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Abstract

In this paper the problem of computing uncertainty regions for models identified
through an Instrumental Variable technique is considered. Recently, it has been
pointed out that, in certain operating conditions, the asymptotic theory of system
identification (the most widely used method for model quality assessment) may
deliver unreliable confidence regions. The aim of this paper is to show that, in an
Instrumental Variable setting, the asymptotic theory exhibits a certain “robustness”
that makes it reliable even with a moderate number of data samples. Reasons for this
are highlighted in the paper through a theoretical analysis and simulation examples.
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1 Introduction

Model quality assessment is an important (and also challenging) problem in
system identification. In fact, it has been widely recognized that an identified
model is of little use in practical applications if an estimate of its reliability
is not provided together with the model itself. In other words, if S is the
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data-generating system and Ŝ is the identified model, it is fundamental to
characterize the system-model mismatch, i.e. the distance between S and Ŝ
(see [11], [9], [5] and [1]).
One of the best-known tools for model quality assessment is the asymptotic
theory of system identification ([10] and [13]). The asymptotic theory works in
a probabilistic framework and returns asymptotic ellipsoidal confidence regions
for S – namely, regions in the parameter space to which the data-generating
system parameter belongs with a pre-assigned probability when the number
of data grows unbounded.
In real applications, the major drawback with the use of the asymptotic the-
ory is that only a finite number of data points is available. Consequently, the
asymptotic theory applies only approximately, and it is a common experience
that it returns sensible results in many cases, but not always. As a matter
of fact, it has been recently shown that – in condition of poor excitation and
depending on the underlying identification setting – the ellipsoid obtained
through the asymptotic theory may even be completely unreliable (see [3] and
[6]).
This limitation of the asymptotic theory is quite severe because lack of excita-
tion is common in many applications, particularly when the identification has
to be performed in closed-loop with restricted bandwidth. This happens, for
example, at the first iterations of iterative controller design schemes (see [2],
[4], [7], [8] and [14]). Moreover, at a more general level, one can argue that the
model quality assessment is even more important when the system is poorly
excited as this means that the system-model mismatch is significant.

Our previous contribution [6] focuses on Prediction Error Minimization (PEM)
identification techniques and shows the problems which may arise if the model
structure is not appropriately selected relative to the identification setup.
Herein we consider the Instrumental Variable (IV) identification methods and
we investigate the applicability of the asymptotic theory for the assessment of
the model quality in situations where poor information may occur. The good
news conveyed by this paper is that in IV settings the asymptotic theory ex-
hibits a “robustness” property so that it can be safely used in real applications
even in case of poor excitation and for moderate data sample. The reasons for
such a “robustness” are highlighted through theoretical arguments.

Structure of the paper

In Section 2 the IV identification setting is presented and a brief summary
of the standard asymptotic theory is given. Moreover, the problems that may
arise when using the asymptotic theory in presence of poor excitation are
pointed out. Section 3 delivers a new asymptotic result, also valid in “singular”
conditions, precisely defined in Section 3. This result makes it possible to show
in Section 4 that the asymptotic theory for IV methods can be safely used even
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when data are poorly exciting. Some simulation results are given in Section 5.

2 Model quality assessment for IV identification

2.1 Mathematical setting

Throughout the paper we suppose that the data are generated by the following
dynamical system, which is assumed to be asymptotically stable:

y(t) = ϕ(t)′ϑo + v(t), (1)

where

ϕ(t) = [y(t − 1) . . . y(t − na) u(t − 1) . . . u(t − nb)]
′

is the n-vector (n = na + nb) of observations and

ϑo = [−ao
1 . . . − ao

na
bo
1 . . . bo

nb
]′

is the true system parameter vector, supposed to be an interior point of an
a-priori known compact set Θ.
We will also write system (1) in the operational form

A(z−1)y(t) = B(z−1)u(t) + v(t),

where

A(z−1) = 1 + ao
1z

−1 + . . . + ao
na

z−na ,

B(z−1) = bo
1z

−1 + . . . + bo
nb

z−nb ,

and z−1 is the unit-time delay operator.
The input u(t) and the residual process v(t) are generated according to the
following scheme which encompasses closed-loop as well as open-loop config-
urations:

u(t) = G(z−1)r(t) + H(z−1)e(t)

v(t) = V (z−1)e(t),
(2)

where G(z−1), H(z−1), V (z−1), r(t) and e(t) satisfy the following assumption.
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Assumption 1 The transfer functions G(z−1), H(z−1) and V (z−1) are ra-
tional, proper and asymptotically stable. In addition, V (z−1) has no zeroes on
the unit circle in the complex plane. e(t) is a sequence of independent zero
mean random variables with variance λ2 > 0 and such that E[|e(t)|4+δ] < ∞,
for some δ > 0. r(t) is a wide sense stationary, stochastic, ergodic, external
input sequence. r(t) and e(t) are independent. 2

Remark 1 For subsequent use we note that both u(t) and y(t) can be seen
as the sum of two independent processes, one depending on r(t) and the other
one depending on e(t). That is, u(t) = ur(t) + ue(t) and y(t) = yr(t) + ye(t),
where

ur(t) = G(z−1)r(t), ue(t) = H(z−1)e(t),

yr(t) =
B(z−1)

A(z−1)
G(z−1)r(t), ye(t) =

B(z−1)

A(z−1)
H(z−1)e(t) +

1

A(z−1)
V (z−1)e(t).2

According to the IV technique ([10], [13] and [12]) the estimate ϑ̂N of ϑo is
computed as:

ϑ̂N = solϑ∈Θ

{
1

N

N∑

t=1

ζ(t)ϕ(t)′ϑ =
1

N

N∑

t=1

ζ(t)y(t)
}
, (3)

where N is the number of data points and ζ(t), the so called instrumental
variable, is a n-dimensional, stationary, stochastic process, uncorrelated with
the residual process v(t) and correlated with the observation vector ϕ(t).
Throughout the paper we assume that ζ(t) is chosen as follows:

Assumption 2 ζ(t) = ϕr(t), where ϕr(t) is defined as:

[yr(t − 1) . . . yr(t − na) ur(t − 1) . . . ur(t − nb)]
′.

In other words, the instrumental vector ζ(t) is the part of the observation
vector depending on the external input sequence r(t). 2

Remark 2 The choice ζ(t) = ϕr(t) is optimal in that it minimizes the estima-
tion error variance (see [12]). In practice, the typical way of generating ϕr(t)
is to first identify an initial model (through some identification method) and
then by operating this model with the only signal r(t) active. This procedure
can be refined in an iterative way. 2

Let Θ∗ be the set of solutions to equation

E[ζ(t)ϕ(t)′]ϑ = E[ζ(t)y(t)]. (4)
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It can be proved (see [10], [12] and [13]) that, in the present setting, the
distance between ϑ̂N and Θ∗ ∩ Θ tends to zero, as N → ∞.
Moreover, thanks to Assumption 2 and equation (1), equation (4) can be
rewritten as

E[ϕr(t)ϕ(t)′]ϑ = E[ϕr(t)ϕ(t)′]ϑo + E[ϕr(t)v(t)],

and, since ϕ(t) = ϕr(t)+ϕe(t) and r(t) is independent of e(t), the last equation
is equivalent to

E[ϕr(t)ϕr(t)
′](ϑ − ϑo) = 0. (5)

It follows that the cardinality of Θ∗ depends on the rank of the matrix
E[ϕr(t)ϕr(t)

′] and that ϑo always belongs to Θ∗. Thus, if E[ϕr(t)ϕr(t)
′] is

nonsingular, then Θ∗ is the singleton {ϑo} and ϑ̂N → ϑo as N → ∞.

2.2 Asymptotic theory

We turn now to the problem of evaluating the accuracy of a model estimated
through the IV method. The asymptotic Theorem 1 below can be trivially
obtained from the general results presented in [10], [12] and [13]. Before stating
the theorem some preliminaries are in order.
Suppose that E[ϕr(t)ϕr(t)

′] is nonsingular. Then, let

Qα = λ2
E

[
ϕα

r (t)ϕα
r (t)′

]
, (6)

where ϕα
r (t) =

∑∞
i=0 αiϕr(t − i) and αi are the Markov coefficients of V (z−1),

viz. V (z−1) =
∑∞

i=0 αiz
−i. In other words, ϕα

r (t) is the observation vector ϕ(t)
filtered through V (z−1).
Further, let

Pα = E

[
ϕr(t)ϕr(t)

′
]−1 · Qα · E

[
ϕr(t)ϕr(t)

′
]−1

(7)

and consider the following ellipsoid centered in ϑ̂N and intersected with Θ:

Eα(r) =
{
ϑ ∈ Θ : (ϑ̂N − ϑ)′P−1

α (ϑ̂N − ϑ) ≤ r
}
, (8)

where r, the so-called “size” of the ellipsoid, is a real positive number.

Remark 3 It is perhaps worth mentioning that assuming that V (z−1) has no
zeroes on the unit circle (Assumption 1) serves the purpose of guaranteeing
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that the definition of Eα(r) is well posed, i.e Pα is invertible. See Appendix A.1
for details. 2

The following theorem suggests how to select r so that Eα(r) is an ellipsoidal
confidence region for ϑo of pre-assigned asymptotic probability.

Theorem 1 Under the assumptions in this section, we have that

lim
N→∞

P

{
ϑo ∈ Eα

(ρ(p)

N

)}
= p,

where ρ(p) is the inverse of the function p =
∫ ρ
0 fχ2(x)dx and fχ2(x) is the

probability density of a χ2 random variable with n degrees of freedom. 2

In the practical computation of Eα(r), Qα and Pα cannot be exactly computed
for the following two reasons

i. The Markov coefficients αi’s and the noise variance λ2 are not known.
ii. The expectations cannot be exactly evaluated.

As for ii, the common way to proceed is to replace E with 1/N
∑

i.e. to resort
to the sample counterparts of the expectations. This is asymptotically correct
since 1/N

∑ → E almost surely as N → ∞.
Point i plays a significant role in the analysis to come and is therefore discussed
separately in the subsequent Section 2.3.

2.3 Discussion on the practical use of the asymptotic theory

The exact computation of Eα

(
ρ(p)
N

)
requires the knowledge of λ2 and V (z−1)

(see equations (6)–(8)). However, both these quantities are unknown in prac-
tice and have to be identified from data.
To estimate λ2 and V (z−1), a common choice is to identify an ARMA model
describing the residual error ε(t, ϑ̂N) = y(t) − ϕ(t)′ϑ̂N . This is motivated by
the fact that ε(t, ϑ̂N) → v(t) = V (z−1)e(t) as N → ∞, since, under the as-
sumption of Theorem 1, ϑ̂N → ϑo.
In a practical application, the number of data points is finite so that ϑ̂N 6= ϑo

and λ2 and V (z−1) cannot be identified exactly. However, when ϕr(t) is well
exciting (and therefore E[ϕr(t)ϕr(t)

′] is positive definite with all the eigenval-
ues away from zero) we have ϑ̂N ≈ ϑo and the introduced approximation is
small.
Consider now the situation of poorly exciting inputs, so that matrix E[ϕr(t)ϕr(t)

′]
has some eigenvalues close to zero. As long as E[ϕr(t)ϕr(t)

′] is not exactly
singular, it is still true that the estimate ϑ̂N converges to the true system
parameter ϑo as N → ∞. However, such a convergence takes place with a
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very slow rate and it may happen that ϑ̂N is far from ϑo even for a large N .
In this case it is no longer true that ε(t, ϑ̂N) approximates v(t), so that λ2 and
V (z−1) cannot be identified with a good accuracy.
Thus, one could think that, in case of poor excitation, the asymptotic theory
may lead to erroneous results. One of the main scopes of this paper is to prove
that this is not so and the asymptotic theory can still be safely applied.
To this aim, we first develop in the next section a new asymptotic theory
valid for the singular case (lack of excitation) and, then, we show in Section 4
that, in the light of this new theory, the asymptotic results maintain their
applicability in case of poor excitation.

3 Asymptotic theory for the singular case

Let us assume now that det E[ϕr(t)ϕr(t)
′] = 0, i.e. we are in the singular case.

The aim of this section is to show that a result similar to Theorem 1 still holds
true.
As it has been already noted in Section 2.1, if matrix E[ϕr(t)ϕr(t)

′] is singu-
lar, then the set of asymptotic estimates Θ∗ is not a singleton, but it is an
affine subspace whose dimensionality d is equal to the dimension of the ker-
nel of E[ϕr(t)ϕr(t)

′] (see equation (5)). Refer the parameter space to a basis
having the first d components parallel to Θ∗, and the remaining n− d compo-
nents orthogonal to Θ∗. Let x be the first d coordinates in this basis, whereas
z are the remaining n − d coordinates (see Figure 1 for a graphical repre-
sentation in a bi-dimensional space). Thus, [(xo)′ (zo)′]′ and [(x̂N)′ (ẑN)′]′

N

ˆ

o

N
x̂

x

o
x

zz
o

N
ẑ

z

x

Figure 1. The parameter space

represent ϑo and ϑ̂N , respectively. Furthermore, in such coordinates, we have
that Θ∗ = {[x′ z′]′ : z = zo}.
In the present singular setting, matrix 1

N

∑
ζ(t)ϕ(t)′ = 1

N

∑
ϕr(t)ϕ(t)′ in equa-

tion (3) is singular itself, leaving a degree of freedom in the choice of ϑ̂N . In
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the sequel we assume that ϑ̂N is fixed by a suitable deterministic tie-break rule
such that ϑ̂N tends almost surely to a limit estimate ϑ∗ = [(x∗)′ (z∗)′]′, where
ϑ∗ is an interior point of Θ. As an example, if Θ is a sphere, as a tie-break rule
one can take the ϑ̂N with smaller distance from the sphere center. Note that,
though ϑ∗ ∈ Θ∗ (and, therefore, z∗ = zo), ϑ∗ 6= ϑo in general since x∗ 6= xo.
We turn now our attention to the problem of model quality assessment. We
concentrate on characterizing how ẑN converges to zo (Theorem 2 below). In
contrast, the difference x̂N − xo does not go to zero as x̂N → x∗ 6= xo so
that x̂N −xo tends to a deterministic number that depends on the introduced
tie-break rule.
We need a simple preliminary lemma. Let ϕx

r (t) be the projection of ϕr(t)
along the x axis, and ϕz

r(t) the projection along the z axis. We have:

Lemma 1 ϕx
r (t) = 0 almost surely, while E[ϕz

r(t)ϕ
z
r(t)

′] is nonsingular. More-
over, ε(t, ϑ∗) = y(t) − ϕ(t)ϑ∗ only depends on e(t) and can be written as∑∞

i=0 βie(t − i), for suitable βi’s. 2

Proof: see Appendix A.2. 2

Now, let

Qz
β = λ2

E

[ ∞∑

i=0

βiϕ
z
r(t − i)

∞∑

j=0

βjϕ
z
r(t − j)′

]
,

and

P z
β = E

[
ϕz

r(t)ϕ
z
r(t)

′
]−1 · Qz

β · E
[
ϕz

r(t)ϕ
z
r(t)

′
]−1

.

Furthermore, consider the following ellipsoid centered in ẑN :

Ez
β(r) =

{
z ∈ Θz : (ẑN − z)′(P z

β )−1(ẑN − z) ≤ r
}
,

where Θz is the point-wise projection of Θ onto the z axis and r is again the
size of the ellipsoid and is a real positive number.

Remark 4 E

[
ϕz

r(t)ϕ
z
r(t)

′
]−1

exists in view of Lemma 1. Instead, similarly to

Qα in Remark 3, invertibility of Qz
β requires that

∑∞
i=0 βiz

−i has no zeroes on
the unit circle. Such condition is assumed here for granted.

The following theorem suggests how to select r so that Ez
β(r) is an ellipsoidal

confidence region for zo of pre-assigned asymptotic probability.
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Theorem 2 We have that

lim
N→∞

P

{
zo ∈ Ez

β

(ρ(p)

N

)}
= p,

where ρ(p) is the inverse of the function p =
∫ ρ
0 fχ2(x)dx and fχ2(x) is the

probability density of a χ2 random variable with n − d degrees of freedom. 2

Proof: see Appendix A.3. 2

Note that βi 6= αi in general. Thus, if one uses the Markov coefficients αi’s
of V (z−1) when computing Ez

β , the resulting ellipsoid fails to represent a con-
fidence region with the pre-assigned level of confidence. What is remarkable
in Theorem 2 is that, in order to compute a correct ellipsoid, one has to use
alternative coefficients βi’s and these coefficients can in fact be estimated from
the residual error ε(t, ϑ̂N) since ϑ̂N → ϑ∗ and ε(t, ϑ∗) =

∑∞
i=0 βie(t − i) (see

Lemma 1).

Remark 5 It is worth mentioning that Theorem 2 is a generalization of The-
orem 1. As a matter of fact, in the nonsingular case, d = 0 so that z = ϑ and
the statement of Theorem 2 reduces to that of Theorem 1. 2

In view of the result of Theorem 2, it is possible to determine a confidence
region for ϑo (and not only for zo).
Since the difference between x̂N and xo remains unpredictable (x̂N tends to
x∗ and not to xo), the natural choice is to consider the degenerate ellipsoid

DEβ

(ρ(p)

N

)
=

{
ϑ = [x z]′ ∈ Θ : (ẑN − z)′(P z

β )−1(ẑN − z) ≤ ρ(p)

N

}
,

which is nothing but the ellipsoid Ez
β

(
ρ(p)
N

)
extended along the x direction and

intersected with Θ.
Then, as a direct consequence of Theorem 2, we have the following theorem
saying that DEβ

(
ρ(p)
N

)
is an asymptotic p-confidence region for ϑo.

Theorem 3 We have that

lim
N→∞

P

{
ϑo ∈ DEβ

(ρ(p)

N

)}
= p,

where ρ(p) is the inverse of the function p =
∫ ρ
0 fχ2(x)dx and fχ2(x) is the

probability density of a χ2 random variable with n − d degrees of freedom. 2
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4 Use of the new asymptotic results in practice

Consider an identification problem with a finite number, say N , of data points.
We recall in the following the standard way the asymptotic theory is used in
practice. Then, we show that this way of proceeding is valid not only in the
case of full excitation (ϑ̂N ≈ ϑo) but also in poor excitation conditions (ϑ̂N

far from ϑo). In other words, the standard procedure is robust, as it will be
seen thanks to the new asymptotic theory developed in the previous section.

The standard procedure can be outlined as follows. After estimating ϑ̂N ,
compute the associated prediction error ε(t, ϑ̂N) and then estimate a model∑∞

i=1 γie(t − i) describing such a prediction error in term of the white noise
e(t), and estimate the variance of e(t) (let λ̂2 denote such an estimate). Here,
γi’s are the coefficients estimated from data and, depending on the context
in the discussion to follow, they represent either an estimate of the αi’s (see
equation (6)) or an estimate of the βi’s (see Lemma 1). Then, for a given con-

fidence probability p, we compute the ellipsoid Êγ

(
ρ(p)
N

)
along the line traced

in Section 2, namely,

Êγ

(ρ(p)

N

)
=

{
ϑ : (ϑ̂N − ϑ)′P̂−1

γ (ϑ̂N − ϑ) ≤ ρ(p)

N

}
, (9)

where

P̂γ =
( 1

N

N∑

t=1

ϕr(t)ϕr(t)
′
)−1 · λ̂2

N

N∑

t=1

ϕγ
r (t)ϕ

γ
r (t)

′ ·
( 1

N

N∑

t=1

ϕr(t)ϕr(t)
′
)−1

,

ϕγ
r (t) =

∑∞
i=0 γiϕr(t− i) and ρ(p) is such that p =

∫ ρ(p)
0 fχ2(x)dx where fχ2(x)

is the probability density of a χ2 random variable with n degrees of freedom.
To motivate the validity of this way of proceeding, suppose first that the
regressor ϕr(t) excites well all the directions in the parameter space (full ex-
citation case). Then, ϑ̂N ≈ ϑo so that the γi’s become an estimate of the αi’s

and Êγ

(
ρ(p)
N

)
≈ Eα

(
ρ(p)
N

)
so that Theorem 1 applies to conclude that a reliable

estimate of a p-confidence region for ϑo has been computed.
The crucial fact is that formula (9) is also motivated in case of poor excitation
where ϑ̂N is far from ϑo (the case where estimating the mismatch between ϑ̂N

and ϑo is in fact more significant) as we next discuss.
The situation of poor excitation where ϑ̂N is far from ϑo can be interpreted
as a perturbed version of the singular setting where ϑ̂N converges to some ϑ∗

different from ϑo. As we have seen in Section 3, Theorem 3, the degenerate
ellipsoid DBβ should be used in this case and, correspondingly, the βi’s are the
coefficients to be computed for the construction of DEβ. In this respect, note

that the γi’s are estimates of the βi’s in this case since ϑ̂N ≈ ϑ∗ (see Lemma 1).
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Moreover, due to the poor excitation condition, the ellipsoid Êγ

(
ρ(p)
N

)
turns

out to be elongated in the poor excitation direction, so that Êγ ≈ DEβ. This
motivates the use of the standard asymptotic approach for model quality as-
sessment also in this case.
Perhaps, it should be finally noted that the ρ(p) in (9) refers to a χ2 with
n degrees of freedom while a n − d degrees of freedom χ2 distribution should
be used, as stated by Theorem 3. This is a slight inaccuracy of the standard
asymptotic theory which is remarked here, though its effects are quite negli-
gible as it results in a slight over-bounding of the confidence region. See the
simulation results in the next Section.

5 Simulation results

The simulation example of the present section serves the purpose of illustrating
the theory and it is not intended as a real application example. Correspond-
ingly, the simplest possible situation has been selected. While the situation is
artificial, the drawn conclusions bear a breath of general applicability.
We considered a first order data-generating system with ϑo = [−ao bo]′ =
[0.9 0.1]′ and V (z−1) = 1 + 0.5z−1. That is:

y(t) = 0.9y(t − 1) + 0.1u(t − 1) + e(t) + 0.5e(t − 1),

where e(t) = WGN(0, 1). As is obvious, during the simulation, ϑo was assumed
to be unknown. The only a-priori information we assumed was that ϑo ∈ Θ =
{[a b]′ : a2 + b2 ≤ 20}.
To identify this system, the plant was operated in open-loop with u(t) = r(t),
and the IV technique was used with ϕ(t) = [y(t − 1) u(t − 1)]′ and ζ(t) =
ϕr = [yr(t − 1) r(t − 1)]′, where

yr(t) = 0.9yr(t − 1) + 0.1r(t − 1).

As input signal, we used u(t) = 1 + ξ(t), where ξ(t) = WGN(0, 10−6). Note
that the variance of ξ(t) is very small as compared to the noise variance so
that the input u(t) is poorly exciting (u(t) is nearly exciting of order 1 while
two parameters had to be identified).
The identification was repeated 500 times, by using N = 5000 data points each
time. In each experiment a parameter vector ϑ̂i

N = [−âi
N b̂i

N ]′, i = 1 . . . 500,

was identified and a 95%-confidence region was estimated as Ê i
γ

(
ρ(0.95)

N

)
(see

Section 4). The true parameter ϑo turned out to belong to Ê i
γ

(
ρ(0.95)

N

)
in 489

cases out of 500, that is, with empirical frequency of 97.8%.
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ϑo in E ϑo out of E % of success

Êα

(
ρ(0.95)

N

)
242 258 48.4%

Êγ

(
ρ(0.95)

N

)
489 11 97.8%

Table 1
reliability of the estimated confidence region

Remark 6 Note that the estimated ellipsoid Ê i
γ

(
ρ(0.95)

N

)
turns out to be an

over-bound of a 95%-confidence region (the empirical fraction of ϑo ∈ Ê i
γ

(
ρ(0.95)

N

)

was 97.8%), because as explained in Section 4 the value ρ(0.95) was computed
referring to a χ2 with 2 (instead of 1) degrees of freedom.

As an interesting comparison, we further computed the 95% confidence region
with the true parameters αi’s (

∑∞
i=0 αiz

−i = V (z−1)). The results are summa-
rized in Table 1. As it appears, using the true parameters αi’s leads to wrong
results (the success rate of ϑo ∈ Ê i

α

(
ρ(0.95)

N

)
was of only 48.4%). The reason for

such a bias is explained in Section 4.

6 Concluding remarks

In this paper, a new asymptotic result, valid also in a singular case, has been
developed for an IV identification setting. Grounded on this new result, we
have shown that the asymptotic theory can be safely used for model quality
assessment, even in the case of poor excitation and moderate data samples.
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A Appendix

A.1 Complements to Remark 3

Note that, Pα is invertible provided that Qα is nonsingular. Here, we show
that Qα > 0.
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Let v be a generic vector of R
n and consider v′Qαv = λ2 · v′

E[ϕα
r (t)ϕα

r (t)′]v =
λ2 · v′

E[(ϕα
r (t) − E[ϕα

r (t)])(ϕα
r (t) − E[ϕα

r (t)])′]v + λ2 · v′
E[ϕα

r (t)]E[ϕα
r (t)]′v.

Since ϕα
r (t) = V (z−1)ϕr(t), we obtain, through the Parseval identity,

v′Qαv =
λ2

2π

π∫

−π

v′Φr(e
jω)v · |V (ejω)|2dω + λ2V (1)2 · v′

E[ϕr(t)]E[ϕr(t)]
′v,

where Φr(e
jω) is the spectrum of the n-dimensional process ϕr(t).

This implies that

v′Qαv ≥ min
ω∈[−π,π]

|V (ejω)|2 · λ2

2π

π∫

−π

v′Φr(e
jω)v dω + λ2V (1)2 · v′

E[ϕr(t)]E[ϕr(t)]
′v.

Applying now the assumption that V (z−1) has no zeroes on the unit cir-
cle we have minω∈[−π,π] |V (ejω)|2 = k > 0. Since, in addition, λ2 > 0 and
E[ϕr(t)ϕr(t)

′] > 0 by assumption, we conclude that

v′Qαv ≥ kλ2
(

1
2π

∫ π
−π v′Φr(e

jω)v dω + v′
E[ϕr(t)]E[ϕr(t)]

′v
)

= kλ2 · v′
E[ϕr(t)ϕr(t)

′]v > 0, ∀v 6= 0,

i.e. Qα is positive definite. 2

A.2 Proof of Lemma 1

Let T the n×n rotation matrix such that Tϑ = [x′ z′]′. Referring equation (5)
to the x, z coordinates (i.e. TE[ϕr(t)ϕr(t)

′]T ′T (ϑ − ϑo) = 0), we obtain

E




ϕx

r (t)ϕ
x
r (t)

′ ϕx
r (t)ϕ

z
r(t)

′

ϕz
r(t)ϕ

x
r (t)

′ ϕz
r(t)ϕ

z
r(t)

′








x − xo

z − zo



 = 0.

Since [x′ z′]′ is a solution of this equation if and only if z = zo, while each
value of x is feasible, it follows that E[ϕz

r(t)ϕ
z
r(t)

′] must be nonsingular, while
E[ϕx

r (t)ϕ
x
r (t)

′] must be equal to zero so that ϕx
r (t) = 0, almost surely.

Consider now ε(t, ϑ∗) = y(t) − ϕ(t)′ϑ∗. It can be rewritten as

ϕ(t)′(ϑo − ϑ∗) + v(t) = ϕx(t)′(xo − x∗) + ϕz(t)′(zo − z∗) + v(t),
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where [ϕx(t)′ ϕz(t)′]′ = Tϕ(t). Noting that zo = z∗ and that ϕx(t)′ = ϕx
r (t)

′ +
ϕx

e(t)
′ = ϕx

e(t)
′ almost surely, we obtain

ε(t, ϑ∗) = ϕx
e(t)

′(xo − x∗) + v(t).

Thus, ε(t, ϑ∗) is the stationary output of a dynamical linear system fed by
e(t), and

∑∞
i=0 βie(t − i) is the Markov representation of such a process. 2

A.3 Proof of Theorem 2

Referring the equation in (3) to the x, z coordinates, we have that

1

N

N∑

t=1

ϕx
r (t)ϕ

x(t)′(x̂N − xo) +
1

N

N∑

t=1

ϕx
r (t)ϕ

z(t)′(ẑN − zo) =
1

N

N∑

t=1

ϕx
r (t)v(t)

1

N

N∑

t=1

ϕz
r(t)ϕ

x(t)′(x̂N − xo) +
1

N

N∑

t=1

ϕz
r(t)ϕ

z(t)′(ẑN − zo) =
1

N

N∑

t=1

ϕz
r(t)v(t)

with ϕx(t) and ϕz(t) defined as in the proof of Lemma 1.
The first equation is 0 = 0 almost surely, since ϕx

r (t) = 0, almost surely.
Instead, inflating the second equation by

√
N yields

1

N

N∑

t=1

ϕz
r(t)ϕ

z(t)′
√

N(ẑN − zo) =
1√
N

N∑

t=1

ϕz
r(t)

(
v(t) + ϕx

e(t)
′(xo − x̂N)

)
,

=
1√
N

N∑

t=1

ϕz
r(t)

(
ϕx

e(t)
′(xo − x∗) + v(t)

)
+

1√
N

N∑

t=1

ϕz
r(t)ϕ

x
e(t)

′(x∗ − x̂N)

(A.1)

almost surely, where we have used the fact that ϕx(t) = ϕx
r (t)+ϕx

e(t) = ϕx
e(t),

almost surely. Note that the term ϕx
e(t)

′(xo−x∗)+v(t) is equal to
∑∞

i=0 βie(t−i)
(Lemma 1).
If we now suppose that the second term 1√

N

∑N
t=1 ϕz

r(t)ϕ
x
e(t)

′(x∗ − x̂N) can be

neglected (a fact whose proof is postponed below) then, following the same
rationale as in [10] – chapter 9 – it can be proved that the term

√
N(ẑN −

zo) in (A.1) is asymptotically distributed as a (n − d)-dimensional Gaussian
random variable with zero mean and variance equal to

E[ϕz
r(t)ϕ

z
r(t)

′]−1 · λ2
E

[ ∞∑

i=0

βiϕ
z
r(t − i)

∞∑

j=0

βjϕ
z
r(t − j)′

]
· E[ϕz

r(t)ϕ
z
r(t)

′]−1 = P z
β .
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From this, the theorem thesis easily follows noting that N(ẑN−z)′(P z
β )−1(ẑN−

z) is asymptotically distributed as a χ2 random variable with (n− d)-degrees
of freedom.
Turning now back to the term 1√

N

∑N
t=1 ϕz

r(t)ϕ
x
e(t)

′(x∗ − x̂N), the fact that it
can be neglected corresponds to say that it tends to zero in distribution. To
show this we prove the stronger convergence to zero in probability.
To ease the notation suppose x and z scalar. Then, for ν > 0 and k > 0 we
have

lim
N→∞

P

{
| 1√

N

N∑

t=1

ϕz
r(t)ϕ

x
e(t)(x

∗ − x̂N)| > ν
}

≤ lim
N→∞

P

{
| 1√

N

N∑

t=1

ϕz
r(t)ϕ

x
e(t)| > k ∪ |x∗ − x̂N | >

ν

k

}

≤ lim
N→∞

P

{
| 1√

N

N∑

t=1

ϕz
r(t)ϕ

x
e(t)| > k

}
+ lim

N→∞
P

{
|x∗ − x̂N | >

ν

k

}
. (A.2)

The second term is zero ∀k > 0 since x∗ − x̂N → 0 almost surely. In the first,
1√
N

∑N
t=1 ϕz

r(t)ϕ
x
e(t) is asymptotically Gaussian, say G(0, σ2), so that the first

term is the tail probability of G(0, σ2) and it tends to 0 as k → ∞. Thus, the
right hand side of A.2 is vanishing with k → ∞. Since the left hand side does
not depend on k, it remains proven that it is zero. 2
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