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Abstract: DNA micro-arrays provide thousands of genomic 

expressions on the same subject. A main issue is then to find the 

subset of genes whose degeneration is responsible of a certain type of 

cancer.  In this paper, starting from a paradigmatic classification 

problem of two kinds of Leukaemia, we discuss the use of data-

mining techniques in such a context. Particular attention is devoted 

not only to the classification method but also to all the data analysis 

steps including data pre-processing and information retrieval. 
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1. INTRODUCTION  

 

Micro-arrays technology has marked a substantial improvement in making available a huge 

amount of data about gene expression (i.e. gene activation level) of subjects in different 

patho-physiological conditions. The question is then how to extract useful clinical 

information from such databases. In this context, two fundamental questions arise: 

1. Is it possible to retrieve the (possibly unknown) patient case history from the genomic 

data? 

2. Which are the genes responsible for the patient diversification? 

Question 1 may be dealt with via automatic classification of data in homogenous groups. In 

this respect, a basic tool is provided by clustering procedures, which are the subject of many 

papers and books (see e.g. (Hand et al., [9]) for a recent volume on this topics). As is well 

known, one can distinguish between supervised procedures and unsupervised procedures. The 

former make use of a-priori additional information on the data, such as the patient case 

history available as a result of medical examinations. Such information along with the patient 

gene expression levels are used to train a classifier which should be able to distinguish among 

different pathologies on the basis of the gene expressions of one subject. The obtained 

classifier can be then used e.g. for  the disease diagnosis of new patients. 

On the opposite, unsupervised clustering performs the classification on the sole basis of the 

intrinsic characteristics of the data (gene expressions in the present work) by means of a 

suitable notion of distance. In this case no a-priori information on the patient case history is 

available and the latter should be reconstructed from the data. In this perspective, 

unsupervised clustering is also a tool deputed to discovery new pathologies or new forms of 

already known diseases. 

Apart from diagnostic and disease discovering, both supervised and unsupervised clustering 

play a fundamental role in understanding the causes of cellular malfunctioning and tumours. 

As a matter of fact, it is common opinion that tumours are caused by the deregulation of some 

genes, i.e. such genes are over or under activated so as to produce an abnormal quantity of 

proteins. Needless to say, understanding in detail such deregulation mechanism would be a 

most valuable help for the development of therapies for tumorous diseases. 



     

In this context, a basic issue is to understand which genes are responsible of a given 

pathology (question 2 above), and a classification of patients based on their genomic data is 

of paramount importance for determining which are such deregulated genes. However, since 

the number of genes to deal with is typically very large, the cluster discrimination rule 

returned by standard clustering procedures is based on many genes too. Therefore, a further 

effort is usually required in order to spot which are the (hopefully few) genes responsible of 

the tumour disease through a suitable information retrieval method. 

 

In this paper, we consider a set of DNA micro-arrays data – first treated in (Golub et al., [6]) 

and available on Internet (http://www.broad.mit.edu/cancer/) – regarding patients suffering 

from two kinds of Leukaemia. Our objective is to illustrate by means of such a paradigmatic 

example which kinds of problems need to be overcome in order to address questions 1 and 2 

above. In doing so, we will also introduce a complete data mining procedure which turned 

out to be effective in the considered case-study. 

The methodology adopted herein is based on four steps, the third of which, devoted to 

clustering, is the core of the approach. In the first two, a suitable pre-processing of data is 

performed, as will be explained in the sequel. Finally, the retrieval of the information on the 

most relevant genes for patient classification is the objective of the fourth step. More in 

detail, our data mining procedure can be outlined as follows: 

 

1. In order to reduce the dimensionality of the problem, a first pruning of genes not likely to 

be significant for the final classification is performed on the basis of the size of their inter-

subject variance. 

2. A principal component analysis is applied to establish a hierarchy in the remaining 

variables so as to point out the most representative components for clustering. 

3. The unsupervised point of view is applied so as to achieve the classification without using 

a priori information on the patient pathology. This approach presents the advantage that it 

automatically highlights the (possibly unknown) patient case history. Clustering is 

performed by merging the classical k-means approach  ((MacQueen, [14]) and (Hand et al., 

[9])) with the recently developed PDDP algorithm proposed in (Boley, [2]). According to 

the analysis provided in (Savaresi and Boley, [18]), cascading these two clustering 

algorithms results in a significant improvement of clustering performance. 



     

4. The classification obtained at the end of step 3 is based on 178 genes as it will be seen 

later. This number is relatively large and one may wonder whether the classification can be 

based on a limited set of genes. As said before this would facilitate the comprehension of 

the disease mechanism. For this reason we have further elaborated the outcome of point 3 

in order to shrink the number of genes to a minimum value. As we will see, our final 

classification is based on 8 genes only. 

 

The leukaemia data-set has been often used as a test-bed  in bioinformatics. For example, it 

was treated in (Golub et al., [6]), (Guyon et al., [8]) and (Liu and Iba, [12]) by resorting to 

supervised methods. See also (Lu and Han, [13]) for an interesting comparison between many 

different supervised approaches. A basic reference for an unsupervised analysis is instead (De 

Moor et al., [3]). 

Our approach proved to be effective on the leukaemia data-set too and our final classification 

(which, we stress again, was obtained without any a-priori information) looks promising. 

 

The paper is organized as follows. 

The leukaemia data-set is described in Section 2, while the preliminary data analysis 

(variance analysis and principal component analysis) is given in Section 3. Then, Section 4 

addresses the fundamental problem of data clustering, while Section 5 is devoted to the final 

“gene shrinking” step. A discussion of the obtained results is the subject of Section 6. 

 

2. THE DATA SET DESCRIPTION 

 

Data are taken from a public repository which has been often adopted as a reference 

benchmark (Golub et al., [6]) in order to test new classification techniques and compare the 

various methodologies each other. 

The data-base is constituted by the expression of 7129 genes over 72 patients (also called 

subjects) suffering from Leukaemia. A small portion of such data-set is depicted in Table 1. 

Here, data points are collected by rows and correspond to patients. Columns, instead, denote 

human genes and are the descriptive variables. Each patient is determined by a sequence of 

7129 real numbers each measuring the activation level (technically speaking, the expression) 

of the corresponding gene. The smaller the expression value the less the gene is activated. 

 



     

Note that data are quantitative so that data points can be represented as 72 vectors in a 7129-

dimensional Euclidean space. We will simply resort to the Euclidean distance in such space 

for measuring the genomic difference between two subjects. 

In order to ease algebraic manipulations of data, the data-set can be also represented by 

means of a 72x7129 real matrix, which will be denoted by 0S  in the sequel. Each entry 0
ijs  of 

0S  measures the expression of the jth gene for the ith  patient. 

 

For the Leukaemia data-set, an a-priori classification of patients is also available, as a result 

of medical examinations. Precisely, it is known that  47 of the 72 subjects are cases of Acute 

Lymphoblastic Leukaemia (ALL), while the remaining 25 are cases of Acute Myeloid 

Leukaemia (AML). Thus, there is a sort of label attached over each patient specifying the 

type of Leukaemia the patient is suffering from. Such labels could be used for supervised 

classification. 

Note, however, that the data analysis has been carried out in this work as though such a-priori 

information were not available. Indeed, as said in the introduction, our aim was to develop an 

unsupervised procedure for knowledge discovering problems. A-priori information has been 

considered solely at the end of the entire data-mining process in order to test the performance 

of the procedure. 

 

3. PRELIMINARY DATA-PREPROCESSING 

 

A typical bottleneck in DNA micro-arrays experiments, making the classification problem 

even harder, is the difficulty to collect a high number of homogeneous subjects: not only a 

big matrix is involved, but such matrix has a huge number of variables (7129 genes) with a 

very small number of samples (72 subjects). Needless to say, finding the most significant 

coordinates among these 7129 variables is of paramount importance to model the data 

distribution and, consequently, to perform clustering (see also next Section 4). 

In this work, the search of the most significant coordinates is performed in two steps: 

-  A preliminary variable (gene) pruning is first performed in order to eliminate those 

variables which are per-se of little significance. 

-  The most significant variable combinations are determined by resorting to the well known 

Principal Component Analysis (PCA). 



     

These two points are now discussed in order. 

 

 

3.1. Preliminary pruning 

 

The first reduction of the problem dimensionality is obtained through an univariate analysis. 

Precisely, the empirical variance of the gene expression values over subjects is computed for 

each gene in order to have a first indicator of inter-subject gene expression variability. Then, 

the genes whose variability is below a defined threshold are rejected leading to a first 

pruning. The simple idea behind is that if the variability of a gene expression over the 

subjects is small, then that gene is similarly expressed for each patient and hence is not useful 

for classification purposes. 

The result of the variance analysis for the 7129 genes in the Leukaemia data-set is depicted in 

Figure 1. As can be seen, the variance is small for thousands of genes. Having selected a 

suitable threshold, 6951 genes has been  pruned, and attention has been focused on 178 genes 

only. In the sequel the remaining 72x178 data matrix will be denoted by S . 

 

Though a gene pruning based on gene variance analysis is a bit rough way to proceed, it is 

often quite useful since the computational burden of subsequent steps of the data-mining 

procedure would be excessive without a first reduction of dimensionality (see also next 

Remark 3). The only delicate point in the first gene pruning procedure regards the choice of 

the cut-off level, which is in fact a tuning parameter of the method. To this end, note that the 

adopted level may be decided on the basis of biological considerations (e.g. it is known that 

the natural variability of gene expressions between homogenous subjects is no greater than a 

certain level), or technological ones (taking into account DNA micro-arrays measurement 

confidence) or simply following empirical considerations (e.g. selecting either a maximum of 

residual variables or a maximum fraction of the sum of variances to be discarded). This latter 

was the criterion adopted for the leukaemia data-set. The threshold was indeed selected so as 

to eliminate a number of genes corresponding to the 30% of the sum of variances. 

Plainly, when gene pruning is applied, a piece of available information is lost, even though 

the threshold is chosen at best. It is, however, worth noticing that available variables in 

micro-arrays data (i.e. the genes) are typically highly redundant thanks to the (biological) 



     

mechanism of gene co-regulation. That is why the initial gene pruning can be considered 

“robust” for micro-arrays data analysis. 

 

 

3.2. Principal component analysis 

 

Principal Component Analysis ((O'Connel, [15]), (Hand et al., [9])) is a well known 

multivariate analysis by means of which it is possible to bring into evidence the linear 

combinations of variables with higher inter-subject variance, namely those combinations 

which are most useful for classification. More precisely, PCA returns a new set of orthogonal 

coordinates for the 178 dimensional data space resulting from the previous gene-pruning step. 

The new coordinates are ordered in such a way that the first one, the so called first principal 

component, denotes the direction with the greatest inter-subject variance, the second one (the 

second principal component) has the greatest inter-subject variance among all the directions 

orthogonal to the first component, and so on. 

The computation of the principal components of S  is made easy by the fact that, if the 

columns of S  have zero mean, the first principal component is the eigenvector associated 

with the largest eigenvalue of the covariance matrix SST . Furthermore, the second principal 

component is the eigenvector corresponding to the second largest eigenvalue of SST , and so 

on (see e.g. (Hand et al., [9]) for a simple proof). 

 

Remark 1: The requirement that the columns of  S  have zero mean  can be fulfilled 

considering in place of S  the unbiased matrix weS ⋅− , where Te ]1,,1,1[ K= and w , the so 

called centroid of S ,  is a vector ],,,[ 21 pwww K  where 

∑
=

=
N

i
ikk s

N
w

1

1 , pk ,,2,1 K=  

( ],,,[ 21 ipii sss K is ith  row of S , Ni ,,2,1 K= ). 

 

Remark 2: Interestingly enough, if data are projected onto the ith principal component, the 

variance of projected data is given by the ith largest eigenvalue, say iλ , of SST . 

Correspondingly, if data are projected onto the subspace generated by the first k principal 



     

components, the variance of the projected data is ∑ =

k
i i1

λ . The squared error in terms of 

approximating the true data matrix using only the first k principal components is 

∑∑ =+=

178
1

178
1

/
i iki i λλ . 

 

These considerations call for the notion of singular value of a matrix, originally introduced in 

by  Eugenio Beltrami,  (Beltrami, [1]). Indeed, the eigenvalues of matrix SST  are the singular 

values of S  squared. 

To be precise, the singular value decomposition (SVD) of a matrix, say S , consists in seeing 

matrix S  as the product of three matrices, that is  VUS Σ= , where U  and V  are orthonormal 

unitary square matrices (i.e. IUU ='  and IVV =' ) and Σ  is diagonal with real and non 

negative elements on the diagonal. Such decomposition can be performed for any matrix. In 

our case, the dimensions of the various matrices are 7272×  for U, 178178×  for V and 17872 ×  

for Σ . The elements on the diagonal of Σ , which can be always organized in a decreasing 

sequence starting from the largest element in position )1,1(  of Σ ,  are named singular values 

of S . Furthermore, note also that the columns of V   corresponds to the (ordered) 

eigenvectors of SST . 

For more details and an efficient algorithm for computing the SVD,  see (Golub and Van 

Loan, [5]). 

 

Remark 3: In principle, PCA could be applied to matrix 0S  directly, without any 

preliminary variable pruning. This, however, is not a wise procedure in general because of 

the computational over-effort required by the high number of initial variables (7129 in our 

problem). The cut-off on low inter-subject gene variance is most useful in order to limit the 

computational burden of PCA. 

 

4. CLUSTERING 

 

As far as clustering is concerned, we resort to a bisecting divisive partitioning algorithm. In 

brief (see e.g. (Grabmeier and Rudolph, [7]), (Jain and Dubes, [10]) and (Jain et al., [11]) for 

a more detailed discussion), this algorithm is first used to split the entire data-set in two 

clusters (bisection) so as to maximize the intra-similarity and to minimize the inter-similarity 



     

of the partition. Then, the same bisecting procedure is iteratively applied, each time dividing 

a single cluster among those obtained in the previous step, until a final partition of the initial 

data-set is reached. 

The section is organized as follows. The basic algorithm for bisection  is introduced in the 

next Section 4.1 while Section 4.2 addresses the problem of how to iterate bisections so as to 

obtain an optimal data-set partition. To be precise, we will tackle the following questions: 

Which is the best cluster to be split at each iteration? Moreover, when is it advisable to stop 

iterations? Some additional remarks and possible variants of the proposed method are also 

discussed in Section 4.3. 

It is worth mentioning that the proposed approach is very general, and is not limited to the 

bio-informatics field. For instance it was successfully used for analyzing the data regarding a 

large virtual community of Internet (see (Garatti et al., [4])). 

  

4.1 PDDP and k-means 

 

According to the analysis developed in (Savaresi and Boley, [16]) and (Savaresi and Boley, 

[18]) the cluster bisection at each iteration has been performed by means of the cascade of the 

Principal Direction Divisive Partitioning (PDDP) algorithm and the bisecting k-means 

algorithm. For the sake of self-consistency of this paper, these two algorithms are briefly 

outlined in Tables 2 and 3. In both cases, the input is a pN ×  matrix X  where data samples 

are the rows of the matrix, while the output is given by two matrices LX  and RX  

corresponding to data bisection (i.e. the concatenation of  LX  and RX  gives X ).  
 

PDDP is a recently proposed technique (Boley, [2]) which is representative of non-iterative 

techniques. The idea behind PDDP is that in many situations data are typically aggregated in 

two (possibly spherical-shaped) clusters so that the first principal component is oriented from 

one cluster to the other one and the data-set centroid lies between the two clusters. In such a 

case, the partition of the two clusters can be achieved by means of an hyper-plane orthogonal 

to the first principal component and passing through the centroid of the data-set. 
 

K-means was first introduced in (MacQueen, [14]), and, probably, it is the best known and 

most widely used clustering technique. Hence, it is the best representative of the class of 

iterative centroid-based divisive algorithms. The idea behind k-means is as follows. If the 



     

centroids Lw  and Rw  of the two clusters to be find were known, the data could be partitioned 

grouping the points close to Lw  in one cluster and those close to Rw  in an another one (as it 

can be easily derived from the algorithm, this corresponds to separate data points through a 

cut orthogonal to the direction LRLR ccccu −−= /)( ). In practice Lw  and Rw  are not known in 

general, so that at the beginning of k-means the partition rule above is performed with two 

randomly chosen points, Lc  and Rc , in place of Lw  and Rw . Then the result is refined through 

iterations using the centroids of the clusters obtained at the previous iteration as Lc  and Rc . 

 

The main flaw of k-means is its initialization since different initial values of Lc  and Rc  may 

result in substantially different data partitions, (Selim and Ismail, [19]). PDDP is instead a 

one-shot algorithm, hence not suffering from any initialization effect. Yet, its drawback is 

that the assumption that data can be partitioned across the first principal component may not 

be fulfilled for some data configurations. 

It has been proven ((Savaresi and Boley, [16]), (Savaresi et al., [17]) and (Savaresi and 

Boley, [18])) that the best performance (in terms of quality of partition and of computational 

effort) can be obtained by applying PDDP, followed by k-means initialized with the centroids 

of the clusters obtained as a result of PDDP. In such a way, the initialization problem of k-

means is avoided, and the final bisection takes advantage of the positive features of both 

methods. 

 

4.2 Iterating bisections 

 

The PDDP + k-means algorithm can be used to bisect the original data-set in two clusters. As 

is obvious, in order to obtain a multi-cluster partition, one may proceed to a further bisection 

of one of the two clusters resulting from the first bisection. In this way, one is left with a 3-

partition of the original data-set. Of course, one may further bisect one of these 3 clusters, 

and so on and so forth, each time dividing a single cluster among those obtained in the 

previous iteration. 

In order to put this procedure into practice, it is necessary to take at each iteration a decision 

on which cluster has to be split. Moreover, one has to decide when halting the iterations as 

well. For these decisions, we follow the lead proposed  in (Savaresi et al., [17]) as briefly 



     

explained in the following. The interested reader is referred to (Savaresi et al., [17]) for 

additional technical details. 

At the end of the i-th iteration, a set of i+1 clusters, say i
i

ii XXX 121 ,,, +K , is obtained.. For each 

one of these sets, a suitable performance index ( )i
rXγ  is computed as follows. Let i

LrX ,  and 

i
RrX ,  be the clusters which would be obtained if i

rX  were portioned through PDDP + k-

means, and let ⊥i
LrX ,  and ⊥i

RrX ,  the projection of i
LrX ,  and i

RrX ,  over the direction orthogonal 

to the one along which the bisection is performed. Then, ( )i
rXγ  is defined as the ratio 

between the average variance of ⊥i
LrX ,  and ⊥i

RrX , , and the half squared distance between the 

centroids of ⊥i
LrX ,  and ⊥i

RrX , . Thus, ( )i
rXγ  quantifies the separation degree between i

LrX ,  and 

i
RrX , , and the lower ( )i

rXγ  the better the two clusters are separated. 

Thus, altogether, the meaning of γ  is such that the bisection at iteration i+1 is performed for 

the cluster i
rX  for which γ  takes the lowest value. Moreover, a value of ( )i

rXγ  higher than a 

given threshold can be taken as a halting rule of the iterative procedure. 

 

4.3 Some additional remarks 

 

The reader should be aware of the fact that in many cases, depending on the available data, 

some modifications to the basic PDDP and k-means algorithms presented in Section 4.1 are 

desirable in order to improve the quality of the data-set clustering. Here, we discuss two 

slight variants of PDDP and k-means, which, as we will see later, turned out to be useful for 

the Leukaemia data-set. 
 

As far as PDDP is concerned, one should note that in the basic algorithm bisection is 

typically performed by an hyper-plane orthogonal to the first principal component. However,  

such a strategy may be not effective in certain problems. For example, consider the data-set 

represented in Figure 2. 

As can be seen, the data give rise to two parallel clouds, and clustering them through a cut 

across to the first principal component would be nonsense. Rather, one should take the 

second principal component and perform bisection through an hyper-plane orthogonal to such 

component. 

Plainly, in unsupervised clustering, there are no a-priori hints on which is the best principal 



     

component across which performing bisection, and such a decision should be retrieved from 

the data-set itself. To this purpose, one can project data on each principal component in turn, 

and inspect from graphical visualizations in which case data points are better separated. 

Alternatively, a more rigorous approach (yet, more time consuming) consists in  performing 

bisection according to each principal component at a time, and then deciding which 

component results in the best partition through an extensive computation of the index γ . 

 

The second variant of PDDP and k-means algorithm regards k-means. Indeed, after that 

PDDP has been applied, the quality of the partition refinement obtained through k-means may 

depend on the number of variables (i.e. the number of columns) of the data matrix given as 

input to the algorithm. As a matter of fact, it is well known that too many variables may 

adversely affect the convergence of k-means. 

For this reason, it is advisable in many cases to project data onto a moderate number of 

principal components (so as to reduce the number of descriptive variables) before applying k-

means. Notice that for this problem too, an automatic procedure for the selection of a limited 

number of principal components can be worked out by resorting to the index γ . 

 

5. GENE SHRINKING 

 

As already pointed out in Section 4, after that PDDP + k-means is applied one time, the data 

turns out to be eventually bisected according to the following (linear) classification rule ( Lw  

and Rw  are the final centroids returned by the k-means algorithm): 

⎩
⎨
⎧

>⋅∈
≤⋅∈

KuxXx
KuxXx

Ri

Li

i

i

  if  
  if              (1) 

where LRLR wwwwu −−= /)(  and uwwK LR ⋅+⋅= )(5,0 .      

The problem within this expression is that if the linear inequalities above are referred to the 

original coordinates (i.e. the genes), we obtain a classifier depending on all the 178 relevant 

genes, characterizing each patient. This in turn implies that the expression above is of minor 

interest from a biological perspective as it involves too many genes. For this reason, the 

classification procedure outlined in Section 4 has been complemented with a “gene 

shrinking” technique in order to detect which are the (hopefully few) genes actually relevant 

for the classification. 



     

The approach we propose is the following one. Suppose that vector u  above is written as 

],,,[ 17821 uuu K  where, without any loss of generality, these components are sorted by 

decreasing values of || iu . In a sense, || iu  measures the importance of the ith variable for the 

classification. Then, we consider ]0,,,[' 1771 uuu K=  in place of u  in (1) and we search for a 

partitioning threshold 'K  ( KK ≠'  in general) such that the original data partition is preserved 

(i.e. the same LX  and RX  are obtained even though 'u  and 'K  are used in place of u  and K ). 

If such 'K  exists, a new classifier based on 177 genes only is found. This procedure can be 

then iterated, eliminating one by one all the less relevant components of  u . The stopping rule 

is determined by a certain ]0,,0,,,[' 11 KK −= luuu  for which no 'K  preserves the original data 

partition. This returns luu ,,1 K  as the genes actually relevant for the patient classification. 

  

6. RESULTS AND DISCUSSION 

 

The procedure outlined above was applied to the Leukaemia data-set. The application of the 

first phase of clustering based on PDDP algorithm with the aid of the γ  index (see Section 

4.3) led to a bisection by an hyper-plane orthogonal to the second principal component. Then, 

the subsequent application of k-means, again worked out by means of the  γ  index, was 

limited to the principal components from the 2nd to the 11th. 

In principle, further bisection trials should have be performed after the first one. However, 

the use of the γ  index (see Section 4.2) highlighted that there was no significant 

improvement proceeding with further bisections. 

The final result of the clustering procedure led to the partition of the original set of 72 

patients into two clusters consisting of 23 and 49 subjects (Figure 3). 

 

Recall that our partition is obtained in a fully unsupervised and blind way, namely without 

exploiting the a priori information on the pathology of the patients (ALL or AML) which, we 

recall, was available as a result of medical examinations.  

Although such additional information was not used, the adopted data-mining procedure was 

able to detect a (genomic) difference  between two kinds of patients. I.e. if labels had been 

not known, it would have provide evidence of the existence of two type of Leukaemia. This, 



     

of course, would have been of paramount importance for starting further medical 

investigations and for developing different treatments for patients. 

In the case of Leukaemia we were already aware of the existence of two kinds of Leukaemia, 

so that the result is not surprising, though it confirms the validity of the approach. 

Furthermore, available labels can be used to a-posteriori evaluate the quality of the obtained 

partition. This can be simply done by  verifying how ALL and AML patients are distributed 

among the two clusters returned by our method. 

Interestingly enough, all the 23 subjects of the smaller cluster turn out to be affected by the 

AML pathology. Thus, the only error of our unsupervised procedure consists in the 

misclassification of two AML patients, erroneously grouped in the bigger cluster, together 

with the remaining 47 subjects affected by the ALL pathology. The misclassification 

percentage is 2/72=3%. Thus, altogether, not only the unsupervised procedure recognizes that 

there is an intrinsic difference between two groups of patients, but also the obtained partition 

corresponds with great accuracy to the actual partition in ALL/AML patients. 

 

Remark 3: Note that in our procedure all data points are used to detect the best data 

partition. There is no distinction between training and validation samples as it is common for 

other methods. The reason for this relies on the unsupervised nature of our approach. Indeed, 

a separation between training and validation samples is required in supervised procedure 

(where labels are known and are used to train the classifier) to avoid data over-fitting. In 

unsupervised approach (where the classification is retrieved from genomic data only based 

on their relative distance) over-fitting is not an issue as there are no labels which the 

classifier can over-fit. In a sense, in unsupervised methods the separation between training 

and validation data points is already achieved separating genomic data (from which the 

classifier is trained)  from labels (which in fact can be a-posteriori used to test the quality of 

the results). 

 

A further observation which is worth doing is that the final gene-shrinking step leads to a 

very small number of significant genes, precisely to the 8 genes listed in Table 4. 

The final classifier, we are left with after that the gene-shrinking step is performed, is given 

by ]164.0,172.0,197.0,159.0,207.0,228.0,195.0,235.0[' −−−−−−−−=u  as weighting vector, and 

1.1' −=K  as partitioning threshold. 

 



     

Our results are comparable with those obtained through different approaches. E.g. in (Golub 

et al., [6]), by using a supervised tool and thus splitting the 72 patients in 38 training samples 

and 34 testing samples, a correct classification was obtained for 29 (about 85%) of the 34 test 

subjects. 

Perhaps it is worth noticing that the classification in (Golub et al., [6])  was based on genes in 

general different from those in Table 4. Only 3 genes (namely, CST3 Cystatin C, Azurocidin 

and Interleukin-8 precursor) appear in both the approaches. A possible interpretation is that 

these three genes within the intersection of the two subsets are probably really determinant, 

whereas the complementing genes identified by the procedure proposed in the present paper 

and those in the  subset of Golub and co-workers serve only to refine the partition and are 

somehow equivalent. 

In order to highlight the relative importance of the 8 genes in Leukaemia classification, their 

expression across 72 patients is shown in Figure 4, where the 47 ALL patients are grouped at 

the left side and the 25 AML patients are grouped at the right side of each subfigure. The two 

sets are separated by a vertical line in order to visually highlight the two groups. 

As it can be appreciated even by a visual inspection of Figure 4, the CST3 Cystatin C 

(M27892_at) gene  is the most influential one for classification, since its expression in the 

leftmost 47 ALL patients is uniformly low in comparison to the other class of patients. In 

fact, such gene is the one maximally projecting on the principal component used for 

clustering. However, it is worth noting that a classification based on this gene alone would 

not be effective. 

 

7. CONCLUSION 

 

In this paper, we have faced the problem of discriminating two kinds of Leukaemia on the 

basis of a suitable data-mining procedure for micro-arrays genetic data. The unsupervised 

nature of the presented approach enables the classification without any knowledge on the 

pathology of patients. The results of the data analysis show that the discrimination can be 

effectively performed by means of only 8 genes of the original 7129 genes available on the 

micro-array. 
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Table 1: the Leukemia data-set 

 BioB 
5_at 

BioB 
5_st 

CreX 
5_st 

DapX 
M_at … 

Patient 1 -214 206 -118 311 … 

Patient 2 -139 74 -141 134 … 

Patient 3 -76 -215 84 378 … 

Patient 4 -135 31 107 268 … 

Patient 5 -106 252 1 118 … 

Patient 6 -138 193 -1 154 … 

… … … … … … 



     

 
Table 2: PDDP clustering algorithm. 

PDDP clustering algorithm 
 

Compute the centroid w of X and compute the unbiased matrix ewXX −=~ , Te ]1,,1,1[ K= . 
Compute v,  the first principal component of  X~ . 
Divide T

NxxxX ],,,[ 21 K=  into two subclusters LX  and RX , according to the following 
rule: 
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Table 3: Bisecting k-means algorithm. 

Bisecting k-means algorithm 
 
Step 1. (Initialization). Select two points in the data domain space, say p

RL cc ℜ∈, . 
Step 2. Divide T

NxxxX ],,,[ 21 K=  into two sub-clusters LX  and RX , according to the 
following rule: 
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Step 3. Compute the centroids of LX  and RX , Lw  and Rw . 
Step 4. If LL cw =  and RR cw = , stop.  
 Otherwise, let LL wc ← , RR wc ←  and go to Step 2.  



     

 
Table 4:  The 8 genes able to discriminate between AML and ALL 

The 8 genes able to discriminate between AML and ALL 
 
1. FTL Ferritin, light polypeptide M11147_at 
2. MPO Myeloperoxidase M19507_at 
3. CST3 Cystatin C (amyloid angiopaty and cerebral hemorrage) M27892_at 
4. Azurocidin gene M96326_ rna1_at  
5. GPX1 Glutathione peroxidase 1 Y00433_at 
6. INTERLEUKIN-8 PRECURSOR Y00787_s_at 
7. VIM Vimentin Z19554_s_at 
8. GB DEF Cystic fibrosis antigen mRNA M26311_s_at 



     

 
Fig. 1: Inter-subject variance 



     

 
(a) Cut orthogonal to the first principal component. Data aggregations are misclassified. 

 

 
(b) Cut orthogonal to the second principal component. Data are correctly clustered. 

 

Fig. 2: A data configuration where bisection should be performed  orthogonally to the 

second principal component.  



     

 
Fig. 3: PDDP + k-means data partition (“x”=first cluster, “o”=second cluster) . 



     

 
Fig. 4: expression values for the genes classifying Leukaemia patients 


