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Abstract

In this paper, the problem of estimating uncertainty regions for identified models is
considered. A typical approach in this context is to resort to the asymptotic theory
of Prediction Error Methods (PEM) for system identification, by means of which
ellipsoidal uncertainty regions can be constructed for the uncertain parameters.

We show that the uncertainty regions worked out through the asymptotic theory
can be unreliable in certain situations, precisely characterized in the paper.

Then, we critically analyze the theoretical conditions for the validity of the asymp-
totic theory, and prove that the asymptotic theory also applies under new assump-
tions which are less restrictive than the usually required ones. Thanks to this result,
we single out the classes of models among standard ones (ARX, ARMAX, Box Jenk-
ins, etc.) where the asymptotic theory can be safely used in practical applications
to assess the quality of the identified model.
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1 Introduction

Consider a data-generating dynamical system P and a model P̂ of it estimated
from data. It has been fully recognized in the literature that the estimated
model P̂ is of little use without a statement on its quality. In other words, it is
fundamental to characterize the error model, i.e. the distance between P and
P̂ (see e.g [1], [7], [10], [16], [19] and [23]).
The most commonly used tool for evaluating the error model is the asymp-
totic theory of Prediction Error Methods (PEM) for system identification. It
returns ellipsoidal confidence regions in the space of parameters such that the
true system parameters belong to this ellipsoid with a specified probability
(see e.g. [15] and [22]).
The main advantage of using the asymptotic theory is that the confidence
regions can be easily computed from the available data. Moreover, these con-
fidence regions are often reliable and give a tight description of uncertainty.
On the other hand, asymptotic theory has its own drawbacks too.
First, its applicability substantially requires the absence of un-modelled dy-
namics, while in real applications this assumption never applies (even if in
many cases it does approximately). The importance of undermodelling is wit-
nessed by many recent contributions such as [6], [8], [9], [14], [18], [16], [17],
[21] and [24]. In order to overcome the problems encountered when the system
order is unknown, certain formulas valid for both the model order and the
number of data points growing unbounded have been derived, see e.g. [13],
[15], [20], [27].
A second drawback is that the asymptotic theory is rigorously correct only
when the number of data tends to infinity in such a way that the total amount
of information on the system parameters grows unbounded. On the other
hand, in real applications it often happens that the amount of excitation is
substantial for certain parameters while there is a lack of information on other
parameters (poor excitation). As a consequence, the asymptotic theory is used
as a heuristic tool for the model quality evaluation.

In this paper, we focus attention on the problems arising when data are not
informative enough, and one of our aims is to pinpoint the situations where the
asymptotic theory may fail to provide sensible results with poor excitation.
In these situations, the estimated parameters are subject to large uncertainty
levels and the asymptotic theory can as well provide misleading results. This is
quite a severe limitation since assessing the model quality is especially impor-
tant for large uncertainty levels. Indeed, in the opposite case, the estimated
model can be safely used in place of the true system with no particular need
for an evaluation of its uncertainty. This leads to our first contribution:

i) by way of an example, we explain why the asymptotic theory may fail for
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the model quality evaluation in presence of a high level of uncertainty.

We also note that this result is relevant to iterative control schemes where the
closed-loop bandwidth is very restricted at the first iterations leading to poorly
exciting signals and, in turn, to wide uncertainty in the estimated model (see
[2], [5], [11], [25]).

We next move to establish the situations where the asymptotic theory does
not suffer from the problem highlighted in point i) above, and it turns out
that the asymptotic theory provides sensible results or not depending on the
model class in which the data-generating system is identified. Our second con-
tribution can be summarized as follows:

ii) we single out the model classes among standard ones (ARX, ARMAX, Box-
Jenkins, etc.) such that the asymptotic theory can be safely used to assess
model quality, even in presence of a high level of uncertainty.

This latter result is made possible by a new asymptotic result, valid under
relaxed assumptions, also worked out in this paper.

A different approach can be adopted in the analysis of uncertainty in the
estimate by explicitly considering the finiteness of the data record. For some
recent contributions along this line see [3], [4] and [26].

Structure of the paper

In Section 2, our working assumptions are stated and a brief summary of
the classical asymptotic theory is given. This allows us to keep the paper
self-contained. Section 3 delivers the example as explained in point i) above.
After a mid-paper conclusion section (Section 4), Section 5 contains the new
asymptotic result valid under relaxed assumptions. In Section 6, we move to
consider the quality assessment with finite data points and show the relevance
of the theorem in Section 5 to this purpose. Finally, in Section 7 the classes of
models to which the asymptotic theory can be safely applied for model quality
estimation are singled out, while some illustrative simulations are given in
Section 8.

2 Asymptotic theory of Prediction Error Methods

In this section we provide a compendium of the asymptotic theory of Predic-
tion Error Methods for system identification with the objective of clarifying
the context of our results. For a more comprehensive description of the subject,
we refer the reader to the literature (see e.g. [15] and [22]).
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2.1 Mathematical setting

Let

Mϑ =
{
ŷ(t, ϑ) = Wu(z

−1, ϑ)u(t) +Wy(z
−1, ϑ)y(t), ϑ ∈ Θ ⊆ R

n

}
(1)

be a parameterized set of predictor models, where Wu(z
−1, ϑ) and Wy(z

−1, ϑ)
satisfy the following assumption.

Assumption 1 Wu(z
−1, ϑ) and Wy(z

−1, ϑ) are rational strictly proper (as
functions in z) transfer functions whose coefficients are functions of a pa-
rameter ϑ ∈ Θ, where Θ is a nonempty compact set in R

n. The coefficients
are four times differentiable with respect to ϑ and the fourth derivatives are
continuous. Moreover, Wu(z

−1, ϑ) and Wy(z
−1, ϑ) are asymptotically stable,

∀ϑ ∈ Θ.

Remark 1 In the classical asymptotic theory, the coefficients of the transfer
functions Wu(z

−1, ϑ) and Wy(z
−1, ϑ) are usually only required to be twice dif-

ferentiable with continuous second derivatives. Here, the assumption has been
strengthened in view of our further results. It is perhaps worth mentioning
that for standard identification model classes (ARX, ARMAX, Box-Jenkins,
etc.) the coefficients are the parameters themselves, so that the differentiability
assumption is not an issue.

u and y are respectively the input and output of the system, and are generated
according to the following scheme.

Assumption 2 Processes u and y are given by

u(t) =Gu(z
−1)r(t) +Hu(z

−1)e(t) (2)

y(t) =Gy(z
−1)r(t) +Hy(z

−1)e(t), (3)

where Gu(z
−1), Gy(z

−1), Hu(z
−1) and Hy(z

−1) are asymptotically stable ratio-
nal transfer functions. e(t) is a zero mean independent process with constant
variance equal to λ2 > 0 and such that supt E[|e(t)|4+δ] <∞, for some δ > 0.
r(t) is a wide sense stationary, ergodic, stochastic, external input sequence.
e(t) and r(t) are independent.

Remark 2 The results given below can be proved even if r(t) is a bounded
deterministic external input sequence. Considering a stationary, ergodic refer-
ence as in Assumption 2 has been preferred since it simplifies the presentation.

Remark 3 Note that Assumption 2 encompasses closed-loop as well as open-
loop configurations. In the latter, Hu(z

−1) = 0 and Gu(z
−1) = 1.
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We also require that the data-generating system belongs to the class of models
Mϑ, that is:

Assumption 3 There exists a parameter ϑo, which is an interior point of Θ,
such that

y(t) = Wu(z
−1, ϑo)u(t) +Wy(z

−1, ϑo)y(t) + e(t). (4)

Remark 4 When the data-generating system does not belong to the assumed
class of model Mϑ, the system-model mismatch comprises two terms: a vari-
ance term and a bias term. In this case the asymptotic theory applies so as to
only assess the variance term at the price of a more complicated formulation
that accounts for the correlation in the residue due to the bias term. See e.g.
[8] and [9].

Parameter ϑ is estimated by the minimization of the standard quadratic cost:

VN(ϑ) =
1

N

N∑

t=1

ε(t, ϑ)2,

where N is the number of data points and ε(t, ϑ) = y(t) − ŷ(t, ϑ) is the
prediction error.
Thus, the estimate is

ϑ̂N = arg min
ϑ∈Θ

VN(ϑ).

The asymptotic cost criterion is V (ϑ) = E[ε(t, ϑ)2], and we will denote by Θ∗

the corresponding set of minimizers within the feasible set Θ, that is

Θ∗ =
{

arg min
ϑ∈Θ

V (ϑ)
}
.

In the classical asymptotic theory it is assumed that V (ϑ) has a unique mini-
mizer:

Assumption 4 The set Θ∗ has cardinality equal to 1.

Remark 5 Under Assumption 3, it is easy to demonstrate that the parameter
ϑo always belongs to the set Θ∗. Therefore, Assumption 4 can be rewritten as
Θ∗ = {ϑo}.
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2.2 Asymptotic theory results

Let

QN =
1
N

∑N
t=1 ψ(t, ϑ̂N)ψ(t, ϑ̂N)′

1
N

∑N
t=1 ε(t, ϑ̂N)2

,

where ψ(t, ϑ) denote d
dϑ
ε(t, ϑ), and consider the following ellipsoid centered in

ϑ̂N :

E(r) =
{
ϑ : (ϑ̂N − ϑ)′QN(ϑ̂N − ϑ) ≤ r

}
, (5)

where r is a real positive number called the size of the ellipsoid.
The standard result of the asymptotic theory writes as follows:

Theorem 1 Let p ∈ [0, 1) and assume that d2

dϑ2V (ϑo) > 0. Under Assump-
tions 1, 2, 3 and 4, it follows that

lim
N→∞

P

{
ϑo ∈ E

(α(p)

N

)}
= p,

where α(p) is the inverse of the function p =
∫ α
0 fχ2(x)dx and fχ2(x) is the

probability density of a χ2 random variable with n degrees of freedom.

The above theorem suggests how to select r so as to obtain an ellipsoidal
confidence region for ϑo of pre-assigned asymptotic probability p. The proof
of Theorem 1 can be found in Chapter 9 of [15].
The following result is obtained immediately from Theorem 1.

Theorem 2 Assume that d2

dϑ2V (ϑo) > 0. Under Assumptions 1, 2, 3 and 4,
for any sequence αN which tends to ∞ as N → ∞, we have that

lim
N→∞

P

{
ϑo ∈ E

(αN

N

)}
= 1.

Remark 6 As a natural choice for αN , consider αN = α(p)(1+βN), for some
p, with βN → ∞ as N → ∞, that is, the ellipsoid size is inflated by the factor
1+βN with respect to Theorem 1. If βN

N
→ 0, when N → ∞, the ellipsoid size

still tends to zero, though with a slower rate than the ellipsoid of Theorem 1.
Theorem 2 says that, no matter how slow such an inflation takes place, the
true parameter ϑo will asymptotically belong to the ellipsoid with confidence 1.
A good choice of βN is reliant on the specific problem at hand and its value is
dictated by experience.
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In real applications, the asymptotic theory is often used to generate confidence
regions for the system parameters, even if, as is obvious, such a theory applies
only approximately since the evaluation is based on a finite number of data
points. Though it is common experience that the results are still reliable in
many cases even for a moderate data sample, it is also true that in other
situations the asymptotic theory may fail to provide sensible indications, even
for large set of data points.
The goal of the present paper is to give a clearcut view of the situations
in which this actually occurs and to pinpoint the model classes for which
the asymptotic theory can be safely used. We start in the next section with
an example clarifying where the trouble may come from in the use of the
asymptotic theory.

3 An example where the asymptotic theory provides misleading

results with poorly informative data

Consider the following data-generating system:

y(t) =
boz−1

1 + aoz−1
u(t) + (1 + hoz−1)e(t), (6)

where ao = −0.7, bo = 0.3, ho = 0.5 and e(t) ∼ WGN(0, 1) (WGN = White
Gaussian Noise). In addition, the plant is operated in closed loop as shown in
Figure 1. It is a trivial task to verify that the closed loop system is stable.

r u y

e

1+hoz-1

1+aoz-1

boz-1+
-

+ +

Figure 1. The real plant

N = 10000 data points (u, y) have been collected when the system was oper-
ated with a reference signal r(t) = WGN(0, 10−6), independent of e(t) (note
that the variance of the reference signal is very small as compared to the noise
variance - poor excitation). Based on the (u, y) measurements, a full order
model for the data-generating system (6) has been identified and a confidence

region E(α(p)
N

), p = 0.99, has also been estimated through the asymptotic The-
orem 1.
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Figure 2. Amplitude Bode plot of the real plant (- -) and of the estimated model
(—)

The amplitude Bode diagrams of the identified model and of the real system
u to y transfer functions have been plotted in Figure 2.
From the plot, a wide mismatch between the real plant and the identified
model is apparent. This is not surprising, since the reference signal is poorly
exciting. On the other hand, we would also expect that the uncertainty region
supplied by the asymptotic theory is wide.
Figure 3 displays the confidence region E(α(p)

N
) in the frequency domain. Surprisingly,
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Figure 3. Uncertainty region of the estimated model vs. real plant Bode diagram

the confidence region concentrates around the identified model, showing that
the model quality assessment is completely unreliable in this case.
It is perhaps interesting to note that the presented situation – though admit-
tedly artificial – is a simplification of what often happens in practical identifica-
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tion, where poor excitation is due to a restricted bandwidth of the closed-loop
system. The simplified situation of a poorly exciting external signal r(t) has
been adopted here for ease of presentation.

Explanation

Let us briefly explain the mechanism that made the model quality estimation
unreliable in the present situation.
The explanation becomes easier if we assume that the reference signal is ex-
actly equal to zero. For this reason we concentrate for a moment on the case
r(t) = 0 and we return to the case where r(t) has a small variance further
below.
For r(t) = 0, a simple computation shows that:

V (ϑ) =
1

2π

π∫

−π

∣∣∣
1 + hoz−1

1 + hz−1
· 1 + (a+ b)z−1

1 + (ao + bo)z−1
· 1 + aoz−1

1 + az−1

∣∣∣
2

z=ejω
dω, (7)

where ϑ = [a b h]′.
The minimal value of V (ϑ) is 1 and it is easy to see that the minimum is
achieved if and only if every monomial at the numerator is cancelled by another
monomial at the denominator. This happens only in the following two cases:

a∗1 + b∗1 = ao + bo a∗2 + b∗2 = ao + bo

a∗1 = ao a∗2 = ho

h∗1 = ho h∗2 = ao.

Thus, there are just two distinct minima of the asymptotic cost criterion, one
of which corresponds to the true system. Figure 4 represents V (ϑ) along the
line connecting the two minimizers.
Turn now to the case where r(t) is a WGN(0, 10−6), that is, to the actual
situation. Here, the minimizer of the asymptotic cost criterion V (ϑ) is unique,
as the asymptotic theory prescribes, and coincides with ϑo. The other mini-
mum becomes a local minimum. Yet, the difference between the values taken
by V (ϑ) at the two minimizers will be very small.
When identification is performed in practice, the empirical cost VN(ϑ) has to
be used in place of V (ϑ). Since a finite number of data points is available,
VN(ϑ) is only an imprecise replica of V (ϑ) so that the global minimizer of
VN(ϑ) may as well happen to be near the minimizer of V (ϑ) which does not
correspond to the real plant parameter (this is what happened in our simula-
tion results). If so, ϑ̂N gets trapped far from ϑo.
It is important to reassert the fact that such a behavior is a consequence of
the poorness of the available information. In turn, this is primarily due to the

9



1   

1.05 

1.1 

1.15

1.2

ϑ*
2

V(ϑ) 

ϑ*
1
=ϑo 
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poor excitation conveyed by each single data point (since r(t) is very small)
and secondarily to the finiteness of the number of data points (so that the
total amount of information in the data is limited).
In order to explain why the confidence region provided by the asymptotic
theory is not reliable, it is, at this point, necessary to recall an aspect of the
asymptotic theory which is relevant to the present discussion (see [15] and [22]
for details).
Theorems 1 and 2 are both based on the following fundamental expansion:

0 =
√
N

d

dϑ
VN(ϑ̂N) =

√
N

d

dϑ
VN(ϑo) +

d2

dϑ2
VN(ξN)

√
N(ϑ̂N − ϑo). (8)

This equation is nothing but the Taylor expansion of d
dϑ
VN (where all terms

are inflated by the coefficient
√
N and ξN is a point between ϑo and ϑ̂N).

The evaluation of the confidence region for ϑ̂N − ϑo is carried out by observ-
ing that: first,

√
N d

dϑ
VN(ϑo) is asymptotically a zero mean Gaussian random

variable; second, d2

dϑ2VN(ξN) converges to d2

dϑ2V (ϑo), since ϑ̂N → ϑo so that

ξN is squeezed towards ϑo. The quantity d2

dϑ2V (ϑo) is further approximated by
d2

dϑ2VN(ϑ̂N) leading to the asymptotic Theorems 1 and 2.

If ϑ̂N is sufficiently close to ϑo, this last approximation concerning the second
derivative has a negligible effect. However, in the previous example this is not
so, since the estimate ϑ̂N is trapped far from ϑo and this is the reason for the
misleading result as shown in Figure 3.
Let us explain more in detail the mechanism through which such a misleading
result is generated.
Due to the effect of the inflating coefficient

√
N ,

√
N(ϑ̂N − ϑo) takes on quite

a large value. Despite this, equation (8) holds true (equation (8) is always true
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since it contains no approximation). In fact, in (8) d2

dϑ2VN is computed in a

point ξN between ϑo and ϑ̂N where d2

dϑ2VN(ξN) is almost singular, leading to a

term d2

dϑ2VN(ξN)
√
N(ϑ̂N − ϑo) of moderate magnitude. Unfortunately, as ex-

plained before, ξN is not accessible and d2

dϑ2VN(ξN) is substituted by d2

dϑ2VN(ϑ̂N)
which turns out to be well positive definite. This leads to the mistaken con-
clusion that ϑ̂N − ϑo is small and to the unreliable uncertainty region shown
in Figure 3.

Note that a second interpretation of the obtained result is also possible: For
r(t) = 0 the found region is in fact a confidence region around ϑ∗

2, the spurious
minimizer different from ϑo. When r(t) = WGN(0, 10−6) the found confidence
region can be interpreted as a perturbation of the previous one.

4 Mid paper conclusions

The results of the previous sections can be summarized as follows:

i) the classical asymptotic theory requires that the asymptotic cost criterion
has a unique minimizer ϑ∗ = ϑo; moreover if data are poorly informative
so that ϑ̂N is not close enough to ϑ∗ (wide uncertainty), then the result-

ing uncertainty evaluation by means of E(α(p)
N

) can be unreliable, i.e. the
asymptotic theory results do not hold, even approximately;

ii) due to i), a blind application of the asymptotic theory can lead to misleading
results.

In the next sections our goal is to study the situations where the asymptotic
theory provides reliable results, even when ϑ̂N is far from ϑo. To this purpose,
we proceed along the following lines:

iii) we extend the asymptotic theory results so as to encompass the case of
multiple minimizers of the asymptotic cost criterion V (ϑ) (Section 5);

iv) thanks to the result of point iii), we show that – if a suitable additional
condition on the model class is satisfied – then the asymptotic theory can
be safely used even for a high level of uncertainty, namely for ϑ̂N far from ϑo

(Section 6);
v) we establish which standard model classes (ARMAX, Box-Jenkins, etc.)

satisfy the additional condition of point iv) (Section 7).
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5 A new asymptotic result

In this section, we provide a new asymptotic result which generalizes the
standard asymptotic theory of Section 2. The fact that this result is useful
when data are poorly informative is discussed in the next Section 6.
Assumption 4 in Section 2 is here replaced by the following one.

Assumption 4′ Θ∗ = S ∩Θ, where S is an affine subspace of the parameter
space R

n.
Moreover, ϑ̂N → ϑ∗ (not necessary equal to ϑo) almost surely, where ϑ∗ ∈ Θ∗

is an interior point of Θ.

Remark 7 Note that Assumptions 1, 2, 3 and 4′ are more general than As-
sumptions 1, 2, 3 and 4. Indeed, Assumption 4 implies that Θ∗ = {ϑo}, so
that the first part of Assumption 4′ holds with S = {ϑo}, which is an affine
subspace (it is the origin of R

n translated).
As for the second part of Assumption 4′, it holds under Assumptions 1, 2, 3
and 4 with ϑ∗ = ϑo.

Remark 8 In Assumption 4′ the important fact is that Θ∗ is linearly struc-
tured (apart from the fact that it is confined to Θ).

In the following Theorem 3 we show that the asymptotic Theorem 2 can be
preserved in the present setting.

Theorem 3 Assume that d2

dϑ2V (ϑ∗) is positive definite along the directions of
S⊥ (the subspace orthogonal to S). Under Assumptions 1, 2, 3 and 4′, for
any sequence αN which tends to ∞ as N → ∞, we have that (see (5) for the
definition of E(·))

lim
N→∞

P

{
ϑo ∈ E

(αN

N

)}
= 1. (9)

Proof: see the Appendix.

Remark 9 In contrast to Theorems 1 and 2, in Theorem 3 the positive defi-
niteness of d2

dϑ2V (ϑ∗) is only required in the directions of S⊥. In this connection,

one could note that d2

dϑ2V (ϑ∗) is in fact singular in the direction of S due to
Assumption 4′.

Remark 10 Allowing for multiple minimizers of V (ϑ), as is done in Theo-
rem 3, permits to cope with situations where there is a lack of excitation (see
Section 6 for further discussion).

Remark 11 Similarly to Remark 4 we mention here that the results of the
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new asymptotic Theorem 3 can be extended to the case in which the model
class does not contain the true system. Clearly, in full analogy with Remark 4
this allows one to assess the variance term only, so that the ensuing results
are perhaps less interesting than in the full order case. Details are omitted as
a complete discussion of the matter would lead us too far afield.

6 Use of Theorem 3 in practice

As we have seen in Section 3, in certain cases applying the asymptotic formulas
to assess the quality of the identified model can lead to misleading conclusions.
Here, we want to show that, under an additional condition on the model class,
the asymptotic formulas can indeed be safely used for such an evaluation. This
conclusion is possible in the light of the new asymptotic result stated in the
previous section.
Let us go back for a moment to the example of Section 3. There, if r(t) =
0, then V (ϑ) has two global isolated minimizers. When we performed the
identification of the plant, instead of minimizing V (ϑ) we had of course to
resort to its empirical counterpart VN(ϑ); moreover, r(t) was small, but not
equal to 0. Thus, the actual identification optimization setting can be seen as a
perturbed setting with respect to the ideal one where one minimizes V (ϑ) with
r(t) = 0. As we have seen, ϑ̂N can possibly fall near the minimizer of the ideal
setting which does not correspond to the true system. If so, the asymptotic
formulas lead to computing a deceivingly small uncertainty region.
We now introduce the following additional condition on the model class:

Condition 1 Independently of the level of excitation in the signals, the set of
the minimizers of V (ϑ) is an affine subspace.

Remark 12 Condition 1, as is obvious, can be rewritten as For every excita-
tion level of the signals, there exists an affine subspace S such that Θ∗ = S∩Θ.
However, the reader should note that this requirement is different from the first
part of Assumption 4′ where one requires that Θ∗ = S ∩Θ only for Θ∗ arising
in the particular operating condition, i.e. for a fixed level of excitation of the
input signal.

Now, suppose that a model class fulfilling Condition 1 is used. If we are in an
ideal situation with a complete lack of excitation, then V (ϑ) is minimized in
an affine subspace, say S, and Theorem 3 can be applied to this situation. If
instead we are in a real identification setting where we minimize VN(ϑ) and,
possibly, some extra degree of excitation is added to the signals, this real set-
ting can be seen as a perturbed setting of the ideal one. Thus, though ϑ̂N is
far from ϑo, Theorem 3 still holds approximately and formula (9) can be used
for the model quality assessment.
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As it appears, the asymptotic theory can be safely applied with poorly excit-
ing data to the model classes for which the set of minimizers of V (ϑ) is an
affine subspace. Studying these classes is the subject of the next section, while
simulation examples illustrating the result are shown in Section 8.

7 Assessment of the model classes for which V (ϑ) is minimized in

an affine subspace

We treat separately two different situations, namely open-loop identification
and closed-loop identification as these two settings give different results.

7.1 Open-loop identification

By “open-loop identification” we mean that the input signal u(t) and the noise
signal e(t) are independent. Technically speaking, this is equivalent to taking
Hu(z

−1) = 0 and Gu(z
−1) = 1 in Assumption 2.

Theorem 4 Let Mϑ be the Box-Jenkins (BJ) class of predictor models, i.e.

Mϑ =
{
ŷ(t, ϑ) = (1 −H(z−1, ϑ)−1)y(t)

+ H(z−1, ϑ)−1G(z−1, ϑ)u(t), ϑ ∈ Θ
}
,

where G and H are rational transfer functions, H(0, ϑ) = 1, ∀ϑ ∈ Θ, and ϑ
is a vector containing the numerator and denominator polynomial coefficients
of G and H.
Suppose that the identification is performed in open-loop and that Assump-
tions 1, 2 and 3 are satisfied.
Then, Condition 1 holds true.

Proof: see the Appendix.

Theorem 4 can be applied to Output Error (OE) models as well, since OE
is a particular case of BJ. In fact, we remind that the OE predictor model
class is

Mϑ =
{
ŷ(t, ϑ) = G(z−1, ϑ)u(t), ϑ ∈ Θ

}
,

where G is a rational transfer function and ϑ is the vector of the numerator
and denominator polynomial coefficients of G.
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Even though Theorem 4 does not apply directly, a result similar to Theorem 4
holds for ARX and ARMAX models too. In this case,

Mϑ =
{
ŷ(t, ϑ) =

(
1 − A(z−1, ϑ)

C(z−1, ϑ)

)
y(t) +

B(z−1, ϑ)

C(z−1, ϑ)
u(t), ϑ ∈ Θ

}
,

where A, B and C are polynomials in z−1, A and C are monic, and ϑ is
the vector of the coefficients of these polynomials (the ARX case corresponds
to C(z−1, ϑ) = 1). One should note that in the ARX and ARMAX struc-
tures, G(z−1, ϑ) and H(z−1, ϑ) are not freely parameterized as assumed in
Theorem 4. However, the proof of this theorem can be extended with minor
amendments to cover the ARX and ARMAX cases.
It is perhaps worth mentioning that not all model structures satisfy Condi-
tion 1 even in open-loop. An example is given by the model class

A(z−1, ϑ)y(t) = G(z−1, ϑ)u(t) +H(z−1, ϑ)e(t) (10)

which corresponds to the predictor model class

Mϑ =
{
ŷ(t, ϑ) = (1 − A(z−1, ϑ)H(z−1, ϑ)−1)y(t)

+H(z−1, ϑ)−1G(z−1, ϑ)u(t), ϑ ∈ Θ
}
,

where A is a monic polynomial in z−1, G and H are rational transfer functions,
H(0, ϑ) = 1, ∀ϑ ∈ Θ, and ϑ is the vector of the coefficients of A and of the
numerator and denominator polynomial coefficients of G and H. In Section 8
a simulation example involving this class of models is presented.

7.2 Closed-loop identification

Suppose now that the system is operated in closed-loop with a controller R
as in Figure 5.

R Pr u y

e

+

-

Figure 5. Closed loop system
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Theorem 5 Suppose that the identification is performed in closed-loop and
that Assumptions 1, 2 and 3 are satisfied.
Then, Condition 1 holds true for the ARMAX and OE classes of models.

Proof: see the Appendix.

It has to be noted that, when identification is performed in closed-loop, the
Box-Jenkins structure does not meet Condition 1 in general. In fact, the ex-
ample presented in Section 3 was based on a Box-Jenkins model.

8 Simulation examples

8.1 Example - BJ model of Section 3 in open-loop

Consider again the data-generating system described in (6), but suppose now
that the system is operated in open-loop with an input signal u(t) ∼ WGN(0, 10−6),
independent of e(t). A full order model has been identified by means of the
BJ model class with N = 10000. An ellipsoidal confidence region E(αN

N
),

αN = α(p), p = 0.99, has been also estimated.
The identified model is shown in Figure 6. Again, as in Section 3, the model

10
−1

10
0

−60

−40

−20

0

20

40

60

ω

dB

Figure 6. Amplitude Bode plot of the real plant (- -) and of the estimated model
(—)

presents a large mismatch with the true system since the noise-to-signal ratio
is large.
Figure 7 displays E(αN

N
) in the frequency domain.

The uncertainty region is very scattered in this case, and covers the gap be-
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tween the identified model and the true plant. Thus, the estimated uncertainty
is reliable, in agreement with Theorem 4.

10
−1

10
0

−60

−40

−20

0

20

40

60

ω

dB

Figure 7. Uncertainty region of the estimated model

8.2 Example - a model class which does not meet Condition 1 in open-loop

Consider now the following data-generating system:

(1 + aoz−1)y(t) = boz−1u(t) +
1

1 + hoz−1
e(t), (11)

where ao = −0.7, bo = 0.3, ho = 0.5 and e(t) ∼ WGN(0, 1).
We have identified a full order model when the plant is operated in open-loop
with a constant (poorly exciting) input signal u(t) = 1, ∀t, and N = 10000.
An ellipsoidal confidence region E(αN

N
), αN = α(p), p = 0.99, has been also

estimated.
System (11) belongs to the model class (10) and falls outside the realm of
applicability of Theorem 4. The computed uncertainty region is displayed in
Figure 8, showing that the asymptotic theory provides unreliable results. As
a matter of fact it is not difficult to see that Condition 1 is violated in this
case. Indeed, a simple computation shows that:

V (ϑ) = |1 + h|2
∣∣∣

bo

1 + ao
− b

1 + a

∣∣∣
2
+

1

2π

π∫

−π

∣∣∣
1 + hz−1

1 + hoz−1
· 1 + az−1

1 + aoz−1

∣∣∣
2

z=ejω
dω,
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where ϑ = [a b h]′.
The minimal value of V (ϑ) is achieved only in the following two points:

b∗1 = 1 + a∗1 b∗2 = 1 + a∗2

a∗1 = ao a∗2 = ho

h∗1 = ho h∗2 = ao,

and, therefore, Condition 1 does not hold.

10
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−20

−15
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15
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Figure 8. Uncertainty region of the estimated model

9 Concluding remarks

In this paper we have considered the problem of assessing the quality of iden-
tified models in a “Prediction Error” framework. Two main facts have been
pointed out:

- in case of large uncertainty, the confidence regions supplied by the asymp-
totic theory may be unreliable;

- in spite of the presence of large uncertainty, the same confidence regions can
be safely used if an extra condition holds true for the model class used in
the identification procedure.

Moreover, we have provided a classification of the standard model classes
(ARX, ARMAX, Box-Jenkins, etc.) which satisfy the extra condition.

18



The results of this paper can possibly be extended to new directions so as
to cover other settings of interest in system identification. In particular, one
could consider correlation approaches (e.g. instrumental variable methods),
that play an important role in a number of applications.
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10 Appendix: proofs of the results

10.1 Proof of Theorem 3

We need a preliminary result.

Lemma 1 Let ϑ be a minimizer of V (ϑ). Then, under Assumptions 1, 2, 3,
it holds that

ε(t, ϑ) = e(t) almost surely.

Proof

Since ŷ(t, ϑ) depends on data up to time t − 1 only (see Assumption 1),
predictor ŷ(t, ϑ) and e(t) are independent for any ϑ.
Therefore, thanks to Assumption 3, we obtain that

V (ϑ) = E

[(
e(t) + ŷ(t, ϑo) − ŷ(t, ϑ)

)2
]

= E

[
e(t)2

]
+ E

[(
ŷ(t, ϑo) − ŷ(t, ϑ)

)2
]
.

Since ϑ minimizes V (ϑ), the term E

[(
ŷ(t, ϑo) − ŷ(t, ϑ)

)2
]

must be equal to 0

and this implies that ŷ(t, ϑo) − ŷ(t, ϑ) = 0 almost surely.
Finally, ε(t, ϑ) = y(t) − ŷ(t, ϑ) = y(t) − ŷ(t, ϑo) = e(t) almost surely. �

Proof of Theorem 3

Recall that, by the definition (5) of E( · ), the condition

ϑo ∈ E
(αN

N

)
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is equivalent to

(ϑ̂N − ϑo)′QN(ϑ̂N − ϑo) ≤ αN

N
.

As a consequence, the theorem can be proven by showing that

lim
N→∞

N

αN

· (ϑ̂N − ϑo)′QN(ϑ̂N − ϑo) = 0 in probability. (12)

Let d be the dimension of the affine subspace S. Then, let x ∈ R
d [z ∈ R

n−d]
be the first d [the remaining n− d] coordinates of ϑ, that is ϑ = [x′ z′]′. Thus,
ϑ∗ = [(x∗)′ (z∗)′]′, ϑo = [(xo)′ (zo)′]′ and ϑ̂N = [(x̂N)′ (ẑN)′]′.
Without loss of generality we assume that S is parallel to the hyperplane
determined by the x coordinates (this can be always achieved by a rotation of
the axes). See Figure 9 for a graphical representation of the parameter space
when Θ ⊂ R

2 and S is a straight line.
We now prove equation (12).

x

z

N
ϑ̂

∗ϑ oϑ

N
ẑ

o
zz =∗

N
x̂

o
x

∗
x

S

Figure 9. The parameter space

In order to avoid notational cluttering, throughout we omit the t-dependence,
e.g. ψ(ϑ̂N) stands for ψ(t, ϑ̂N). Moreover,

∑
is used for

∑N
t=1.

Since

QN =
1
N

∑
ψ(ϑ̂N)ψ(ϑ̂N)′

1
N

∑
ε(ϑ̂N)2

=

1
N

∑


εx(ϑ̂N)εx(ϑ̂N)′ εx(ϑ̂N)εz(ϑ̂N)′

εz(ϑ̂N)εx(ϑ̂N)′ εz(ϑ̂N)εz(ϑ̂N)′




1
N

∑
ε(ϑ̂N)2

,
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where εx and εz denote the vector of derivatives of ε with respect to x and z

coordinates, we have that

N

αN

· (ϑ̂N − ϑo)′QN(ϑ̂N − ϑo)

=
N

αN · 1
N

∑
ε(ϑ̂N)2

1

N

∑ ((
(x̂N − xo)′εx(ϑ̂N)

)2
+

+2(x̂N − xo)′εx(ϑ̂N)(ẑN − zo)′εz(ϑ̂N) +
(
(ẑN − zo)′εz(ϑ̂N)

)2
)

≤ N

αN · 1
N

∑
ε(ϑ̂N)2

1

N

∑ (
2
(
(x̂N − xo)′εx(ϑ̂N)

)2
+ 2

(
(ẑN − zo)′εz(ϑ̂N)

)2
)

=
N

αN · 1
N

∑
ε(ϑ̂N)2

(
(x̂N − xo)′

2

N

∑
εx(ϑ̂N)εx(ϑ̂N)′(x̂N − xo)

+(ẑN − zo)′
2

N

∑
εz(ϑ̂N)εz(ϑ̂N)′(ẑN − zo)

)
,

where in the second last step we have used the inequality a2 + 2ab + b2 ≤
2a2 + 2b2.
The term 1

N

∑
ε(ϑ̂N)2 converges almost surely to λ2 = E[e(t)2] > 0 (see [15]

and [12]). Thus, all we need to show is that:

N

αN · λ2
(x̂N − xo)′

1

N

∑
εx(ϑ̂N)εx(ϑ̂N)′(x̂N − xo) → 0 in probability, (13)

N

αN · λ2
(ẑN − zo)′

1

N

∑
εz(ϑ̂N)εz(ϑ̂N)′(ẑN − zo) → 0 in probability. (14)

Let us first prove equation (14).
We first consider the term 1

N

∑
εz(ϑ̂N)εz(ϑ̂N)′ and prove that:

1

N

∑
εz(ϑ̂N)εz(ϑ̂N)′ → V zz(x

∗, z∗)

2
almost surely (15)

Note that 1
N

∑
εz(x̂N , ẑN)εz(x̂N , ẑN)′ → E[εz(x

∗, z∗)εz(x
∗, z∗)′] almost surely,

as it follows from Assumptions 1, 2, 3 and 4′ (in fact, this result is a conse-
quence of the uniform convergence of empirical means for linear predictors –
see [12] and Theorem 2B.1 in [15]). Thus, all we need to prove is:

V zz(x
∗, z∗) = 2E[εz(x

∗, z∗)εz(x
∗, z∗)′]. (16)

We have that

d2

dϑ2
V (ϑ∗) = E[2ψ(ϑ∗)ψ(ϑ∗)′] + E[2ε(ϑ∗)

d

dϑ
ψ(ϑ∗)].
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Lemma 1 says that ε(t, ϑ∗) = e(t), which in turn gives (ψ depends on past
data only)

E

[
2ε(ϑ∗)

d

dϑ
ψ(ϑ∗)

]
= 2E[e(t)]E

[ d

dϑ
ψ(ϑ∗)

]
= 0.

Thus, d2

dϑ2V (ϑ∗) = 2E[ψ(ϑ∗)ψ(ϑ∗)′], and, by specializing this latter expression
to the z component, we obtain equation (16) which implies equation (15) as
we have shown before.
Turn now to consider the term

√
N(ẑN − zo) and note that it is equal to√

N(ẑN − z∗) (in fact zo = z∗).
We show that:

√
N(ẑN − z∗) ∼ asG

(
0, 2λ2V zz(x

∗, z∗)−1
)
. (17)

As a matter of fact, consider the following Taylor expansion (which holds
almost surely thanks to the differentiability properties of transfer function
coefficients in Assumption 1):

0 =
√
N ∂

∂z
VN(x̂N , ẑN)

=
√
N ∂

∂z
VN(x̂N , z

∗) + ∂2

∂z2VN(x̂N , ξN)
√
N(ẑN − z∗),

(18)

where ξN is a point between ẑN and z∗ and the first equality follows from the
fact that ϑ̂N = [(x̂N)′ (ẑN)′]′ is a minimizer of VN .
Then, we can follow the same rationale as in [15], chapter 9, to conclude that:

-
√
N ∂

∂z
VN(x̂N , z

∗) ∼ asG
(
0, 2λ2V zz(x

∗, z∗)
)

(this results follows along the

same lines as Theorem 9.1 in [15])
- ∂2

∂z2VN(x̂N , ξN) → V zz(x
∗, z∗) almost surely (again, this result follows from

Theorem 2B.1 in [15]).

These two facts imply (17) (see [15], chapter 9, for details).
Equation (14) now follows from (17) and (15). Indeed, the left hand side of (14)
can be rewritten as (note that z∗ = zo)

[ 1

αN

][√
N(ẑN − z∗)′

1
N

∑
εz(ϑ̂N)εz(ϑ̂N)′

λ2

√
N(ẑN − z∗)

]
(19)

where the first term goes to zero (recall that αN → ∞) and the second one
converges to a χ2 distributed random variable.
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We next prove equation (13).
Note that the proof of (13) is substantially different from the one of (14) since
xo 6= x∗ and, in contrast to ẑN − zo, x̂N − xo does not tend to zero.
We commence by observing that, since V (x, z∗) has a constant value in the x
direction – recall that {[x′ (z∗)′]′, x : [x′ (z∗)′]′ ∈ Θ} is the set of minimizers
of V (ϑ) – it holds that V xx(x, z

∗) = 0, ∀x : [x′ (z∗)′]′ is an interior point of Θ,
and, in particular, V xx(x

∗, z∗) = 0. On the other hand, proceeding as for (15),
it can be proved that 1

N

∑
εx(x̂N , ẑN)εx(x̂N , ẑN)′ → 1

2
V xx(x

∗, z∗) almost surely,
and, thus,

1

N

∑
εx(x̂N , ẑN)εx(x̂N , ẑN)′ → 0 almost surely

This last equation suggests that equation (13) can be proved by characterizing
the rate of convergence to 0 of 1

N

∑
εx(x̂N , ẑN)εx(x̂N , ẑN)′.

Consider the following Taylor expansion:

(
(x̂N − xo)′εx(x̂N , ẑN)

)2

=
(
(x̂N − xo)′εx(x̂N , z

∗)
)2

+ (ẑN − z∗)′
∂

∂z

(
(x̂N − xo)′εx(x̂N , z)

)2∣∣∣
z=z∗

+(ẑN − z∗)′
∂2

∂z2

(
(x̂N − xo)′εx(x̂N , z)

)2∣∣∣
z=ζN

(ẑN − z∗), (20)

where ζN is a point on the segment connecting ẑN and z∗. Derivatives are well
defined almost surely thanks to the four times differentiability of the transfer
functions coefficients, as required in Assumption 1.
We want to show that the first and second terms in the right hand side of (20)
are null so that (20) reduces to

(
(x̂N − xo)′εx(x̂N , ẑN)

)2
= (ẑN − z∗)′

∂2

∂z2

(
(x̂N − xo)′εx(x̂N , z)

)2∣∣∣
z=ζN

(ẑN − z∗).(21)

To prove (21), let us start by observing that, similarly to equation (16),

it can be proved that V xx(x, z
∗) = 2E

[
εx(x, z

∗)εx(x, z
∗)′

]
, ∀x : [x′ (z∗)′]′

is an interior point of Θ (name X∗ such a set of points x). Recalling that

V xx(x, z
∗) = 0, ∀x ∈ X∗, we then have E

[
εx(x, z

∗)εx(x, z
∗)′

]
= 0, or equiva-

lently E

[
‖εx(x, z

∗)‖
]

= 0, ∀x ∈ X∗.

Now, from the latter expression we obtain 0 =
∫
X∗ E

[
‖εx(x, z

∗)‖
]
dx = E

[ ∫
X∗ ‖εx(x, z

∗)‖dx
]
,

(the last equality is an application of Fubini’s theorem), which entails

∫

X∗

‖εx(x, z
∗)‖dx = 0, almost surely. (22)
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Since ‖εx(x, z
∗)‖ is an almost surely continuous function in x, this finally

implies that the following relation holds true almost surely:

εx(x, z
∗) = 0, ∀x ∈ X∗ (23)

(indeed if εx(x, z
∗) 6= 0 for some x ∈ X∗, by continuity

∫
X∗ ‖εx(x, z

∗)‖dx 6= 0
which can happen on a zero probability set only – see (22)).
By specializing (23) to x = x̂N , we have εx(x̂N , z

∗) = 0 almost surely, showing
that the first term in the right hand side of (20) is null. The fact that the
second term is null too follows by observing that

∂

∂z

(
(x̂N − xo)′εx(x̂N , z)

)2∣∣∣
z=z∗

= 2
(
(x̂N − xo)′εx(x̂N , z

∗)
)[
εzx(x̂N , z

∗)(x̂N − xo)
]
.

This proves (21).
Now, the left hand side of (13) can be rewritten as:

N

αN · λ2

1

N

∑ (
(x̂N − xo)′εx(ϑ̂N)

)2
,

which, using (21), is equal to

[ 1

αN

][√
N(ẑN − z∗)′

1
N

∑ ∂2

∂z2

(
(x̂N − xo)′εx(x̂N , z)

)2∣∣∣
z=ζN

λ2

√
N(ẑN − z∗)

]
. (24)

The convergence to zero in probability of (24) now follows similarly to the
convergence to zero in probability of (19). As a matter of fact, the only dif-
ference between (24) and (19) stays in their kernel, where the kernel of (19)
1

N

∑
εz(ϑ̂N )εz(ϑ̂N )′

λ2 tends almost surely to the positive definite matrix V zz(x∗,z∗)
2λ2

while the kernel of (24) converges to 2
λ2 E[εzx(x

∗, z∗)(x∗−xo)(x∗−xo)′εxz(x
∗, z∗)]

almost surely, as it follows from Theorem 2B.1 in [15].
This concludes the proof. �

10.2 Proof of Theorem 4

The asymptotic cost criterion can be rewritten through Parseval identity as

V (ϑ) =
1

2π

π∫

−π

|G(e−jω, ϑ) − G(e−jω, ϑo)|2
|H(e−jω, ϑ)|2 Fu(dω) +

1

2π

π∫

−π

|H(e−jω, ϑo)|2
|H(e−jω, ϑ)|2 λ2 dω,
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where Fu is the spectral measure of u(t).
Let ϑ∗ be a minimizer of V (ϑ). Since also ϑo minimizes V (ϑ), we have that

V (ϑ∗) = V (ϑo) = λ2.

Thus,

1

2π

π∫

−π

|G(e−jω, ϑ∗) −G(e−jω, ϑo)|2
|H(e−jω, ϑ∗)|2 Fu(dω) = 0, (25)

and

1

2π

π∫

−π

|H(e−jω, ϑo)|2
|H(e−jω, ϑ∗)|2λ

2 dω = λ2. (26)

Equation (26) implies that

H(e−jω, ϑ∗) = H(e−jω, ϑo), ∀ω ∈ [0, π]. (27)

On the other hand, from equation (25) it follows that G(e−jω, ϑ∗) must be
equal to G(e−jω, ϑo) at every frequency where u(t) is exciting. That is

G(e−jω, ϑ∗) = G(e−jω, ϑo),

∀ω : Fu(A) > 0, for any open A containing ω. (28)

Now, letting H(e−jω, ϑ) = NH(e−jω ,ϑ)
DH(e−jω ,ϑ)

and G(e−jω, ϑ) = NG(e−jω ,ϑ)
DG(e−jω ,ϑ)

, equations

(27) and (28) can be rewritten as

NH(e−jω, ϑ∗)DH(e−jω, ϑo) = DH(e−jω, ϑ∗)NH(e−jω, ϑo), ∀ω ∈ [0, π], (29)

and

NG(e−jω, ϑ∗)DG(e−jω, ϑo) = DG(e−jω, ϑ∗)NG(e−jω, ϑo),

∀ω : Fu(A) > 0, for any open A containing ω. (30)

For any fixed ω, these equations are linear in ϑ∗, so defining an affine subspace.
Since the intersection of affine subspaces is an affine subspace, the set of ϑ∗

satisfying equations (29) and (30) is still an affine subspace. This concludes
the proof. �
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10.3 Proof of Theorems 5

Let us consider the ARMAX case first.
Define:
Go(z−1) = Bo(z−1)

Ao(z−1)
, Ho(z−1) = Co(z−1)

Ao(z−1)
, G(z−1, ϑ) = B(z−1,ϑ)

A(z−1,ϑ)
and H(z−1, ϑ) =

C(z−1,ϑ)
A(z−1,ϑ)

, where Ao(z−1), Bo(z−1) and Co(z−1) stand for A(z−1, ϑo), B(z−1, ϑo)

and C(z−1, ϑo), respectively.
Similarly to the proof of Theorem 4, the asymptotic cost criterion can be
rewritten through Parseval identity as

V (ϑ) =
1

2π

π∫

−π

|G(e−jω, ϑ) −Go(e−jω)|2
|1 +R(e−jω)Go(e−jω)|2 · |R(e−jω)|2

|H(e−jω, ϑ)|2Fr(dω) +

+
1

2π

π∫

−π

|Ho(e−jω)|2
|H(e−jω, ϑ)|2 · |1 +R(e−jω)G(e−jω, ϑ)|2

|1 +R(e−jω)Go(e−jω)|2 λ
2dω,

where Fr is the spectral measure of r(t).
Now, following the same rationale as in the proof of Theorem 4, we obtain
that ϑ∗ is a minimizer of V (ϑ) if and only if

G(e−jω, ϑ∗) −Go(e−jω) = 0,

∀ω : Fr(A) > 0, for any open A containing ω (31)

and

Ho(e−jω)

H(e−jω, ϑ∗)
· 1 +R(e−jω)G(e−jω, ϑ∗)

1 +R(e−jω)Go(e−jω)
= 1, ∀ω ∈ [0, π]. (32)

Then, by the definition of G, Go, H and Ho we have that (the dependencies
on ϑ and e−jω have been omitted to ease the notation)

G−Go =
B

A
− Bo

Ao
,

and

Ho

H
· 1 +RG

1 +RGo
=
CoA

AoC
· DRA+NRB

DRA
· DRA

o

DRAo +NRBo
=
Co

C
· DRA+NRB

DRAo +NRBo
,

where NR and DR are, respectively, the numerator and the denominator of R.
As a consequence, equations (31) and (32) can be rewritten as
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B(e−jω, ϑ∗)Ao(e−jω) = Bo(e−jω)A(e−jω, ϑ∗),

∀ω : Fr(A) > 0, for any open A containing ω, (33)

and

Co(e−jω)
(
DR(e−jω)A(e−jω, ϑ∗) +NR(e−jω)B(e−jω, ϑ∗)

)

=C(e−jω, ϑ∗)
(
DR(e−jω)Ao(e−jω) +NR(e−jω)Bo(e−jω)

)
∀ω ∈ [0, π]. (34)

As in Theorem 4, for any fixed ω these equations are linear in ϑ∗ and, there-
fore, the set of ϑ∗ satisfying equations (33) and (34) is an affine subspace.

The same proof applies also for OE models considering G(z−1, ϑ) = B(z−1,ϑ)
A(z−1,ϑ)

,

Go(z−1) = Bo(z−1)
Ao(z−1)

and Ho(z−1) = H(z−1, ϑ) = 1 in this case. �
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