . . . , jL. If L is greater than or
equal to⌊ε ′N⌋, then halt the algorithm and return the
stored solution.

3: Find the active constraints for the stored solution, i.e.
the indexesi such that

f (Fxτ +GΓ+(H +GΘ)w(i),Γ+ Θw(i)) = 0.

Let these indexes bei1, i2, . . . , iq.
4: For k = 1,2, . . . ,q

Solve problem

min
Γ,Θ

J(Γ,Θ) subject to:

f (Fxτ +GΓ+(H +GΘ)w(i),Γ+ Θw(i)) ≤ 0,

i ∈ {1,2, . . . ,N}/{ik, j1, j2, . . . , jL}.

If the obtained cost is better than the cost of the
stored solution, then store the last computed solu-
tion.

End For
5: Goto 2

Algorithm 1 comes to termination whenever there is at
each step at least one active constraint such that, if elimi-
nated, then the costJ improves. This condition is assumed
here for granted and is usually satisfied unless for degenerate
situations.



Note that in Algorithm 1, the constraints that are eventu-
ally violated are selected by progressively discarding one
constraint at a time, the one giving the largest cost im-
provement at the present step (greedyalgorithm). Proceeding
this way, the obtained solution is not the best possible one
violating ⌊ε ′N⌋ constraints out ofN, yet a fair sub-optimality
is achieved while keeping the computational effort at a
reasonable level. Each optimization problem that appears in
Algorithm 1 is a standard convex optimization program, with
a convex costJ(Γ,Θ) and with afinite numberof convex
constraintsf (Fxτ +GΓ+(H +GΘ)w(i),Γ+Θw(i))≤ 0. This
type of programs can be tackled via standard solvers like
those used by CVX, [19], and YALMIP, [24].

Although obtained based on a finite number of samples of
w only, the scenario solution comes with precise guarantees
about its feasibility for the original chance-constrainedprob-
lem (4). The following theorem precisely states this property
and derives straightforwardly from Theorem 2.1 in [10].

Theorem 1 (Feasibility of the scenario solution):If N is
big enough so that (r is the overall dimension of the
optimization variables)

(

⌊ε ′N⌋+ r
⌊ε ′N⌋

) ⌊ε ′N⌋+r

∑
i=0

(

N
i

)

ε i(1− ε)N−i ≤ β , (6)

then the scenario solution is such that

P{ f (Fxτ +GΓ+(H +GΘ)w,Γ+ Θw)≤ 0} ≥ 1− ε

with confidence 1−β . �

Theorem 1 states that the scenario solution is feasible
for problem (4) with high confidence 1− β with respect
to the product probability of the disturbance realizations
w(i), i = 1, . . . ,N. Unfortunately, we cannot guarantee that the
scenario solution is always feasible for (4), because it might
happen that theN extracted disturbance realizations are not
representative enough. Yet, this latter case is very unlikely
for largeN and, indeed, Theorem 1 says that ifN is chosen
as indicated, then, the probability of such a bad event is no
greater thanβ . The result holds true irrespective ofP, the
probability distribution of the noise vectorw, which, hence,
can be anything (not i.i.d., not Gaussian, etc.).

By making (6) explicit with respect toN according to the
technique proposed in [1], it can be shown that the smallest
N, sayN, satisfying (6) scales as

N = O

(

r + ln 1
β

ε − ε ′

)

.

This relationship reveals important features of the computa-
tional complexity of the Scenario Algorithm 1.

- N increases logarithmically with1
β . Hence, we can

enforce a very small value forβ – like β = 10−5

or even β = 10−10 which guarantee the achievement
of P{ f (Fxτ +GΓ+(H +GΘ)w,Γ+ Θw)≤ 0} ≥ 1− ε
beyond any reasonable doubt – without affectingN too
much.

- As for the choice of the empirical probability of viola-
tion ε ′, one should note that the closerε ′ to the desired

violation probabilityε the better the scenario solution
approximates the solution to the chance-constrained
problem (4); yet, at the same time, it holds thatN → ∞
asε ′ → ε.1 The ultimate choice forε ′, hence, remains to
the user, and represents a trade-off between the accuracy
required by the application at hand and computational
tractability. Perhaps, it is worth noting that in many
cases, whenε is small, the choiceε ′ = 0, which gives
the least computational burden, is acceptable.

- According to the parametrization (3) of the control
policy, r = mM+mn(M−1)M

2 , wheremM is the number

of optimization variables inΓ andmn(M−1)M
2 that in Θ.

Unfortunately, the quadratic dependence on the horizon
lengthM may pose a hurdle in the applicability of the
Scenario Algorithm, in view of the linear dependence of
N on r. This may suggest some alternative parametriza-
tion of the control policy with the aim of reducing
the dimensionality of the optimization variable. Some
possible choices are illustrated next.

1.

uτ+i = γi +
i−1

∑
j=i−k

θi, j wτ+ j ,

which corresponds to (blank entries correspond to
zero values):

Θ =























θ1,0
...

. . .

θk,0
. . .

. . .
. . .

. . .
. . .

θM−1,M−1−k · · · θM−1,M−2























.

In this caser = mM+mn
(

k(M−1−k)+
(k−1)k

2

)

2.

uτ+i = γi +
i−1

∑
j=0

θi− jwτ+ j ,

which corresponds to:

Θ =

















θ1

θ2
. . .

...
. . .

. . .
θM−1 · · · θ2 θ1

















.

In this caser = mM+mn(M−1)
3.

uτ+i = γi +
i−1

∑
j=i−k

θi− jwτ+ j ,

1This fact can be intuitively explained by noting that, ifε ′ equalsε ,
then,P{ f (Fxτ +GΓ+(H +GΘ)w,Γ+Θw)≤ 0} will fluctuate around 1−ε
depending of the extracted samples ofw, and it is not possible to guarantee
that P{ f (Fxτ + GΓ +(H + GΘ)w,Γ + Θw)≤ 0} is bigger than 1− ε with
high confidence for a finiteN.



which corresponds to:

Θ =























θ1
...

. . .

θk
. . .

. . .
. . .

. . .
. . .

θk · · · θ1























.

In this caser = mM+mnk
4.

uτ+i = γi ,

i.e. Θ = 0. In this caser = mM. This last con-
trol policy is that with the minimum number of
optimization variables, but corresponds to an open
loop scheme. It can be combined with a fixed linear
state-feedback controller,

uτ+i = γi + K̄xτ+i , K̄ fixed,

to improve performance, [12], [13].

IV. A NUMERICAL EXAMPLE

In this section, we illustrate the proposed approach to the
approximate solution of the chance-constrained optimization
problem (4) on a numerical example. The example is taken
from [16], and the performance of our approach is compared
with that of the methods for the over-approximation of the
probabilistic constraint presented in [16].

Fig. 1. Mechanical system.̄l1, l̄2, l̄3, l̄4 represents the nominal position of
masses when forces are all equal to 0.

Consider the mechanical system reported in Figure 1,
where di , i = 1,2,3,4, represent the mass displacements
from an equilibrium position, whereasu1, u2 and u3 are
forces acting on the masses. The state of the system is
given by the mass displacements and their derivatives:x =
[d1,d2,d3,d4, ḋ1, ḋ2, ḋ3, ḋ4]

T . We set all masses and stiffness
constants equal to 1, i.e.,m1 = m2 = m3 = m4 = 1 and
k1 = k2 = k3 = k4 = 1, and consider a discrete time model
of the systemxt+1 = Axt + But + wt , where the additive
noisewt is an i.i.d. sequence of Gaussian random variables
with zero mean and varianceσ2I8×8, σ = 0.02. Matrices
A and B are obtained by time discretization of a standard
mechanical model under the assumption that the control
action is piecewise constant over the intervals[t, t +1).

We consider the case whenτ = 0 and the cost to be
minimize is given by

E

[

M

∑
i=1

xT
i Qxi +

M−1

∑
i=0

uT
i Rui

]

,

with a prediction horizon of lengthM = 5 and weight

matricesQ =

[

I4×4 04×4

04×4 04×4

]

(penalizing displacements but

not their derivatives) andR= I3×3.
The initial state is set tox0 = [0 0 0 1 0 0 0 0]T and the

state and input are subject to the probabilistic constraint

P{|x(k)
t | ≤ 0.45, |u(k)

t−1| ≤ 0.3,k = 1,2,3, |x(4)
t | ≤ 1,

t = 1,2, . . . ,M} ≥ 1− ε,

wherev(k) denotes thek-th component of vectorv.
By adopting the control input parametrization in equation

(3) and settingε = 0.1, ε ′ = 0 andβ = 10−5, we getN =
3432 disturbance realizations to extract. The corresponding
scenario-optimization was solved by running YALMIP over
SeDuMi, [24]. The performance achieved by the randomized
method wasJ(Γ⋆

N,Θ⋆
N) = 1.328, which is quite close to

the best performance (1.325) achieved in [16] by over-
approximating the probabilistic constraint. Our method, how-
ever, can be applied in full generality, while the approaches
in [16] relies on the assumption of Gaussianity of the
disturbancewt .

As for the computing time, the scenario approach is much
slower than other approaches. The computing time, however,
can be decreased by reducing the number of parameters to be
optimized. In the case whenσ = 0.02, the noise contribution
is actually so small that the disturbance feedback termΘw
can be removed without a significant deterioration of the
cost. Indeed, by settingΘ equal to zero and optimizing over
Γ only, we obtained a costJ(Γ⋆

N) = 1.342 with a computing
time that was 100 times smaller than the previous case. The
number of realizations to extract wasN = 451 this time.

By discarding constraints (i.e.ε ′ 6= 0), performance in
terms of control cost can be improved both whenΘ 6= 0
(i.e. with the feedback disturbance term) and whenΘ = 0
(i.e. without the feedback disturbance term), at the price of
an additional computational effort. Depending on the appli-
cation context, this can be critical for the on-line receding
horizon implementation of the approach.

V. CONCLUSIONS

In this paper, we take a first step towards the application of
randomized methods for the solution of chance-constrained
optimization problems in stochastic MPC.

The focus of this paper is on the finite-horizon constrained
optimization problem that has to be solved at each time step
τ to determine the control input to be applied atτ, according
to the receding-horizon strategy.

A main aspect that still needs to be addressed concerns
the stability of the resulting MPC control scheme, which
is not easy to prove for the unbounded disturbance case.
Notable exceptions are represented by [20], [14], [21], [15],



where mean square stability is proven for the case when
the open-loop system is stable and hard bounds are imposed
on the control input. Interestingly, in [20] the hard input
bounds are imposed by adopting a feedback control law that
is affine in the reconstructed and pre-saturated disturbance
samples. Since convexity of the cost and of the constraint
function is preserved by this control law parametrization,
the technique for proving stability adopted in [20] could be
possibly extended to our randomized setting by adopting hard
constraint for the control input and probabilistic constraint
for the state only. This is subject of ongoing research activity.
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