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Abstract— The least squares estimate x̂N minimizes the sum

of the squared residuals
∑

N

i=1 ‖Aix − bi‖
2 over a finite set

of observations (Ai, bi). At x = x̂N , the squared residuals
‖Aix̂N − bi‖

2 are called the “empirical costs”. Intuitively, the
empirical costs carry information on the probability distri-
bution of the cost ‖Ax̂N − b‖2 that is paid for other, yet

unseen, values of (A, b) taken from the same population as
the observations (Ai, bi). In this work, this intuition is set on
solid theoretical grounds. We provide a precise characterization
of the probabilities with which the cost does not exceed certain
thresholds that are constructed from the empirical costs. These
probabilities are called “coverages”. All the results are derived
in a setting where the observations are independent, while
the framework is otherwise “agnostic” in that no a-priori
assumptions about the underlying probability for (A, b) is made.

I. INTRODUCTION AND PROBLEM SET-UP

Given the finite sample of data

D
N = (A1, b1), (A2, b2), . . . , (AN , bN),

where Ai ∈ Rn×d and bi ∈ Rn, the least squares estimate x̂N

is defined as the minimizer of the sum of squared residuals

N
∑

i=1

‖Aix− bi‖2, 1

where ‖ · ‖ denotes the Euclidean norm. The least squares

method is relevant to many fields including statistics, systems

and control, quantitative finance, econometrics and decision-

making, to cite but a few.

In this paper, we assume that (Ai, bi) are independent

and identically distributed (i.i.d.) random elements with

distribution F . The squared residuals evaluated at x̂N ,

qi := ‖Aix̂N − bi‖2, i = 1, . . . , N,

are called the “empirical costs”. Given a new observation

(A, b) sampled from F independently of D
N , the cost of

This work was supported by the Ministero dellIstruzione, dellUniversità
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1If the minimizer is not unique, the solution is determined through a
tie-break rule.

(A, b) evaluated at x̂N is denoted with

q := ‖Ax̂N − b‖2.

The goal of this paper is to provide evaluations that q does

not exceed certain thresholds constructed from the data.

A function c of the data D
N is called a statistic. For

example, a statistic is c = maxi=1,...,N qi. If an evaluation

of the probability that q does not exceed c is provided, such

en evaluation can be used as a descriptor of the performance

of x̂N . The probability that q does not exceed c is called

the “mean coverage” of c and is formally defined as follows.

Definition 1: Given a statistic c of the data DN , the mean

coverage of c, is

Pr{q ≤ c}.

⋆

In words, the mean coverage of c is the total probability of

seeing a random sample DN and that one more observation

(A, b) independent of DN carries a cost no higher than

c(DN ). The new instance (A, b) can be interpreted as the

next instance (AN+1, bN+1) observed after the estimate

x̂N has been made.2 The discussion is made more

concrete through the following estimation problem in linear

regression.

Example 1 (linear regression): Let u and y be two scalar

random variables. We want to regress y against a poly-

nomial of order d − 1 in u. N independent observations

(u1, y1), . . . , (uN , yN ) are available. Letting

Ai =
[

1, ui, ui
2, . . . , ui

d−1
]

∈ R1×d

and

bi = yi, for i = 1, . . . , N,

the polynomial at the observed ui writes ŷ(ui) = Aix
where x is the vector of parameters to be tuned, and the

2The term “mean coverage” is borrowed from the statistical literature.
Given a D

N , the set T (DN ) := {(A, b) : q ≤ c} is a “tolerance region”
in the space Rn×d × Rn according to the statistical terminology, [1], [2].
A tolerance region depends on DN . The probability of a tolerance region
is commonly called the “coverage probability” of the tolerance region,
and is written as Pr{q ≤ c|DN}. The conditioning with respect to D

N

emphasizes that such a probability depends on DN since the tolerance region
T (DN ) is a set that depends on DN . By taking the expected value of the
coverage of T (DN ) with respect to D

N , the “mean coverage” is obtained,

E[Pr{q ≤ c|DN}] = Pr{q ≤ c}.
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coefficients x are obtained by minimizing the sum of the

squared residuals

N
∑

i=1

‖Aix− bi‖2.

In this regression problem, the new instance corresponds

to the next observed data point (uN+1, yN+1), and the

mean coverage of c is the probability of the event that

(ŷ(uN+1)− yN+1)
2 ≤ c(DN ).

⋆

The knowledge of the distribution F is normally required

to compute the mean coverage of a statistic c. However,

as we shall see below, it is possible to construct specific

statistics whose mean coverages are guaranteed “distribution-

free”, that is, they hold for all distributions F . In applica-

tions, these statistics can be used to predict the value of q

even when F is unknown.

Before proceeding, a notation is introduced that will be

in force throughout. Given a sample of scalar variables

r1, r2, . . . , rN , we denote with r(1), r(2), . . . , r(N) the

order statistics of the ri’s, that is, the r(i)’s are the ri’s in

increasing order of value: r(1) ≤ r(2) ≤ · · · ≤ r(N). Also,

we recall that the following classic result holds for any i.i.d.

sample, see [3], [4].

Theorem 1: Let r1, r2, . . . , rN be an i.i.d. sample from

a distribution Fr on R. For a new r sampled from Fr

independently of r1, r2 . . . , rN , it holds that

Pr{r ≤ r(i)} ≥ i

N + 1
, i = 1, . . . , N. (1)

⋆

Theorem 1 states that the statistic r(i) is not exceeded

with a probability at least of i
N+1 , no matter what Fr is.

Interestingly, this is a tight result, because if Fr is continuous,

(1) holds with equality, Pr{r ≤ r(i)} = i
N+1 .

In our context of least squares estimation, the ordered

empirical costs q(1), . . . ,q(N) can be used as statistics to

bound q. It is a fact, however, that Theorem 1 does not

apply to q(1), . . . ,q(N). In fact, q1, . . . ,qN ,q are not i.i.d.,

because they depend on all the data set D
N through x̂N .

Moreover, x̂N is chosen so as to minimize the sum of the

squared residuals, so that the empirical costs are biased

towards small values, and we expect that Pr{q ≤ q(i)} <
i

N+1 . The following example illustrates that this intuition is

indeed true.

Example 2: Suppose that N = 2: D
2 = (A1, b1),

(A2, b2), and assume that, with probability 1, A1 = A2 = 1
and b1 6= b2. Based on D

2, the least squares estimate

x̂2 and the empirical costs q1,q2 are computed. We will

evaluate the probability that a new instance (1, b) is such

that q ≤ q(2) and show that it is strictly less than 2
3 .

First, notice that conditionally to any set of three instances,

say S = {(1, b′), (1, b′′), (1, b′′′)}, the probability of each

x̂2

x̂2

x̂2 R

R

R

q

q

q

q(2)

q(2)

q(2)

q > q(2) q > q(2)

q ≤ q(2)

Fig. 1. The three parabolae of Example 2. The dashed parabola is
(x− b)2, while the other two correspond to the data D

2.

permutation of the elements in S is the same, that is, the

role of the new instance (1, b) is played by each element

of S with probability 1
3 . As a consequence, for any set of

three instances, the three situations represented in Fig. 1 are

equally likely and, since q ≤ q(2) holds true in one out of

the three situations, integrating over all possible set of three

instances yields Pr{q ≤ q(2)} = 1
3 < 2

3 .

⋆

The main achievement of this paper is to provide statistics

q̄(i), i = 1, . . . , N , such that

Pr{q ≤ q̄(i)} ≥ i

N + 1

holds true distribution-free, i.e., for every F . These statistics

are obtained by adding a margin to the q(i)’s, according to

a data-based rule that does not depend on F . This margin

is small in normal cases and tends to zero as N grows to

infinity.

Distribution-free results are of great interest since prior

knowledge about F is often unrealistic to assume in practice.

On the other hand, one may expect that a distribution-free

result is conservative. In a sense, this paper contradicts this

intuition by showing that a satisfactory and nonconservative

characterization of the cost ‖Ax̂N − b‖2 can be achieved by

using q̄(1), . . . , q̄(N), even for small number N .

A. Frequently used matrix notations

For a matrix M :

1) MT = transpose matrix of M ;

2) M † = Moore-Penrose pseudoinverse of M ;

3) ‖M‖ = spectral norm = sup‖x‖=1 ‖Mx‖, where the

norm in the right-hand side is the Euclidean norm;

4) λmax(M) = maximum eigenvalue of M (M square

matrix);

5) if M is symmetric, M ≻ 0 (M � 0) means M positive

definite (semi-definite). P ≻ Q (P � Q) means P −Q
positive definite (semi-definite).

For matrix concepts see e.g. [5], [6].
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B. Bibliographic remarks

The least squares method dates back to Gauss and Legen-

dre, see e.g. [7]. Ever since, it has been studied extensively

and has found applications in an enormous variety of ar-

eas (e.g., linear regression theory [8], system identification

[9], control [10], facility location [11], etc.). Much of the

theoretical analysis focuses on bounding the deviation of

E[‖Ax̂N−b‖2] from 1
N

∑N

i=1 ‖Aix̂N−bi‖2. Classical results

in this direction are asymptotic, e.g. [12], [9], while more

recently results valid for finite N have started to appear,

[13], based on the VC theory ([14], [15], [16]). The results

of this paper are inherently different in that we do not

aim at studying E[‖Ax̂N − b‖2]; instead, we move towards

characterizing the distribution of ‖Ax̂N − b‖2 through the

concept of coverage. This approach is in the spirit of [17],

where sample-based min-max optimization is considered

according to the approach of [18], [19], [20], [21]. Robust

least squares have been considered in [22], [23].

C. Structure of the paper

The main theorem is provided in Section II followed by a

discussion. A numerical example is given in Section III, and

the outline of the proofs is given in Section IV.

II. MAIN RESULT

A. Main Theorem

To simplify the expression of our results, the cost ‖Aix−
bi‖2 is rewritten as:

‖Aix− bi‖2 = (x− vi)
TKi(x− vi) + hi,

with Ki = AT
i Ai, vi = A†

i bi, hi = ‖Aivi − bi‖2. Observe

that Ki � 0 but not necessarily Ki ≻ 0. For example, in

the regression problem of Example 1, Ki is always a rank 1

matrix, so that Ki ⊁ 0 when d > 1.

Consider the following N statistics of the data D
N , for i =

1, . . . , N ,

q̄i :=

{

(x̂N − vi)
T K̄i(x̂N − vi) + hi if Ki ≺ 1

6

∑N
ℓ=1
ℓ 6=i

Kℓ

+∞ otherwise,
(2)

where

K̄i := Ki + 6Ki







N
∑

ℓ=1
ℓ 6=i

Kℓ







−1

Ki,

and let q̄(i), i = 1, . . . , N , the statistics obtained by

ordering the q̄i’s. The following theorem shows that q̄(i)’s

are statistics with guaranteed mean coverage.

Theorem 2: Irrespective of the probability distribution F ,

it holds that

Pr{q ≤ q̄(i)} ≥ i

N + 1
, i = 1, . . . , N. (3)

⋆
For an outline of the proof see Section IV.

A couple of remarks are in order.

Remark 1 (geometric interpretation): Statistics q̄1, . . . ,
q̄N , as well as their ordered versions q̄(1), . . . , q̄(N), have

a straight geometric interpretation. The empirical cost qi is

the value of the paraboloid (x − vi)
TKi(x − vi) + hi at

x = x̂N . According to Theorem 2, the corresponding q̄i

is obtained by evaluating at x = x̂N a modified version

of the paraboloid, obtained by replacing the matrix Ki

with K̄i, see Fig. 2. The modified K̄i is given by the

original Ki plus a term whose magnitude depends on the

“ratio” of Ki and
∑N

ℓ=1
ℓ 6=i

Kℓ. If Ki is “small” with respect

to
∑N

ℓ=1
ℓ 6=i

Kℓ, then K̄i ≈ Ki, so that q̄i ≈ qi (i.e. the margin

is small), otherwise, q̄i may become large, or even infinite

if Ki ⊀
1
6

∑N
ℓ=1
ℓ 6=i

Kℓ.

⋆

x̂N R

qi

q̄i

Fig. 2. The paraboloid (x− vi)
TKi(x− vi) + hi associated with

the i-th observation (continuous line) is compared with its modified
version (x − vi)

T K̄i(x − vi) + hi (dashed line). The values at
x = x̂N are, respectively, the empirical cost qi and q̄i as defined
in (2).

Remark 2 (characterization of the margin): Under mild

assumptions, as N increases the sum
∑N

ℓ=1
ℓ 6=i

Kℓ becomes

larger and larger compared to Ki, so that the term

Ki

(

∑N
ℓ=1
ℓ 6=i

Kℓ

)−1

Ki in the definition of K̄i tends to zero

yielding K̄i → Ki and q̄(i) → q(i) for every i. Since, as it

can be proven, the mean coverage of q(i) is no more than
i

N+1 , this shows that the statistics q̄(i) are not conservative.

The following Examples 3 and 4 illustrate this fact.

⋆

Example 3 (paraboloids with coplanar vertexes):

Assume that Ai = I , i = 1, . . . , N , yielding Ki = I ,

vi = bi, hi = 0. See Fig. 3(a) for a visualization of the

costs ‖Aix− bi‖2.

In this case Ki ≺ 1
6

∑

ℓ 6=iKℓ ⇐⇒ N ≥ 8, and

K̄i =
N + 5

N − 1
I,

q̄(i) =
N + 5

N − 1
q(i),

for N ≥ 8. Clearly, the margin q̄(i) − q(i) =
6

N−1q(i) goes

to zero as 1/N .

⋆
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(a) (b)

Fig. 3. (a) the cost functions ‖Aix − bi‖
2 of Example 3; (b) the

cost functions of Example 4.

Example 4 (stack of paraboloids): Assume that, for i =
1, . . . , N ,

Ai =

[

Id×d

01×d

]

and bi =

[

0d×1

ui

]

,

where the subscripts denote the matrix dimensions (e.g. 01×d

is a row vector of zeros) and u1, . . . , uN are scalar values.

In this case, Ki = Id×d, vi = 0, hi = u2
i , and the cost

functions ‖Aix−bi‖2 are as depicted in Fig. 3(b). As before,
1
6

∑N
ℓ=1
ℓ 6=i

Kℓ ≻ Ki ⇐⇒ N ≥ 8, while

K̄i =
N + 5

N − 1
Id×d,

q̄(i) = q(i),

for N ≥ 8. Thus, for N ≥ 8, it holds that

Pr
{

q ≤ q(i)

}

≥ i

N + 1
,

i.e., there is no margin between q̄(i) and q(i) (compare with

Theorem 1).

⋆

III. NUMERICAL EXAMPLE

This example deals with the location of a facility in a

given geographical area, see [11].

In the basic setting, the location of the facility has to

be chosen so as to minimize the squared distance between

the facility and the clients. To this purpose, N clients

are randomly observed and their locations p1, . . . , pN are

recorded. The facility location x̂N ∈ R2 is computed by

minimizing
∑N

i=1 ‖x−pi‖2, i.e., x̂N is the geometric center

of p1, . . . , pN . This estimates the geometric center of the

whole unknown client population. More in general, in order

to take into account some factors other than distances (such

as different importance of the clients, slope of the terrain,

etc.), weighting matrices A1, . . . , AN , each depending on

the specific client observed, can be introduced, and x̂N is

then obtained as the minimizer of
∑N

i=1 ‖Ai(x − pi)‖2. In

order to obtain an evaluation of the performance of x̂N with

respect to the whole population of clients, we resort to the

theory developed in Section II.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

px

py

Fig. 4. Points p1, . . . , p15 ∈ R2 are represented by crosses. The
eigenvectors of the matrix Ki = AT

i
Ai associated with each point are

also shown. The bold black dot is x̂N .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

q̄(i)
q(i)

i

Fig. 5. q(i) and q̄(i) for the facility location example.

A. Simulation setting

We generated a sample of N = 15 data from a population

whose density function is a bivariate normal distribution with

mean (0, 0) and covariance matrix 1
4I . The weighting matrix

A associated with a client at point p = (px, py) is as follows:

A =

[

1− p2x pxpy
pxpy 1− p2y

]

.

In Fig. 4, the obtained data sample and the computed

estimate x̂N are shown. Fig. 5 shows the ordered empirical

costs q(1), . . . ,q(N) as well as q̄(1), . . . , q̄(N) computed

according to Theorem 2.

The actual mean coverages of q̄(1), . . . , q̄(N) computed

through a Monte-Carlo simulation are reported in Fig. 6.

Note that Pr{q ≤ q̄(i)} ≥ i
N+1 , for any i = 1, . . . , 15, in

agreement with Theorem 2.

IV. PROOF OF THEOREM 2

Theorem 2 follows from Theorem 3 stated below.
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Pr{q ≤ q̄(i)}
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Fig. 6. The actual mean coverages of q̄(i) .

Matrices Ki, i = 1, . . . , N , are defined in Section II as

Ki = AT
i Ai. Thus, the Ki’s are symmetric and positive

semi-definite. Throughout, the simplified notations are in use

∑

Kℓ stands for

N
∑

ℓ=1

Kℓ,
∑

ℓ 6=i

Kℓ stands for

N
∑

ℓ=1
ℓ 6=i

Kℓ.

We start with a Lemma, whose proof follows from

standard linear algebra.

Lemma 1: Assume that
∑

ℓ 6=iKℓ ≻ 0. For any γ ≥ 0, the

following equivalences hold:

Ki

1

2





∑

ℓ 6=i

Kℓ





−1

Ki

1

2 ≺ γI ⇐⇒ Ki ≺ γ
∑

ℓ 6=i

Kℓ, (4)

and

Ki

1

2





∑

ℓ 6=i

Kℓ





−1

Ki

1

2 � γI ⇐⇒ Ki � γ
∑

ℓ 6=i

Kℓ. (5)

⋆

If
∑

ℓ 6=iKℓ ≻ 0, let

γi := λmax






Ki

1

2





∑

ℓ 6=i

Kℓ





−1

Ki

1

2






,

and

Wi := Ki + (4 + 2γi)Ki





∑

ℓ 6=i

Kℓ





−1

Ki. (6)

Suppose further that γi <
1√
2

, then matrix 2
∑

Kℓ −Wi

is invertible. To show this, note that, γi being the maximum

eigenvalue of Ki

1

2

(

∑

ℓ 6=iKℓ

)−1

Ki

1

2 , we have that

Ki

1

2





∑

ℓ 6=i

Kℓ





−1

Ki

1

2 � γiI, (7)

and, hence,

Wi = Ki + (4 + 2γi)Ki

1

2






Ki

1

2





∑

ℓ 6=i

Kℓ





−1

Ki

1

2






Ki

1

2

� Ki + (4 + 2γi)γiKi = (1 + 4γi + 2γ2
i )Ki. (8)

Applying Lemma 1 to (7) gives Ki � γi
∑

ℓ 6=iKℓ, from

which Ki � γi

1+γi

∑

Kℓ. Substituting this result in (8) yields

Wi � (1 + 4γi + 2γ2
i )

γi
1 + γi

∑

Kℓ ≺ [since γi <
1√
2
]

≺ 2
∑

Kℓ, (9)

which proves the invertibility of 2
∑

Kℓ −Wi.

If
∑

ℓ 6=iKℓ ≻ 0 and γi < 1√
2

, define K̃i := Wi +

Wi(2
∑

Kℓ −Wi)
−1

Wi. Let

q̃i :=







(x̂N − vi)
T K̃i(x̂N − vi) + hi

if
∑

ℓ 6=iKℓ ≻ 0

and γi <
1√
2

+∞ otherwise.
(10)

Theorem 3: Irrespective of the probability distribution F ,

it holds that

Pr{q ≤ q̃(i)} ≥ i

N + 1
.

⋆

The proof of Theorem 3 is given in [24]. We show here

that Theorem 2 follows from Theorem 3. To this end, it is

enough to show that q̃i ≤ q̄i, i = 1, . . . , N . When q̄i = ∞,

this is trivially true, so we consider the case when q̄i is

finite, which holds if Ki ≺ 1
6

∑

ℓ 6=iKℓ. In view of Lemma

1, condition Ki ≺ 1
6

∑

ℓ 6=iKℓ implies that γi < 1
6 , which

strengthens condition γi <
1√
2

used in Theorem 3. We now

show that, if γi <
1
6 , then K̃i � K̄i, from which q̃i ≤ q̄i.

Due to that γi <
1
6 , (8) gives Wi � 2Ki, so that

2
∑

Kℓ −Wi � 2
∑

Kℓ − 2Ki = 2
∑

ℓ 6=i

Kℓ.

Thus,

K̃i = Wi +Wi

(

2
∑

Kℓ −Wi

)−1

Wi

� Wi +Wi



2
∑

ℓ 6=i

Kℓ





−1

Wi

= [substitute (6) for Wi and let

Φ:=Ki

1

2





∑

ℓ 6=i

Kℓ





−1

Ki

1

2 ]
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= Ki+Ki

1

2

(

9+4γi
2

Φ+(4+2γi)Φ
2+2(2+γi)

2Φ3

)

Ki

1

2

� [since Φ � γiI]

� Ki+Ki

1

2

(

9+4γi
2

Φ+(4+2γi)γiΦ+2(2+γi)
2γ2

i Φ

)

Ki

1

2

= Ki+(4.5+6γi+10γ2
i +8γ3

i +2γ4
i )Ki





∑

ℓ 6=i

Kℓ





−1

Ki

� [since 4.5+6γi+10γ2
i +8γ3

i +2γ4
i < 6 for γi <

1

6
]

� K̄i.

Wrapping up, if Ki ≺ 1
6

∑

ℓ 6=iKℓ, then K̃i � K̄i =⇒
q̃i ≤ q̄i =⇒ Theorem 2 follows from Theorem 3.
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[4] H. Scheffé and J. W. Tukey, “Non-parametric estimation. I. Validation
of order statistics,” The Annals of Mathematical Statistics, vol. 16,
no. 2, pp. 187–192, 1945.

[5] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University
Press, 1985.

[6] S. L. Campbell and C. D. Meyer, “The Moore-Penrose or generalized
inverse,” in Generalized Inverses of Linear Transformations. Philadel-
phia, Pennsylvania, USA: SIAM, 2009.

[7] R. L. Plackett, “Studies in the history of probability and statistics.
XXIX: The discovery of the method of least squares,” Biometrika,
vol. 59, no. 2, pp. 239–251, 1972.

[8] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical

Learning. New York, USA: Springer-Verlag New York, LLC, 2009.

[9] L. Ljung, System Identification - Theory For the User. Upper Saddle
River, New Jersey, USA: Prentice Hall, 1999.

[10] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear
Quadratic Methods. Englewood Cliffs, New Jersey, USA: Prentice
Hall, 1990.

[11] Z. Drezner, K. Klamroth, A. Schbel, and G. O. Wesolowsky, “The We-
ber problem,” in Facility location - applications and theory, Z. Drezner
and H. Hamacher, Eds. New York, USA: Springer-Verlag New York,
LLC, 2002.

[12] E. L. Lehmann and G. Casella, Theory of point estimation, 2nd ed.
Springer, 1998.

[13] G. C. Calafiore and F. Dabbene, “Near optimal solutions to least-
squares problems with stochastic uncertainty,” Systems and Control

Letters, vol. 54, no. 12, pp. 1219–1232, 2005.
[14] M. Vidyasagar, A Theory of Learning and Generalization. London,

UK: Springer-Verlag, 1997.
[15] T. Alamo, R. Tempo, and E. F. Camacho, “Randomized strategies

for probabilistic solutions of uncertain feasibility and optimization
problems,” IEEE Transactions on Automatic Control, vol. 54, no. 11,
pp. 2545–2559, 2009.

[16] R. Tempo, G. Calafiore, and F. Dabbene, Randomized Algorithms for
Analysis and Control of Uncertain Systems, with Applications, 2nd ed.
London, UK: Springer-Verlag, 2013.
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