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Abstract— In this paper, we address finite-horizon control for
a stochastic linear system subject to constraints on the control
and state variables. A control design methodology is proposed
where the appropriate trade-off between the minimization of
the control cost (performance) and the satisfaction of the state
constraints (safety) can be decided by introducing appropriate
chance-constrained problems depending on some parameter to
be tuned. From an algorithmic viewpoint, a computationally
tractable randomized approach to find approximate solutions
which are guaranteed to be feasible for the original chance-
constrained problem is proposed. A numerical example con-
cludes the paper.

I. INTRODUCTION

Consider a linear system whose state xt ∈ Rn evolves
according to the equation

xt+1 = Axt +But + wt,

where ut ∈ Rm is the control input and wt ∈ Rn is a
stochastic disturbance with a possibly unbounded support.
We assume that the state of the system is available, and
address the problem of designing a state-feedback control
policy so as to minimize some finite-horizon cost, while sat-
isfying saturation constraints on the control input and safety
constraints on the state. A receding horizon implementation
is then possible. In this paper, however, we focus on the
finite-horizon problem only.
We adopt the following parametrization for the control input:

ui = γi +

i−1∑
j=0

θi,jϕ(wj), (1)

where γi ∈ Rm and θi,j ∈ Rm×n are the design parameters,
whereas ϕ : R → R is a given scalar function; with the
notation ϕ(wj), we mean function ϕ(·) applied to each
component of the n-dimensional vector wj . Policy (1) is
indeed a state-feedback control policy since the disturbance
can be reconstructed from the state measurements according
to

wi = xi+1 −Axi −Bui.

If the scalar function ϕ(·) is the identity map (i.e., ϕ(α) =
α, ∀α ∈ R), then we obtain a policy that is affine in the
disturbance and that is equivalent to a feedback policy affine
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in the state, [1]. If ϕ(·) is given by the saturation function
(or alternatively by a sigmoidal function)

ϕ(α) =


−ϕ̄, α < −ϕ̄
α, |α| ≤ ϕ̄
ϕ̄, α > ϕ̄,

(2)

then, the resulting policy is a nonlinear function of the state
and provides a bounded input even if wj is unbounded, [2].
The advantage of using the control policy (1) is that both
the input and the state depend linearly on the parameters γi
and θi,j .
The system performance is expressed in terms of the average
quadratic cost

J = E

[
M∑
i=1

xTi Qixi +

M−1∑
i=0

uTi Riui

]
, (3)

with Qi and Ri symmetric positive semidefinite matrices
of appropriate dimensions. We consider constraints of the
following form:

sup
i=0,...,M−1

‖ui‖∞ ≤ ū,

(4)
sup

i=1,...,M
‖Cxi‖∞ ≤ ȳ,

where the absolute value of all input elements is subject
to the same limit ū, and the absolute value of the output
variable yi := Cxi is bounded by ȳ.

When formulating the constraints, one has to account for
the uncertainty affecting the system evolution through the
noise process wt. One can then define either hard or soft
constraints: in the first case, constraints must hold for every
and each disturbance realization, even for those realizations
that are quite unlikely to occur; in the second case, con-
straints are expressed in probability and must hold on a set
of disturbance realizations of probability at least 1− ε, with
ε ∈ (0, 1) chosen by the user.
Hard constraints on the control input are typically motivated
by the presence of saturation limits of the actuators. However,
they may lead to conservative solutions since they do not
take into account the statistical properties of the noise. Soft
constraints on the input are introduced to reduce this conser-
vatism. In any case, both hard and soft input constraints are
always feasible (just take all the design parameters equal to
zero to get a feasible point).
As for the state variable, hard constraints are not feasible
when the noise distribution has unbounded support, because



wt enters additively the state equation and this contribu-
tion cannot be canceled through any control action. Hence,
without assumptions on the boundedness of the noise, one
can only head for soft constraints on the state, leading
to the following two formulations for the input and state
constraints:

- hard & soft
sup

i=0,...,M−1
‖ui‖∞ ≤ ū, ∀(w0, w1, . . . , wM−1)

P
{

sup
i=1,...,M

‖Cxi‖∞ ≤ ȳ
}
≥ 1− ε;

- soft & soft

P
{

sup
i=0,...,M−1

‖ui‖∞ ≤ ū

∧ sup
i=1,...,M

‖Cxi‖∞ ≤ ȳ
}
≥ 1− ε.

When formulating the constraints, the value of ȳ is quite
critical, because of the following two reasons:

- the feasibility of the soft constraint on the state is not
always guaranteed since ȳ can be not compatible with
the disturbance characteristics, the system dynamics,
and the saturation limits imposed on the control input;

- even when the soft constraint is feasible, the perfor-
mance of the obtained solution can be too much ad-
versely affected by the presence of the state constraints
if ȳ takes a conservative value.

The main thrust of this paper is that, rather than seeing ȳ as
a fixed value, one should try to modulate it so as to guaran-
tee feasibility, while achieving the appropriate compromise
between safety and performance.
More precisely, to address the feasibility issue, ȳ is replaced
by a decision variable, say h, so that it can be automatically
set to a value compatible with the system dynamics, input
constraints, and noise characteristics.
Then, suitable parametric optimization problems are formu-
lated where both safety and performance are accounted for.
The value for the parameter defining the optimization prob-
lems determines the compromise between the two objectives
of minimizing the control cost J in (3) (performance) and
minimizing h (safety). By tuning this parameter, one can
explore the different possible trade-offs between safety and
performance – while preserving feasibility –, and choose the
solution that is more satisfactory in terms of values achieved
for J and h.
Alternative approaches to tackle the problem when the
disturbance has unbounded support have been proposed in,
e.g., [3], [4], [5], [6], [7]. In [3], [4], state constraints are
replaced by a penalization term accounting for the state
constraint violation so as to avoid infeasibility. In [5], [6], [7],
a conservative convex relaxation of the chance constraints is
adopted, which may result in an infeasible constraint also
when the original one was feasible. Derivations are usually
confined to the case when the disturbance is a sequence
of i.i.d. (independent and identically distributed) random
variables and has a Gaussian distribution.

II. NOTATIONAL ISSUES

Let

x =


x1

x2

...
xM

 u =


u0

u1

...
uM−1

 w =


w0

w1

...
wM−1

 .
Then, it is easy to show that

x = Fx0 + Gu + Hw

u = Γ + Θϕ(w),

where matrices F, G and H are given by

F =


A
A2

...
AM

 G =


B 0n×m · · · 0n×m

AB B
. . .

...
...

. . . . . . 0n×m
AM−1B · · · AB B



H =


In×n 0n×n · · · 0n×n

A In×n
. . .

...
...

. . . . . . 0n×n
AM−1 · · · A In×n

 ,
whereas Γ and Θ are given by

Γ =


γ0
γ1
...

γM−1

 Θ =


0m×n 0m×n · · · 0m×n

θ1,0 0m×n

. . .
...

...
. . .

. . . 0m×n

θM−1,0 · · · θM−1,M−2 0m×n

 .
Both u and x depend linearly on the parameters Γ and Θ.
Let us denote with Q = diag(Q1, . . . , QM ) and R =
diag(R0, . . . , RM−1) the block diagonal matrices built based
on Qi and Ri in (3). If we set mw = E[w], mϕ = E[ϕ(w)]
and

V =

[
Vϕϕ Vϕw
V Tϕw Vww

]
,

where Vww and Vϕϕ are the covariance matrices of w
and ϕ(w) and Vϕw is the cross-covariance matrix of ϕ(w)
and w, then, the control cost (3) can be expressed as the
following convex function of (Γ,Θ):

J(Γ,Θ) = E
[
xTQx + uTRu

]
= (Fx0 + GΓ + GΘmϕ + Hmw)

T
Q (Fx0+

+ GΓ + GΘmϕ + Hmw) +

+ tr
(
Q

1
2 [GΘ H]V [(GΘ) H]

T
Q

1
2

)
+

+ (Γ + Θmϕ)
T
R (Γ + Θmϕ) + tr

(
R

1
2 ΘVϕϕΘTR

1
2

)
As for the constraints (4), if we set

C = diag(C, . . . , C) (5)

then, they can be expressed in compact form as follows:

‖u‖∞ ≤ ū ‖Cx‖∞ ≤ h,



where ȳ has been replaced with the optimization variable h.
Thanks to the linear dependence of u and x on Γ and Θ,
these constraints turn out to be convex with respect to the
optimization variables.

III. APPROACH BASED ON CONTROL COST PENALIZATION

In this first method, a penalization term is added to the
average quadratic cost J in (3) in order to account for the
bound h on the state:

J ′ = J + µh.

The coefficient µ ≥ 0 determines the trade-off between the
two objectives J (performance) and h (safety). Depending
on the kind of constraint adopted for the control input, two
chance-constrained problems can be formulated:

min
Γ,Θ,h

J(Γ,Θ) + µh subject to: (6){
‖u‖∞ ≤ ū, ∀w
P {‖Cx‖∞ ≤ h} ≥ 1− ε

min
Γ,Θ,h

J(Γ,Θ) + µh subject to: (7)

P {‖u‖∞ ≤ ū ∧ ‖Cx‖∞ ≤ h} ≥ 1− ε

IV. TWO-STEP APPROACH BASED ON A PRE-DEFINED
ADMISSIBLE DETERIORATION OF THE CONTROL COST

In this second approach, feasibility is still recovered by con-
sidering the bound on the state as an optimization variable.
However, the two objectives of minimizing the control cost as
well as the bound on the state are handled differently. More
precisely, two optimization problems are solved in cascade:
in the first one, the control cost is minimized subject only to
the control input constraints, whereas in the second one, h is
minimized subject to the constraints on both state and control
input and a further constraint on the maximum admissible
degradation of the control cost with respect to the value J?

computed in the first problem: J ≤ J? + α, with α ≥ 0.
Again, the coefficient α determines the trade-off between
the objective of minimizing J (performance) and that of
minimizing h (safety).
In the case when hard constraints are imposed on the control
input, the first optimization problem is given by

min
Γ,Θ

J(Γ,Θ) subject to: (8a)

‖u‖∞ ≤ ū ∀w,

while, letting J? be the optimal cost obtained by solving
(8a), the second optimization problem is:

min
Γ,Θ,h

h subject to: (8b) ‖u‖∞ ≤ ū ∀w
P {‖Cx‖∞ ≤ h} ≥ 1− ε
J(Γ,Θ) ≤ J? + α

.

If the control input is subject to a probabilistic constraint as
well, then, the first optimization problem writes

min
Γ,Θ

J(Γ,Θ) subject to: (9a)

P {‖u‖∞ ≤ ū} ≥ 1− ε,

while, letting J? denote the optimal cost obtained by solving
(9a), the second optimization problem is:

min
Γ,Θ,h

h subject to: (9b){
P {‖u‖∞ ≤ ū ∧ ‖Cx‖∞ ≤ h} ≥ 1− ε
J(Γ,Θ) ≤ J? + α

.

V. APPROXIMATE SOLUTION

The problems posed in Sections III and IV are known to be
hard to solve.
Although the robust constraint ‖u‖∞ ≤ ū, ∀w, is convex
given the chosen parametrization of u, it requires to take into
account the whole infinite amount of possible realizations
of the noise process w, raising the problem complexity
an order of magnitude over standard convex optimization.
The probabilistic constraints P {‖Cx‖∞ ≤ h} ≥ 1 − ε and
P {‖u‖∞ ≤ ū ∧ ‖Cx‖∞ ≤ h} ≥ 1 − ε, instead, are even
non-convex in general, though ‖u‖∞ ≤ ū and ‖Cx‖∞ ≤ h
are convex for any fixed realization of w.
In this section, suitable relaxations of problems (6)–(9),
which are amenable to be solved by means of standard con-
vex optimization techniques, are introduced and discussed.

A. Algorithms

Clearly, the issue is how to tackle the robust and the
probabilistic constraints appearing in the various problems.
Being the support of w unbounded, we assume that in pres-
ence of the robust constraint ‖u‖∞ ≤ ū, ∀w, function ϕ(·) is
chosen as a saturation function as in (2) because otherwise,
if e.g. ϕ(·) is the identity map, the robust constraint would
always lead to solutions with Θ = 0, i.e., to a control policy
without the feedback term. Following [2], [8], the robust
constraint is then replaced by the following finite set of
constraints:

|Γi|+ ‖Θi‖1ϕ̄ ≤ ū, i = 1, . . . ,mM, (10)

where Γi denotes the i-th element of vector Γ and Θi the i-
th row of Θ. The idea behind (10) is that u cannot be worse
than when the components of ϕ(w) have all absolute value
equal to ϕ̄ and signs such that the elements of each row
Θiϕ(w) + Γi positively sum up. Plainly, any feasible point
for the newly introduced set of constraints is also feasible
for the original robust constraint. The number of constraints
in (10) is finite and usually small and (10) can be dealt with
by means of standard solvers.
As for the probabilistic constraints, we resort to the scenario
approach, a recently developed randomized method to ap-
proximately solved chance-constrained problems, [9], [10],
[11], [12], [13].



The idea behind the scenario approach is very simple.
A bunch of N realizations of the disturbance w, say
w(1),w(2), . . . ,w(N), is generated according to the under-
lying probability distribution of w. Then, the probabilistic
constraints are replaced with a finite number N of constraints
of the type ‖Cx‖∞ ≤ h and/or ‖u‖∞ ≤ ū, those obtained in
correspondence of the generated instances of the disturbance.
More precisely, writing explicitly the dependence of x and
u on w, the constraint

P {‖Cx(w)‖∞ ≤ h} ≥ 1− ε

is replaced by

‖Cx(w(i))‖∞ ≤ h, i = 1, . . . , N,

while
P {‖u‖∞ ≤ ū ∧ ‖Cx‖∞ ≤ h} ≥ 1− ε

is replaced by{
‖u(w(i))‖∞ ≤ ū
‖Cx(w(i))‖∞ ≤ h

i = 1, . . . , N.

Summarizing, depending on the chosen type of constraint
(robust or in probability) for the input, and on the chosen
method to take into account the presence of the optimization
variable h, the possible reformulations are the following four.

- Cost penalization and hard constraint on input:

min
Γ,Θ,h

J(Γ,Θ) + µh subject to: (11){
|Γi|+ ‖Θi‖1ϕ̄ ≤ ū, i = 1, . . . ,mM

‖Cx(w(i))‖∞ ≤ h, i = 1, . . . , N

- Cost penalization and soft constraint on input:

min
Γ,Θ,h

J(Γ,Θ) + µh subject to: (12){
‖u(w(i))‖∞ ≤ ū
‖Cx(w(i))‖∞ ≤ h

i = 1, . . . , N

- Two-step approach and hard constraint on input:

min
Γ,Θ

J(Γ,Θ) subject to: (13a)

|Γi|+ ‖Θi‖1ϕ̄ ≤ ū, i = 1, . . . ,mM

Let J? be the optimal cost value of (13a).

min
Γ,Θ,h

h subject to: (13b)
|Γi|+ ‖Θi‖1ϕ̄ ≤ ū, i = 1, . . . ,mM,

‖Cx(w(i))‖∞ ≤ h, i = 1, . . . , N

J(Γ,Θ) ≤ J? + α

- Two-step approach and soft constraint on input:

min
Γ,Θ

J(Γ,Θ) subject to: (14a)

‖u(w(i))‖∞ ≤ ū i = 1, . . . , N

Let J? be the optimal cost value of (14a).

min
Γ,Θ,h

h subject to: (14b)
{
‖u(w(i))‖∞ ≤ ū
‖Cx(w(i))‖∞ ≤ h

i = 1, . . . , N

J(Γ,Θ) ≤ J? + α

As for this latter problem, note that the same realizations
w(1),w(2), . . .w(N) must be used both in (14a) and in (14b),
because, otherwise, there are no guarantees that the program
in (14b) (which is based on the solution of (14a)) is feasible.
All problems (11)–(14) consist in solving convex programs
with a finite number of constraints that require no machinery
other than standard convex optimization solvers like those
used by CVX, [14], and YALMIP, [15]. Moreover, despite
the apparent naivety of the scenario approach, the obtained
solution comes with precise guarantees about its feasibility
with respect the original probabilistic constraint as long as
N is suitably chosen. This is discussed in the next section.

B. Feasibility of the obtained approximate solutions

The problems (11)–(14) are obtained as relaxations of the
original problems (6)–(9). The sub-optimality of the obtained
solutions is the price we must pay to enhance computational
tractability. However, a main issue is whether the solutions
to problems (11), (12), (13), and (14) are feasible for the
original constraints on u and x in problems (6), (7), (8), and
(9), respectively.
As already discussed, the relaxation introduced for the robust
constraint is such that feasibility with respect to the original
hard constraint is preserved. The same issue arises for the
relaxation of the constraint in probability introduced by the
scenario approach, but is much more involved to address.
The following theorem1 provides a fundamental result in this
respect.
Theorem 1: Let f(ξ) : Rd → R be a convex function and
g(ξ, δ) : Rd × ∆ → R be a parametric family of convex
functions (i.e. g(ξ, δ) is convex in ξ for any fixed value of
δ ∈ ∆). Moreover, let Ξ be any given convex subset of Rd.
For any ε ∈ (0, 1) and β ∈ (0, 1), if

N ≥
d+ 1 + ln(1/β) +

√
2(d+ 1) ln(1/β)

ε
, (15)

then, the solution ξ∗ of problem

min
ξ∈Ξ⊆Rd

f(ξ) subject to:

g(ξ, δ(i)) ≤ 0, i = 1, . . . , N,

where δ(1), δ(2), . . . , δ(N) are samples independently ex-
tracted according to a given probability Pδ over ∆, is feasible
for the constraint in probability

Pδ {g(ξ, δ) ≤ 0} ≥ 1− ε,

with high confidence 1− β. �

1Theorem 1 is proven in [11], though an implicit expression for N is
given. The explicit expression used here is due to [16].



Note that the feasibility of ξ∗ for the probabilistic constraint
can be guaranteed with high confidence 1 − β only. This
is intrinsically so because ξ∗ is random as it depends on
the extracted δ(1), δ(2), . . . , δ(N). However, N depends on β
logarithmically so that small values of β like β = 10−5 or
β = 10−7 can be forced in without affecting N too much.
With such values for β, the result in Theorem 1 reads as
“ξ∗ is feasible for the constraint in probability beyond any
reasonable doubt”.
A direct application of Theorem 1 to (11), (12), (13b)2 shows
that, if N satisfies (15), then the solutions of Problems (11),
(12), (13) are feasible with high confidence 1 − β for the
constraints on u and x in (6), (7), (8), respectively.
As for Problem (14), Theorem 1 does not apply in this
case. As a matter of fact, J? in (14b) should be more prop-
erly written as J?(w(1),w(2), . . . ,w(N)), being obtained as
the optimal value of (14a), a program where constraints
depend on w(1),w(2), . . . ,w(N). This means that Ξ =
Ξ(w(1),w(2), . . . ,w(N)), a setup which is not covered by
Theorem 1.
Although we experimentally verified that, for N large
enough, the solution of Problem (14) is usually feasible for
the constraint in probability

P {‖u‖∞ ≤ ū ∧ ‖Cx‖∞ ≤ h} ≥ 1− ε

we were not able to prove that feasibility holds with high
confidence 1− β for N satisfying (15). This latter property
for the solution to Problem (14) remains a conjecture.

C. Choice of µ & α and trade-off between J & h

As in Problems (6)–(9), the parameters µ and α in Problems
(11)–(14) play the role of tuning parameters through which
the user can modulate the trade-off between the objective of
minimizing the control cost J and that of having a small h
to strengthen the safety of the system operation.
Heuristically, one can proceed by solving the chosen program
among (11), (12), (13), and (14) for a grid of values of µ
or α, say µ1, µ2, . . . , µk or α1, α2, . . . , αk, each time using
the same realizations w(1),w(2), . . . ,w(N) of the noise. This
way, various solutions are obtained, each returning a different
trade-off between J and h. By inspecting the achieved
values, the best solution according to the problem at hand
can be eventually selected.
Under the assumption that the matrices R and Vϕϕ =
E
[
(ϕ(w)− E[ϕ(w)])(ϕ(w)− E[ϕ(w))T

]
are positive def-

inite it can be shown, [17], that µ and α are sensible tuning
parameters since by progressively increasing them from 0 to

2Let ξ = (Γ,Θ, h), δ = w,

f(ξ) =

{
J(Γ,Θ) + µh for (11),(12)
h for (13b) ,

g(ξ, δ(i)) =


‖Cx(w(i))‖∞ − h for (11),(13b)

max( ‖u(w(i))‖∞ − ū,
‖Cx(w(i))‖∞ − h )

for (12)
,

and Ξ be defined by the remaining constraints, which do not depend on
w(i).

∞, all possible trade-offs between the two extremes given
by the solutions to problems

min
Γ,Θ,h

J(Γ,Θ) subject to:

F (Γ,Θ, h,w(1), . . . ,w(N)) ≤ 0

and

min
Γ,Θ,h

h subject to:

F (Γ,Θ, h,w(1), . . . ,w(N)) ≤ 0

can be achieved. This also reveals a substantial equivalence
between the two approaches.

VI. NUMERICAL EXAMPLE

 

Fig. 1. Scheme of the mechanical system.

We consider the mechanical system represented in Figure 1
which is composed of four masses and four springs, [7]. The
state of the system is given by the mass displacements from
the equilibrium position achieved when all inputs are null
and by their derivatives: x = [d1, d2, d3, d4, ḋ1, ḋ2, ḋ3, ḋ4]T .
The control input is u = [u1, u2, u3]T where u1, u2 and u3

are forces acting on the masses as in Figure 1.
We set all masses and stiffness constants equal to 1, i.e.,
m1 = m2 = m3 = m4 = 1 and k1 = k2 = k3 = k4 = 1,
and consider a discrete time model of the system,

xt+1 = Axt +But + wt,

obtained by time discretization of a standard mechanical
model under the assumption that the control action is piece-
wise constant over the intervals [t, t + 1) and neglecting
friction forces. We suppose that the state of the system is
affected by a white Gaussian noise w with zero mean and
variance σ2I8×8, σ = 1.
Our goal is to design a state feedback control policy that is
able to counteract the disturbance w, maintaining the system
mode close to the equilibrium and keeping the springs within
their linear operating domain. This constraint is imposed by
requiring the spring deformations to be small.
To the purpose of regulating the system around the equi-
librium, we consider the average control cost (3) with a
prediction horizon of length M = 5 and constant weight
matrices

Q =

[
I4×4 04×4

04×4 04×4

]
R = 10−6I3×3.

Let C be such that

Cxi =


d1,i

d2,i − d1,i

d3,i − d2,i

d4,i − d3,i

 ,



i.e. Cxi provides the springs deformation at time i. Then, the
state constraints, introduced to limit the springs deformation,
can be expressed as ‖Cx‖∞ ≤ h, where C is defined as in
(5). Eventually, we suppose that the control input is subject
to the saturation limit ‖u‖∞ ≤ ū, where ū = 5.
The control policy is parameterized according to (1) where
ϕ(·) is the saturation function in (2) with ϕ̄ set equal to 2σ.
The initial state is zero, i.e., the system starts at the equilib-
rium point. We focus on the case when constraints on both
the control input and the state are expressed in probability
with an admissible violation ε = 0.1. The resulting chance-
constrained optimization problems are solved through the
scenario approach by setting β = 10−5. Correspondingly, the
number of disturbance realizations to extract is N = 3455.
Note that, since we are imposing a probabilistic bound on
the control input, there may be disturbance realizations such
that the bound on u is violated. In that case, the components
of u whose absolute value exceeds ū are saturated to ±ū
(clipping of the control input) and performance in terms of
the average control cost (3) is estimated via Monte Carlo
simulation.
Both the approaches of Section III (control cost penalization)
and of Section IV (two-step approach) were adopted by solv-
ing scenario programs by means of YALMIP over SeDuMi,
[15]. However according to their equivalence discussed in
Section V-C the two approaches led to the same results and,
hence, Table I reports the results achieved by the control cost
penalization approach only.
From Table I, it is apparent that parameter µ affects the
trade-off between the two objectives, i.e., control cost and
state constraints: for small µ values, the state constraints are
ineffective in practice, whereas for large µ’s, h decreases at
the price of a significant increase of J .
The performance ˆ̄J of the clipped scenario solution
as well as the estimate ε̂ of the actual probability of
constraint violation are estimated through 5000 runs of the
controlled system. It is worth noticing that the estimate
ε̂ is always smaller than ε = 0.1, as it is guaranteed
by the scenario theory with confidence 1 − 10−5. As a
result, the sample estimate ˆ̄J is quite close to the value
J obtained when solving the scenario optimization problem.

TABLE I
APPROACH WITH PENALIZATION OF THE CONTROL COST.

µ J h ˆ̄J ε̂

0 37.29 9.05 37.49 0.0298
0.1 37.31 8.57 37.51 0.0324

1 38.00 7.15 38.15 0.0322
10 43.37 5.78 43.37 0.0520

100 48.94 5.41 48.66 0.0942

If constraints on both state and control input were ignored,
one would get the optimal LQG control policy that is linear
in the state. In the case of clipped LQG control, the estimated
control cost ˆ̄J is 45.79, with a significant degradation with re-
spect to the optimal LQG cost in absence of input constraints

which is 30.76. As for the state constraints the estimate of
the minimum h satisfying P{‖Cx‖∞ ≤ h} ≥ 1 − ε for
the clipped LQG is 9.35. Except for the last row in Table I
the control cost penalization approach outperforms clipped
LQG in terms of value of the control cost, while at the same
time improving over the bound h on the state, since state
constraints are explicitly accounted for in the control design.
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