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Abstract—In this paper, we propose a novel randomized
approach to Stochastic Model Predictive Control (SMPC) for
a linear system affected by a disturbance with unbounded
support. As it is common in this setup, we focus on the case
where the input/state of the system are subject to probabitic
constraints, i.e., the constraints have to be satisfied forllathe
disturbance realizations but for a set having probability snaller
than a given threshold. This leads to solving at each timé a
finite-horizon chance-constrained optimization problem,which
is known to be computationally intractable except for few sg-
cial cases. The key distinguishing feature of our approactsithat
the solution to this finite-horizon chance-constrained prblem
is computed by first extracting at random a finite number of
disturbance realizations, and then replacing the probabiktic
constraints with hard constraints associated with the extacted
disturbance realizations only. Despite the apparent naivy of
the approach, we show that, if the control policy is suitably
parameterized and the number of disturbance realizations
appropriately chosen, then, the obtained solution is guanateed
to satisfy the original probabilistic constraints. Interestingly, the
approach does not require any restrictive assumption on the
disturbance distribution and has a wide realm of applicabiity.

. INTRODUCTION

deterioration in the cost or even the infeasibility of some
constraint.

To overcome these limitations of robust MPC, an average
cost and probabilistic constraints are typically consedein
stochastic MPC (see, e.g., [2], [30], [12], [13], [27], [16]
[8]). In this setup, a violation of the constraint is accepte
although this must happen for few disturbance realizations
only, having altogether probability no greater than a chose
threshold. This rules out “bad” situations adversely affer
the robust approach. Moreover, probabilistic constradmes
the only way to avoid infeasibility of state constraints whe
the disturbance has unbounded support.

Unfortunately, probabilistic constraints are in gener@hn
convex and more difficult to treat than usual non-probatilis
constraints. The resulting finite-horizon optimizatiorolpr
lem with probabilistic constraints belongs, indeed, to the
class of the chance-constrained optimization problen, [2
[26], which are known to be hard to solve in general.

In the literature on stochastic MPC, solutions to the
chance-constrained problem have been proposed for stochas
tic linear systems, under the assumption that the distedan
either is a sequence of bounded and i.i.d. (independent and

Model Predictive Control (MPC) is a control designjgentically distributed) random variables, [12], [13]],[®r
methodology that has been introduced to face infinite-boriz a5 5 certain specific distribution, e.g. Gaussian [16]. Our
constrained optimal control problems. The key idea of MPGork in this paper aims to provide an alternative scheme
is to find an approximate solution to the original infinite-for the solution of the finite-horizon optimization problem
horizon problem by solving at each sampling time a finitegjith probabilistic constraints, which rests on recent deve
horizon constrained optimal control problem, and then &apl opments on the randomized solution to chance-constrained
menting the control law in accordance to a receding horiz%”ptimization problems, [10]. The advantage with respect to

strategy.

the existing schemes is that no assumption on the distur-

The presence of disturbances is quite common in practic§ance (boundedness, independence, Gaussianity) is edquir
Recently, two different approaches have been introduced {ghatsoever.

address this issue, namely, robust MPC and stochastic MPCThe paper is organized as follows. We first describe the

In robust MPC (see [22], [29], [4], [3], [17], [28] and the control problem in Section Il, and then illustrate the ran-
references therein), a min-max approach is taken where thgmized resolution scheme in Section Ill. The performance
control cost is optimized against the worst disturbancé reapf the method is demonstrated in Section IV on a numerical

ization, while guaranteeing constraint satisfactionhaltgh  example. Concluding remarks are provided in Section V.
successful in many cases, the min-max strategy may lead
II. PROBLEM FORMULATION

to conservative results, since the disturbance distobuti
is not accounted for and all disturbance realizations are Consider a linear system whose statec R" evolves
treated as equally likely. Indeed, it might be the case thaiccording to the equation

low probability disturbance realizations cause a significa
X1 :AX( +BUt+Wta
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whereu; € RMis the control input anek € R" is a stochastic
disturbance with a possibly unbounded support.

We assume that the entire state vector of the system is
known at each time instant and address the problem of
designing a state-feedback control policy so as to optimize
the system performance over the look-ahead time horizon



[1, T+ M], while satisfying some constraint on the input/stat@n optimization problem with a finite number of optimization
along the same horizon. Here,represents the current time variables. Inspired by the structure of the LQG solutiorg on
instant andV > 0 the prediction horizon. can chooseu;,i to be affine in the state, [23], [5], [18].

More precisely, lepr,i : R™ —R™ i€ {0,1,...,M—1} In that case, the resulting control input turns also out to
denote a measurable function mapping the state from tintee affine in the disturbance samples, since the disturbance
T to time T+ into the control input to be applied at time can be perfectly reconstructed from the state measurements
T+i, e, according to

Ur+i = Hri (Xo, X415 -+ 5 Xei)-
. . . . Wr i = Xr4i41 — AXpqi — BUr .
Our goal is to design a state-feedback control policy, i.e.,

a sequence of function§ur, iry1,... Hrem—1}, SO as to As a result, the control input can be directly parameterized

minimize the average quadratic cost as an affine function of the disturbance
M M-1 i—1
E le-rr+iQin+i + ZO UI+iRiUr+i ; 1) Ui =¥+ Zoeu,jWHj, (3)
i= i=l =

with Qi and R symmetric positive definite matrices of ap- ity y € R™ and 6 ; € R™", which makes the closed-loop
propriate dimensions, subject to the probabilistic caistr control system to.’be designed equivalent to an open-loop

P{f (Xeg1, .- Xem, Urs - Upm1) <0} >1—g, (2) E:lan]trol system with a feedforward disturbance compensator
where f 1RnXM+mX(M7%) — R%is ag-dimensional measur- o jjustrate the advantages obtained by adopting this
able function and the inner inequality appearing in equatioparametrization, we first need to introduce some compact
(2) is interpreted componentwise. In the above expressins notations for the system evolution along the reference time
denotes the probability distribution of the disturbanaecess norizon [T,7+M].

Wr,Wrg,...,Wrim-1 affecting the system evolution along it e define the following vectors of state, input and
the time horizort, 7+M]. E[-] is the expectation associatedgjstyrhance signals:

to P.

Remark 1 (probabilistic constraints)n the probabilistic Xr+1 Ur Wr
constraint (2), conditiorf (X1, . .., Xg4M, Uz, - . ., Urpm—1) < X742 Uri1 Wri1
0 is not required to hold for all possible disturbance re- X+= | . u= : W= :
alizations. Parameteg € (0,1) entering (2) quantifies the ' ' '
extent to which the constraint on the state and input defined XM Ur+M-1 Wr+M-1
throughf can be violated. This sort of compromise is usuallyhen, it is easy to show that
unavoidable in a stochastic setting. Indeed, if the distnde
has unbounded support, a hard constraint (i.e. a constraint X4+ = Fxr +Gu+Hw

that must hold for all possible disturbance realizationghwi u=r+06w,

no exceptions) on the input would generally lead to a too

conservative solution, whereas a hard constraint on the stavhere matrices-, G andH are given by
would generally be unfeasible.]

Remark 2 (input/state constraint functionln  typical A B Onam -+ Onxm
cases, functionf defining the constraint in (2) is used to S AB B :
force a saturation on the input or to pose a safety constraint F= : G= _ _ 0

. . " nxm
on the state. If e.gf takes the form: B AM Ml ... AB B
SUp [|Urilleo — G
f(XTJrl?"'5XT+M7UT7"'5UT+M71>: = ,‘S-‘L’Jp7|‘xr+i||oo_)? |n><n On><n 0n><n
i=1,...M A e :
then, (2) represents an input saturation and a safety eamistr H= . ) ) )
that should hold jointly on a set of disturbance realization vl Onxn
whose probability is at least-1e. O A o A

Note that in the standard LQG setting, the problem ofnereasr and © contains the control law parameters and
minimizing the cost (1) without the constraint (2) can beye given by

solved analytically, and the optimal solution is chardetst

by py, functions that are affine in the state. In presence of Yo Omxn  Omxn Omxn
constraints, or for an arbitrary distribution of the ditance, Vi 6 0 :
the problem of finding the optimal state-feedback policy be-r = | . o= 0 “man

comes quite challenging. One can then look for a suboptimal : : Omxn

solution by parameterizing the;; functions so as to obtain -1 Ov-10 -+  OBu-1m—2 Omxn



If we set

OI"I>< n 0m>< m

Q Ro

Q= : R= :
Qm Rv-1
then, the control cost (1) can be expressed as follows
J(r,0) =E [x]Qx; +u'Ru]
= (Fx; +GINTQ(Fx; 4+ GrI)

+2(Fx; +GINTQ(H + GO) - E[w]

+1tr [(H+GO)'Q(H +GO) - E [ww']]

+T 7RI+ 2r'ROE (W] +tr [0'RO-E [ww']],

Onx n 0m>< m

f(x4,u) is convex inxy,u. This latter condition is verified
in standard problems, e.g. for the functibigiven in Remark

N

On the algorithmic side, the scenario approach builds
on a very intuitive idea: a number, sd, of realizations
of the noise vectorw, say wi) for i = 1,2,....N, are
extracted according to the underlying probability measure
P and optimization is performed by taking into account this
finite number of instances af only. To be precise, letting
€ be a user chosen parameter such that & < ¢, the
Scenario Algorithm aims at finding a solution that violates
the condition

f(Fx; + Gl + (H+Gow" r+ew) <o

which shows that is a convex function of the control policy

parametrizatior(l', ©).

The optimization problem to be solved at tine is
then given by the following chance-constraint optimizatio
program:

rpig\](r,@) subject to: (4)
P{f(Fx;+GI+ (H+GO)w, +Ow) <0} >1-¢

Note that the probabilistic constraint is generally notwe
even for a convex functiorf (), which makes the chance-
constraint problem (4) hard to solve. Approximate solugion

|€'N | times out ofN, i.e. with anempirical probability equal
to € (|-] denotes the integer part). See Algorithm 1.

Algorithm 1 The Scenario Algorithm (SA)
1: Solve problem

min J(I',®) subject to:
re

f(Fx; + Gl + (H+Gow®d r+ewl) <o,
ic{1,2...,N}.

Store the solution.

resting on a convex over-approximation of the probabdisti .
constraint can be worked out for certain disturbance dis-

tributions, like the Gaussian one (see, e.g., [16] and the

references therein). In the next section, we describe an
alternative method that is of quite general applicabilitce

it does not require any specific assumption on the distudanc

distribution.

I1l. THE SCENARIO-BASED SOLUTION

The scenario approach, [6], [7], [9], [11], [10], is a recent
paradigm for computing approximate solutions to general
chance-constrained problems

3:

1, (@)

subject to:P,,{¢ (a0, w) <0} > 1—c¢,

(5)

at relatively low computational effort.

In problem (5),a is anny-dimensional optimization variable,
whereasw is the stochastic uncertainty parameter with
probability distributionPy,.

The only assumption the scenario approach relies on is the
convexity of the cost(a) and the convexity 0 (a, w) with
respect to the optimization variabte only (the dependence
on the stochastic parametes can be arbitrary). In our
contexta = (I,0) and ¢(a) = J(I',©) which is convex

(indeed, it is quadratic) ir given the affine parametrization >

Leti run over12,...,N and find the constraints violated
by the stored solution, i.e. find the indexesuch that

f(Fx; + Gl + (H+Gow" r+ewl) > 0.

Let these indexes bp, jo,..., jL. If L is greater than or
equal to|&'N], thenhalt the algorithm and return the
stored solution.

Find the active constraints for the stored solution, i.e.
the indexes such that

f(Fx; + Gl + (H+Gowl r+ewl) =o.

Let these indexes big, iy, ...,iq.

:Fork=12,...,q

Solve problem
min J(I',®) subject to:
re

f(Fx; + Gl + (H+Gow", r+ew) <o,
ie {1,2,...,N}/{ik,jl,jz,...,jL}.

If the obtained cost is better than the cost of the
stored solution, then store the last computed solu-
tion.

End For

Goto 2

of the control policy in (3). As for the second assumption,
we have that

Algorithm 1 comes to termination whenever there is at
each step at least one active constraint such that, if elimi-
nated, then the cost improves. This condition is assumed
where the stochastic parameters the noise vectawn. Given  here for granted and is usually satisfied unless for degnera
again the affine parametrizationxf andu, it is enough that situations.

¢(a,w) = f(x4,u) = F(Fxr + Gl + (H+GO)w, [ +Ow),



Note that in Algorithm 1, the constraints that are eventu-
ally violated are selected by progressively discarding one
constraint at a time, the one giving the largest cost im-
provement at the present stapdedyalgorithm). Proceeding
this way, the obtained solution is not the best possible one
violating | ’N| constraints out oN, yet a fair sub-optimality
is achieved while keeping the computational effort at a
reasonable level. Each optimization problem that appears i
Algorithm 1 is a standard convex optimization program, with
a convex cost)(l",©) and with afinite numberof convex
constraintsf (Fx; +GI + (H +GO)w), T +ew) < 0. This
type of programs can be tackled via standard solvers like
those used by CVX, [19], and YALMIP, [24].

Although obtained based on a finite number of samples of
w only, the scenario solution comes with precise guarantees
about its feasibility for the original chance-constraipedb-
lem (4). The following theorem precisely states this proper
and derives straightforwardly from Theorem 2.1 in [10].

Theorem 1 (Feasibility of the scenario solutiorj: N is
big enough so thatr(is the overall dimension of the
optimization variables)

(o) (Fewmor o

then the scenario solution is such that
P{f(FX;+GIr +(H+GO)w, +6w)<0} >1-¢

with confidence + (3. O
Theorem 1 states that the scenario solution is feasible
for problem (4) with high confidence 4 3 with respect
to the product probability of the disturbance realizations
wl) i=1,...,N. Unfortunately, we cannot guarantee that the
scenario solution is always feasible for (4), because ithinig
happen that th&l extracted disturbance realizations are not
representative enough. Yet, this latter case is very ulike
for largeN and, indeed, Theorem 1 says thaNifis chosen
as indicated, then, the probability of such a bad event is no
greater than3. The result holds true irrespective Bf the
probability distribution of the noise vectav, which, hence,
can be anything (not i.i.d., not Gaussian, etc.).

By making (6) explicit with respect tbl according to the
technique proposed in [1], it can be shown that the smallest
N, sayN, satisfying (6) scales as

r+|n%
N=0 £
e—¢

This relationship reveals important features of the comput
tional complexity of the Scenario Algorithm 1.

- N increases logarithmically With%. Hence, we can
enforce a very small value fof — like g = 10°
or evenB = 101° which guarantee the achievement
of P{f(Fx; +GIN+ (H+GO)w,I +0w) <0} >1—¢
beyond any reasonable doubt — without affectigpo
much.

(6)

violation probabilitye the better the scenario solution
approximates the solution to the chance-constrained
problem (4); yet, at the same time, it holds thats

ase’ — €. The ultimate choice fog’, hence, remains to
the user, and represents a trade-off between the accuracy
required by the application at hand and computational
tractability. Perhaps, it is worth noting that in many
cases, whem is small, the choice&’ = 0, which gives

the least computational burden, is acceptable.
According to the parametrization (3) of the control
policy, r = mM+ mnm, wheremM is the number

of optimization variables i andmnw that in®.
Unfortunately, the quadratic dependence on the horizon
lengthM may pose a hurdle in the applicability of the
Scenario Algorithm, in view of the linear dependence of
N onr. This may suggest some alternative parametriza-
tion of the control policy with the aim of reducing
the dimensionality of the optimization variable. Some
possible choices are illustrated next.

1.
i-1

Ui = Y + Z GI,jWTJrja
j=I—-k

which corresponds to (blank entries correspond to
zero values):

610

B0

Ov—1M—2

In this caser = mM+ mn(k(M 1K)+ (k—zl)k)

OM-1M—1—k

i—1
Ur+i = Y + Zoﬂfjwm,
J:

which corresponds to:

6 6
In this caser = mM+mn(M —1)

Ov—1

i—1
Ui =¥ + Z
j=1—-k

GI—jWT+j7

1This fact can be intuitively explained by noting that, df equalse,
then,P{ f (Fx;+ Gl + (H+GO)w,I +6w) < 0} will fluctuate around + ¢

. .. - . depending of the extracted samplesagfand it is not possible to guarantee
- As for the choice of the empirical probability of viola- by f(Fx, + GI + (H + GO)wW,T +©w) < 0} is bigger than L ¢ with

tion &', one should note that the closgrto the desired high confidence for a finit\.



which corresponds to:

61

6k

0,

In this caser = mM+4 mnk

61

Urti = ¥,

i.e. ®=0. In this caser = mM. This last con-
trol policy is that with the minimum number of

We consider the case when= 0 and the cost to be
minimize is given by

M M-1
leiTQn + Z} u'Ru |,
= i=

with a prediction horizon of lengttiM = 5 and weight
laxa  Oaxa

. 10axa Oaxa
not their derivatives) an®R = lz«3.

The initial state is settag=[0 001 00 0 0" and the
state and input are subject to the probabilistic constraint

E

matricesQ = (penalizing displacements but

P{Ix¥| <045 u,| <0.3,k=1,23x"| <1,
t=12...,M}>1—¢,

wherev(K) denotes thé-th component of vectov.

optimization variables, but corresponds to an open By adopting the control input parametrization in equation
loop scheme. It can be combined with a fixed linea(3) and settinge = 0.1, & =0 andB = 10°5, we getN =

state-feedback controller,

Uri = Vi + Kxesi, K fixed,

to improve performance, [12], [13].

IV. ANUMERICAL EXAMPLE

In this section, we illustrate the proposed approach to t
approximate solution of the chance-constrained optirntnat
problem (4) on a numerical example. The example is tak
from [16], and the performance of our approach is compar
with that of the methods for the over-approximation of th
probabilistic constraint presented in [16].

dy+14 g

ds + l_3 )

do+ 15 ) '
di + l_l '
UL e
_/\/\fL. my ma —W—— mg —/V\/‘-— my
kq k2 <« k3 kq
u3

Fig. 1. Mechanical system_l,l_g,lg,lz represents the nominal position of
masses when forces are all equal to 0.

Consider the mechanical system reported in Figure
where di, i = 1,2,3,4, represent the mass displacemen
from an equilibrium position, whereas,, u, and uz are

3432 disturbance realizations to extract. The correspandi
scenario-optimization was solved by running YALMIP over
SeDuMi, [24]. The performance achieved by the randomized
method wasJ(I'},©F) = 1.328, which is quite close to
the best performance (1.325) achieved in [16] by over-
approximating the probabilistic constraint. Our methaalyh
rever, can be applied in full generality, while the approache
In [16] relies on the assumption of Gaussianity of the
e(:inisturbanca/vt.
e As for the computing time, the scenario approach is much
es(ilower than other approaches. The computing time, however,
can be decreased by reducing the number of parameters to be
optimized. In the case whem= 0.02, the noise contribution
is actually so small that the disturbance feedback t&wm
can be removed without a significant deterioration of the
cost. Indeed, by settin@ equal to zero and optimizing over
I" only, we obtained a cosk(I'y) = 1.342 with a computing
time that was 100 times smaller than the previous case. The
number of realizations to extract was= 451 this time.

By discarding constraints (i.es’ # 0), performance in
terms of control cost can be improved both wh@&n# 0
(i.e. with the feedback disturbance term) and wiga- 0
(i.e. without the feedback disturbance term), at the price o
an additional computational effort. Depending on the appli
cation context, this can be critical for the on-line recedin
borizon implementation of the approach.

ts
V. CONCLUSIONS

forces acting on the masses. The state of the system isIn this paper, we take a first step towards the application of

given by the mass displacements and their derivatixes:

randomized methods for the solution of chance-constrained

[dy,da, d3, ds, dy,d, d3,ds]T. We set all masses and stiffnessoptimization problems in stochastic MPC.

constants equal to 1, iemp=m =m=my =1 and

The focus of this paper is on the finite-horizon constrained

ki = ko = ks = kg = 1, and consider a discrete time modeloptimization problem that has to be solved at each time step

of the systemx.1 = Ax + Bu +w;, where the additive
noisew; is an i.i.d. sequence of Gaussian random variabl
with zero mean and variancg?lg,g, 0 = 0.02. Matrices

T to determine the control input to be appliedratccording
@s the receding-horizon strategy.
A main aspect that still needs to be addressed concerns

A and B are obtained by time discretization of a standarthe stability of the resulting MPC control scheme, which
mechanical model under the assumption that the contrid not easy to prove for the unbounded disturbance case.
action is piecewise constant over the intervals+ 1). Notable exceptions are represented by [20], [14], [21]],[15



where mean square stability is proven for the case whegrp] M. Grant and S. Boyd. CVX: Matlab software for discifgith convex

the open-loop system is stable and hard bounds are impo
on the control input. Interestingly, in [20] the hard inpu

¥

bounds are imposed by adopting a feedback control law that
is affine in the reconstructed and pre-saturated distuebani@l!
samples. Since convexity of the cost and of the constraint
function is preserved by this control law parametrization2]
the technique for proving stability adopted in [20] could be

possibly extended to our randomized setting by adoptind hays)
constraint for the control input and probabilistic constra
for the state only. This is subject of ongoing research #gtiv [24]
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