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Abstract. Many optimization problems are naturally delivered in an uncertain framework,
and one would like to exercise prudence against the uncertainty elements present in the problem.
In previous contributions, it has been shown that solutions to uncertain convex programs that
bear a high probability to satisfy uncertain constraints can be obtained at low computational cost
through constraints randomization. In this paper, we establish new feasibility results for ran-
domized algorithms. Specifically, the exact feasibility for the class of the so-called fully-supported
problems is obtained. It turns out that all fully-supported problems share the same feasibility
properties, revealing a deep kinship among problems of this class. It is further proven that the
feasibility of the randomized solutions for all other convex programs can be bounded based on the
feasibility for the prototype class of fully-supported problems.
The feasibility result of this paper outperforms previous bounds, and is not improvable because it
is exact for fully-supported problems.
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1. Introduction. Uncertain convex optimization, [21, 24, 25], deals with con-
vex optimization in which the constraints are imprecisely known:

UP : min
x∈X⊆Rd

cT x

subject to: x ∈ Xδ, δ ∈ ∆, (1.1)

where UP stands for Uncertain Program, δ ∈ ∆ is an uncertain parameter, and X
and Xδ are convex and closed sets. Often times, ∆ is a set of infinite cardinality.
The fact that the optimization objective is linear and does not carry any depen-
dence on δ, that is it is certain, is without loss of generality.

UP encompasses as special cases uncertain LP (linear programs), uncertain QP
(quadratic programs), uncertain SOCP (second-order cone programs), and uncer-
tain SDP (semi-definite programs) and plays a central role in many design endeavors
such as [1, 15, 17, 14, 9, 24, 11, 6].

Dealing with uncertainty can be done along two distinct approaches. The first
one consists in enforcing satisfaction of all constraints, that is one optimizes the
cost cT x over the set

⋂
δ∈∆ Xδ ([2, 16, 3, 4]). Alternatively, one may want to satisfy

the constraints with “high probability”. Along this second approach one sees the
uncertainty parameter δ as a random element with a probability P, and seeks a
solution that violates at most a fraction of constraints having small P-probability
(chance-constrained solution). Depending on the optimization problem at hand,
P can have different interpretations. Sometimes, it is the actual probability with
which the uncertainty parameter δ takes on value in ∆. Other times, it simply
describes the relative importance attributed to different instances of δ. The use
of a probabilistic description of uncertainty has a long history in optimization the-
ory and dates back to the work [10] of Charnes and Cooper in the fifties that in
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effect gave birth to the chance-constrained approach. See also [21, 22, 12, 25] for
more information, and [5] for a more in-depth comparison between deterministic
and probabilistic uncertain optimization.

It is a fact that finding a solution carrying a high probability of constraint sat-
isfaction is in general a very difficult task to achieve, [21]. To circumvent this com-
putational issue, recently methodologies relying on the randomization over the set
of constraints have been introduced, [11, 5, 20, 6, 13]. Specifically, in [5, 6], the fol-
lowing randomized program RPN is introduced, where N constraints δ(1), . . . , δ(N)

randomly extracted according to P in an independent fashion are simultaneously
enforced:

RPN : min
x∈X⊆Rd

cT x

subject to: x ∈
⋂

i∈{1,...,N}

Xδ(i) .

RPN is also known as “scenario program”.

The distinctive feature of RPN is that it is a program with a finite number of
constraints and, as such, it can be solved at low computational cost provided that
N is not too large1; it is indeed a fact that RPN has opened up new resolution
avenues in uncertain optimization. On the other hand, the obvious question to ask
is how feasible the solution of RPN is, that is how large the fraction of original
constraints in ∆ that are possibly violated by the solution x∗

N of RPN is. Papers
[5, 6] have pioneered a feasibility theory showing that x∗

N is feasible for the vast
majority of the other unseen constraints – those that have not been used when op-
timizing according to RPN – and this result holds in full generality, independently
of the structure of the set of constraints ∆ and the probability P. So to say, the vast
majority of constraints takes care of itself, without explicitly accounting for them.

To allow for a sharper comparison with the results presented in this paper, we
feel advisable to first recall in some detail the results in [5, 6]. The following notion
of violation probability from [5] is central.

Definition 1.1 (violation probability). The violation probability of a given

x ∈ X is defined as V (x) = P{δ ∈ ∆ : x /∈ Xδ}.

The problem addressed in [5, 6] is to evaluate if and when the violation probability
of x∗

N , namely V (x∗
N ), is below a satisfying level ǫ. To state the result precisely,

note that V (x∗
N ) is a random variable since the solution x∗

N of RPN is, due to that
it depends on the random extractions δ(1), . . . , δ(N). Thus, V (x∗

N ) ≤ ǫ may hold
for certain extractions δ(1), . . . , δ(N), while V (x∗

N ) > ǫ may be true for others. The
following quantification of the “bad” extractions where V (x∗

N ) > ǫ is the key result
of [6]:

P
N{V (x∗

N ) > ǫ} ≤

(
N

d

)
(1 − ǫ)N−d. (1.2)

Moving a fundamental step forward with respect to [6], we in this paper establish

1Depending on ∆ and P, the generation of N randomly extracted scenarios δ(1) , . . . , δ(N) from
∆ can in itself be a nontrivial problem and the reader is referred to [27, 8, 7] for further discussion
on this issue.
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the validity of relation

P
N{V (x∗

N ) > ǫ} =

d−1∑

i=0

(
N

i

)
ǫi(1 − ǫ)N−i (1.3)

(note that (1.3) holds with “=”, that is it is not a bound) for the prototype class of
fully-supported problems according to Definition 2.3 in Section 2. This result sheds
new light on a deep kinship among all fully-supported problems, proving that their
randomized solutions share the same violation properties, and writes a final word
on the violation assessment for this type of problems.
It is further proven in this paper that the right-hand-side of (1.3) is an upper bound
for all convex problems, that is

P
N{V (x∗

N ) > ǫ} ≤
d−1∑

i=0

(
N

i

)
ǫi(1 − ǫ)N−i (1.4)

holds for all convex problems. Thus, in a real optimization problem one has not to
verify whether the problem is fully-supported or not, and

∑d−1
i=0

(
N
i

)
ǫi(1−ǫ)N−i can

always be used as an upper bound for P
N{V (x∗

N ) > ǫ}. This result (1.4) (i) cannot
be improved (being tight for the prototype class of fully-supported problems), and
(ii) outperforms the previous bound from [6], at times by a huge extent (note that
when ǫ → 0, the previous bound (1.2) tends to

(
N
d

)
while the new bound (1.4) goes

naturally to 1!).

2. Main result. The technical result of this paper is precisely stated in this
section, followed by a discussion on the significance of the result.

For a fixed integer m and fixed given constraints δ(1), . . . , δ(m), program

Pm : min
x∈X⊆Rd

cT x

subject to: x ∈
⋂

i∈{1,...,m}

Xδ(i) (2.1)

is called a finite instance with m constraints of the uncertain optimization program
UP in (1.1). For the time being, we make the following assumption.

Assumption 1. Every Pm is feasible and its feasibility domain has nonempty

interior. Moreover, the solution x∗
m of Pm exists and is unique.

Existence and uniqueness of x∗
m are here assumed to streamline the presentation.

The reader is referred to point (5) in the discussion Section 2.1 to see how these
assumptions can be removed.

We recall the following fundamental definition and proposition. Definition 2.1 was
introduced in [5], while Proposition 2.2 was originally stated in a slightly different
but equivalent way in [18].

Definition 2.1 (support constraint). Constraint δ(r), r ∈ {1, . . . , m}, is a

support constraint for Pm if its removal changes the solution of Pm.

Proposition 2.2. The number of support constraints for Pm is at most d, the

size of x.
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Suppose now that ∆ is endowed with a σ-algebra D and that a probability P over
D is assigned. Further assume that m constraints δ(1), . . . , δ(m) are randomly ex-
tracted from ∆ according to P in an independent fashion. Differently stated, the
multi-extraction (δ(1), . . . , δ(m)) is a random element from the probability space ∆m

equipped with the product probability P
m. Each multi-extraction (δ(1), . . . , δ(m))

generates a program Pm and the map from ∆m to Pm programs is a randomized

program RPm, see Figure 2.1. Note that this is the same as RPN in Section 1 with

optimization

direction

∆m

(δ(1), . . . , δ(m))

X

x∗
m

RPm

Pm

Figure 2.1. RPm, a map from constraint multi-extractions to finite instances Pm of the
optimization problem.

the only difference that we have used here m to indicate the number of constraints, a
choice justified by the fact that in this section m plays the role of a generic running
argument taking on any integer value, while N represents in Section 1 the fixed
number of constraints picked by the user for the implementation of the randomized
scheme.

We are now ready to introduce the notion of fully-supported problem.

Definition 2.3 (fully-supported problem). A finite instance Pm, with m ≥ d,
is fully-supported if the number of support constraints of Pm is exactly d.
Problem UP is fully-supported if, for any m ≥ d, RPm is fully-supported with prob-

ability 1.

The main result of this paper is now stated in the following theorem.

Theorem 2.4. Under Assumption 12, it holds that

P
N{V (x∗

N ) > ǫ} ≤
d−1∑

i=0

(
N

i

)
ǫi(1 − ǫ)N−i; (2.2)

moreover, the bound is tight for all fully-supported uncertain optimization problems,

that is

P
N{V (x∗

N ) > ǫ} =
d−1∑

i=0

(
N

i

)
ǫi(1 − ǫ)N−i. (2.3)

The proof is given in Section 3. The measurability of {V (x∗
N ) > ǫ}, as well as the

measurability of other sets, is assumed for granted in this paper.
One interpretation of Theorem 2.4 is that the randomized solution is, with high
probability, a feasible solution for a chance-constrained problem, see [21].

2See point (5) in Section 2.1 for relaxations of this assumption
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2.1. Discussion. The following comments are in order.

(1) Equation (2.3) delivers the exact probability distribution of the violation V (x∗
N )

for all fully-supported problems. Since (2.3) holds independently of the nature and
characteristics of the fully-supported problem, it establishes a fundamental kinship
among problems of this prototype class.
Bound (2.2) further asserts that all possible sources of non-fully-supportedness can
only improve the feasibility properties of the problem.

(2) The quantity β :=
∑d−1

i=0

(
N
i

)
ǫi(1 − ǫ)N−i in the right-hand-side of equations

(2.2) and (2.3) is the tail of a Binomial distribution and goes rapidly (exponentially)

N 150 300 450 600 750

β 0.78 0.06 8.8 10−4 4.8 10−6 1.5 10−8

βold 8.8 1011 4.8 1011 1.3 1010 1.1 108 4.8 105

N 900 1050 1200 1350 1500

β 3.5 10−11 6.2 10−14 9.2 10−17 1.2 10−19 1.4 10−22

βold 1.3 103 2.9 5.1 10−3 7.5 10−6 9.9 10−9

Table 2.1
β vs. βold for different values of N (ǫ = 0.05, d = 10).

to zero as N increases. Letting βold :=
(
N
d

)
(1 − ǫ)N−d (bound in (1.2) from [6]),

Table 2.1 provides a comparison between β and βold.

(3) A typical use of Theorem 2.4 consists in selecting ǫ (violation parameter) and
β (confidence parameter) in (0, 1), and then computing the smallest number N of
constraints to be extracted in order to guarantee that P

N{V (x∗
N ) > ǫ} ≤ β by

solving equation β =
∑d−1

i=0

(
N
i

)
ǫi(1 − ǫ)N−i for N . In Table 2.2, the values of N

ǫ 0.1 0.05 0.025 0.01 0.005 0.0025 0.001

N 285 581 1171 2942 5895 11749 29513
Nold 579 1344 3035 8675 18943 41008 112686

Table 2.2
N vs. Nold for different values of ǫ (β = 10−5, d = 10).

and of Nold obtained by using the bound in (1.2) are displayed for different values
of ǫ, β = 10−5 and d = 10.

(4) A simple example illustrates Theorem 2.4.
N = 1650 points are independently extracted in R

2 according to an unknown prob-
ability density P, and the strip of smaller vertical width that contains all the points
is constructed, see Figure 2.2.

In mathematical terms – letting the points be (u(i), y(i)), i = 1, . . . , N , where u
is horizontal coordinate and y vertical coordinate – this amounts to solve the fol-
lowing program:

PN : min
x1,x2,x3∈R3

x1

subject to:
∣∣y(i) − [x2u

(i) + x3]
∣∣ ≤ x1, i = 1, . . . , N,

where [x2u
(i)+x3] is the median line of the strip and x1 is the semi-width of the strip.
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y = x∗
2u + x∗

3

x∗
1

Figure 2.2. strip of smaller vertical width.

What guarantee do we have that the strip contains at least 99% of the prob-
ability mass of P? One can easily recognize that this question is the same as
asking for a guarantee, or a probability, that the violation is less than ǫ = 0.01,
and the answer can be found in Theorem 2.4: this probability is no less than
1−

∑2
i=0

(
1650

i

)
0.01i(1− 0.01)1650−i ≈ 1− 10−5. As a matter of fact, this probabil-

ity is exact since, as it can be verified, this problem is fully supported.

We can further ask for a different geometrical construction and look for the disk of
smaller radius that contains all points, see Figure 2.3. Again, we are facing a finite

x∗
2, x

∗
3

x∗
1

Figure 2.3. disk of smaller radius.

convex program:

PN : min
x1,x2,x3∈R3

x1

subject to:
√

(u(i) − x2)2 + (y(i) − x3)2 ≤ x1, i = 1, . . . , N,

where (x2, x3) is the center of the disk and x1 is its radius, and again we can claim
with confidence 1− 10−5 that the constructed disk will contain at least 99% of the



The Exact Feasibility of Randomized Solutions of Uncertain Convex Programs 7

probability mass. In this disk case, figure 1−10−5 is a lower bound since the problem
is not fully-supported, as it can be easily recognized by noting that a configuration
with two points away from each other and all the other points concentrated near
the mid-position of the first two points generates a disk where the segment joining
the first two points is a diameter and only these two points are of support.

Finally, let us compare probability 1 − 10−5 with the probability that would have
been obtained by applying the previous bound (1.2) from [6]. Applying the latter,
we would find that this probability is no smaller than 1− 48.4 = −47.4, a negative
number clearly devoid of any meaning and that does not allow to draw any conclu-
sion as far as the confidence is concerned.

(5) We here discuss the assumption of existence and uniqueness of the solution
of Pm.
Suppose first that the solution exists but it may be non-unique. Then, the tie can be
broken by selecting among the optimal solutions the one with minimum Euclidian
norm, and one can prove that Theorem 2.4 holds unchanged.
If we further relax the assumption that the solution exists (note that the solution
may not exist even if Pm is feasible since the solution can drift away to infinity),
extending Theorem 2.4 one can show that

P
N{x∗

N exists, and V (x∗
N ) > ǫ} ≤

d−1∑

i=0

(
N

i

)
ǫi(1 − ǫ)N−i,

where x∗
N is unique after applying the tie-break rule as above. In words, this result

says that, when a solution is found, its violation exceeds ǫ with small probability
only. In normal problems non-existence of the solution is a rare event whose prob-
ability exponentially vanishes with N .

3. Proof of Theorem 2.4. We first prove that P
N{V (x∗

N ) > ǫ} =
∑d−1

i=0

(
N
i

)
ǫi(1−

ǫ)N−i for fully-supported problems and then that P
N{V (x∗

N ) > ǫ} ≤
∑d−1

i=0

(
N
i

)
ǫi(1−

ǫ)N−i for every problem.

PART 1: P
N{V (x∗

N
) > ǫ} =

∑
d−1

i=0

(
N

i

)
ǫi(1 − ǫ)N−i FOR FULLY-SUPPORTED

PROBLEMS

Consider the solution x∗
d of RPd (recall that d is the size of x) and let

F (α) := P
d{V (x∗

d) ≤ α} (3.1)

be the probability distribution of the violation of x∗
d. It is a remarkable fact that

this distribution is

F (α) = αd, (3.2)

independently of the problem type.

To prove (3.2), we have to consider multi-extractions of m elements, where m is a
generic integer bigger than or equal to d. To each multi-extraction (δ(1), . . . , δ(m)) ∈
∆m, associate the indexes of the corresponding d support constraints (this is always
possible except for a probability 0 set because the problem is fully-supported3). Fur-
ther, group all multi-extractions having the same indexes. In this way,

(
m
d

)
sets

3The fact that a fully-supported problem is one where the RPm are fully supported with
probability 1, as opposed to always fully-supported, is a source of a bit of complication in the proof.
On the other hand, requiring always fully-supportedness is too limitative since e.g. extracting the
same constraint m times results in a non fully-supported Pm.
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SI are constructed forming a partition (up to a probability 0 set) of ∆m, where
I ⊂ {1, . . . , m} is a set of cardinality d containing the indexes of the support con-
straints. We claim that the probability of each of these sets is

P
m{SI} =

∫ 1

0

(1 − α)m−dF (dα), (3.3)

where F (α) is defined in (3.1); using (3.3), later on in the proof, we shall show that
F (α) must have the expression in (3.2).

To establish (3.3) in a more concrete way, consider one of the sets SI , e.g. the

set SĪ where the support constraints indexes are 1, . . . , d. Also let S̃Ī be the set
where δ(d+1), . . . , δ(m) are not violated by the solution generated by δ(1), . . . , δ(d).
It is an intuitive fact that SĪ and S̃Ī are the same up to a probability 0 set. To
streamline the presentation, we accept here this fact for granted; however, the in-
terested reader can find full details at the end of this PART 1 of the proof.

We next compute P
m{S̃Ī}, which is the same as P

m{SĪ}.
Select fixed values for δ̄(1), . . . , δ̄(d) and let α be the violation of the solution with
these d constraints only. Then, the probability that δ(d+1), . . . , δ(m) fall in the non-
violated set, that is (δ̄(1), . . . , δ̄(d), δ(d+1), . . . , δ(m)) ∈ S̃Ī , is (1−α)m−d. Integrating
over the domain ∆d for (δ̄(1), . . . , δ̄(d)), we then have

P
m{S̃Ī}

= [letting x∗
Ī be the solution with constraints δ̄(1), . . . , δ̄(d) only]

=

∫

∆d

(1 − α(x∗
Ī))m−d

P
d(dδ̄(1), . . . , dδ̄(d))

=

∫ 1

0

(1 − α)m−dF (dα),

where the second equality is a change of variables from the domain (δ̄(1), . . . , δ̄(d))
to that of the violation of the corresponding solution.
Since P

m{SĪ} = P
m{S̃Ī} and this probability is the same for any other set SI ,

equation (3.3) remains proven.

Turn now back to (3.2). Recalling that the sets SI form a partition of ∆m up
to a probability 0 set and that P

m{∆m} = 1, (3.3) yields

(
m

d

) ∫ 1

0

(1 − α)m−dF (dα) = 1, ∀m ≥ d. (3.4)

Expression F (α) = αd in (3.2) is indeed a solution of (3.4) (integration by parts);
on the other hand, no other solutions exist since determining an F satisfying (3.4) is
a moment problem for a distribution with finite support and its solution is unique,
see e.g. Corollary 1, §12.9, Chapter II of [26]. Thus, it remains proven that F (α)
must have the expression (3.2).

To conclude the proof of PART 1, consider now the problem with N constraints and
partition set {(δ(1), . . . , δ(N)) : V (x∗

N ) > ǫ} by intersecting it with the
(
N
d

)
sets

SI grouping multi-extractions such that the d support constraints have the same



The Exact Feasibility of Randomized Solutions of Uncertain Convex Programs 9

indexes. We then have

P
N{V (x∗

N ) > ǫ}

= P
N

{
∪I {V (x∗

N ) > ǫ and x∗
N is supported by the constraints

with indexes in I}
}

= [IA is the indicator function of set A, i.e. IA = 1 over A and IA = 0 otherwise]

=

(
N

d

) ∫

∆d

(1 − α(x∗
Ī))N−d

I{α(x∗

Ī
)>ǫ}P

d(dδ̄(1), . . . , dδ̄(d))

=

(
N

d

) ∫ 1

ǫ

(1 − α)N−d F (dα)

= [since F (dα) = dαd−1 dα]

=

(
N

d

) ∫ 1

ǫ

[
(1 − α)N−ddαd−1

]
dα

= [integrating by parts]

=

(
N

d

) [
−

(1 − α)N−d+1

N − d + 1
dαd−1

∣∣∣∣
1

ǫ

+

∫ 1

ǫ

(1 − α)N−d+1

N − d + 1
d(d − 1)αd−2 dα

]

=

(
N

d − 1

)
ǫd−1(1 − ǫ)N−d+1 +

(
N

d − 1

) ∫ 1

ǫ

(1 − α)N−d+1(d − 1)αd−2 dα

= . . .

=

(
N

d − 1

)
ǫd−1(1 − ǫ)N−d+1 + . . . +

(
N

1

)
ǫ(1 − ǫ)N−1 +

(
N

1

) ∫ 1

ǫ

(1 − α)N−1 dα

=
d−1∑

i=0

(
N

i

)
ǫi(1 − ǫ)N−i.

Proof of the fact that S
Ī

= S̃
Ī

up to a probability zero set

S
Ī

⊆ S̃
Ī

Take a (δ(1), . . . , δ(m)) ∈ SĪ and eliminate a constraint among δ(d+1), . . . , δ(m).
Since this constraint is not of support, the solution remains unchanged; moreover,
it is easy to see that the first d constraints are still the support constraints for the
problem with m− 1 constraints. If we now remove another constraint among those
which are not of support, the conclusion is similarly drawn that the solution remains
unchanged and that the first d constraints are still the support constraints for the
problem with m − 2 constraints. Proceeding this way until all constraints but the
first d are removed, we obtain that the solution with the sole d support constraints
δ(1), . . . , δ(d) in place is the same as the solution with all m constraints. Since no
constraint among δ(d+1), . . . , δ(m) can be violated by the solution with all m con-
straints and such solution is the same as the one with only the first d constraints,
it follows that (δ(1), . . . , δ(m)) ∈ S̃Ī .

S̃
Ī

⊆ S
Ī

up to a probability 0 set
Suppose now that δ(d+1), . . . , δ(m) are not violated by the solution generated by
δ(1), . . . , δ(d), i.e. (δ(1), . . . , δ(m)) ∈ S̃Ī . A simple reasoning reveals that (δ(1), . . . , δ(m))
does not belong to anyone of sets SI , I 6= Ī. In fact, adding non-violated constraints
to δ(1), . . . , δ(d) does not change the solution and each of the added constraints can
be removed back without altering the solution. Therefore, none of the constraints
δ(d+1), . . . , δ(m) can be of support and hence the multi-extraction is not in SI , I 6= Ī.
It follows that S̃Ī is a subset of the complement of ∪I,I6=ĪSI , which is SĪ up to a
probability 0 set.
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PART 2: P
N{V (x∗

N
) > ǫ} ≤

∑
d−1

i=0

(
N

i

)
ǫi(1 − ǫ)N−i FOR EVERY PROB-

LEM

A non-fully-supported problem admits with non-zero probability randomized in-
stances where the number of support constraints is less than d. A support con-
straint has to be an active constraint, and the typical reason for a lack of support
constraints is that at the optimum the active constraints are less than d, see Figure
3.1. To carry on a proof along lines akin to those for the fully-supported case,

Figure 3.1. A 2-dimensional problem with only 1 active constraint which is of support.

we are well-advised to generalize the notion of solution to that of ball-solution; a
ball-solution has always at least d active constraints. For simplicity, we henceforth
assume that constraints are not trivial, i.e. Xδ 6= R

d, ∀δ ∈ ∆.

Roughly speaking, given an optimization problem whose solution is x∗
m, its ball-

solution is a ball centered in x∗
m and whose radius has been enlarged until the ball

touches the frontier of d constraints. See Figure 3.2 for an example of ball-solution.
The mathematical definition of ball-solution is as follows.

Figure 3.2. Ball-solution.
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Definition 3.1 (ball-solution). Consider a finite instance Pm of UP with

m ≥ d, and let x∗
m be its solution. The ball-solution B(x∗

m, r∗m) of Pm is the largest

closed ball centered in x∗
m fully contained in the feasibility domain of all constraints

with the exception of at most d− 1 of them, i.e. Xδ(i) ∩ B(x∗
m, r∗m) = B(x∗

m, r∗m) for

all i’s, except at most d − 1 of them.

Note also that, when active constraints are d or more, r∗m = 0 and B(x∗
m, r∗m)

reduces to the standard solution x∗
m. Moreover, a ball-solution B(x∗

m, r∗m) need not
be contained in X , although its center x∗

m does.

The notion of active constraint can be generalized to balls by saying that a con-
straint is active for a ball if the ball touches the frontier of the constraint. If in
addition the ball is fully contained in the constraint, then the constraint is said to
be strictly active. See Figure 3.3 for a graphical illustration of active and strictly

δ δ

B(x, r)

B(x, r)

Figure 3.3. Active and strictly-active constraint for a ball.

active constraints for a ball, while the precise definition is as follows.

Definition 3.2 (active constraint for a ball). A constraint δ is active for a

ball B(x, r) if Xδ ∩ B(x, r) 6= ∅ and Xδ ∩ B(x, r + h) 6= B(x, r + h), ∀h > 0. If in

addition Xδ ∩ B(x, r) = B(x, r), Xδ is said to be strictly active.

If the ball is a single point, active and strictly active is the same and reduces
to the standard notion of active.

By construction, a ball-solution has at least d active constraints. To go back to
the track of the proof in PART 1, however, we need d support constraints, not just
active constraints. The following definition naturally extends the notion of support
constraint to the case of ball-solutions.

Definition 3.3 (ball-support constraint). Constraint δ(r), r ∈ {1, . . . , m}, is

a ball-support constraint for Pm if its removal changes the ball-solution of Pm.

An active constraint need not be of ball-support, nor a Pm has always d ball-support
constraints (see Figure 3.4 where δ(2) and δ(3) are not of support). It is clear that
the number of ball-support constraints is less than or equal to d. The case with less
than d ball-support constraints is regarded as degenerate and needs to be treated
separately. We thus split the remaining part of the proof in two sections: PART
2.a “Fully-ball-supported problems” and PART 2.b “Degenerate problems”. Before
proceeding, we are well-advised to give a formal definition of fully-ball-supported
problems.
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δ(1)

δ(2)

δ(3)

Figure 3.4. Only δ(1) is a ball-support constraint.

Definition 3.4 (fully-ball-supported problem). A finite instance Pm, with

m ≥ d, is fully-ball-supported if the number of ball-support constraints of Pm is d.
Problem UP is fully-ball-supported if, for any m ≥ d, RPm is fully-ball-supported

with probability 1.

PART 2.a: FULLY-BALL-SUPPORTED PROBLEMS

We start by introducing the notion of constraint violated by a ball: a constraint
δ is violated by B(x, r) if Xδ ∩ B(x, r) 6= B(x, r). The definition of probability of
violation then generalizes naturally to the ball case:

Definition 3.5 (violation probability of a ball). The violation probability of

a ball B(x, r), x ∈ X , is defined as VB(x, r) = P{δ ∈ ∆ : Xδ ∩ B(x, r) 6= B(x, r)}.

Clearly, for any x, VB(x, r) ≥ V (x). Hence, if B(x∗
N , r∗N ) is the ball-solution of

RPN we have

P
N{V (x∗

N ) > ǫ} ≤ P
N{VB(x∗

N , r∗N ) > ǫ}. (3.5)

Below, we show that a result similar to (2.3) holds for fully-ball-supported problems,
namely

P
N{VB(x∗

N , r∗N ) > ǫ} =

d−1∑

i=0

(
N

i

)
ǫi(1 − ǫ)N−i, (3.6)

and this result together with (3.5) leads to the thesis

P
N{V (x∗

N ) > ǫ} ≤
d−1∑

i=0

(
N

i

)
ǫi(1 − ǫ)N−i.

The proof of (3.6) is verbatim the same as the proof of PART 1 provided that one
substitutes

- solution with ball-solution

- support constraint with ball-support constraint

- violation probability V with violation probability of a ball VB,
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with only one exception: the part where we proved that S
Ī

⊆ S̃
Ī

has to be modi-
fied in a way that we spell out in the following.
The first rationale to conclude that “the solution with only the d support con-
straints δ(1), . . . , δ(d) in place is the same as the solution with all m constraints” is
still valid and leads in our present context to the fact that the ball -solution with only
the d ball -support constraints δ(1), . . . , δ(d) in place is the same as the ball -solution
with all m constraints. Instead, the last argument with which we concluded that
S

Ī
⊆ S̃

Ī
is no longer valid since ball-solutions can violate constraints.

To amend it, suppose for the purpose of contradiction that a constraint among
δ(d+1), . . . , δ(m), say δ(d+1), is violated by the ball-solution with d constraints. Two
cases can occur: (i) the ball-solution has only 1 strictly active constraint among
δ(1), . . . , δ(d); or (ii) it has more than one. In case (i), d − 1 constraints among
δ(1), . . . , δ(d) are violated by the ball solution, so that, with the extra δ(d+1) violated
constraint, the number of violated constraints of the ball-solution with m constraints
would add up to at least d and this contradicts the definition of ball-solution. If
instead (ii) is true, a simple thought reveals that, with one more constraint δ(d+1)

violated by the ball-solution, the strictly active constraints (which, in this case, are
more than 1) cannot be of ball-support for the problem with m constraints and this
contradicts the fact that (δ(1), . . . , δ(m)) ∈ SĪ .

PART 2.b: DEGENERATE PROBLEMS

For not being fully-ball-supported, a finite problem Pm needs to have more than
one strictly active constraint, a circumstance which requires that constraints are not
“generically” distributed. This observation is at the basis of the rather technical
proof of this PART 2.b, which proceeds along the following steps:

STEP 1 a constraints “heating” is introduced; heating scatters constraints around
and the resulting heated problem is shown to be fully-ball-supported; by
resorting to the result in PART 2.a, conclusions are derived about the
violation properties of the heated problem;

STEP 2 it is shown that the solution of the original problem is recovered by cooling
the heated problem down;

STEP 3 the violation properties of the original (non-heated) problem are determined
from the violation properties of the heated problem by a limiting process.

STEP 1 [Heating]
Let ∆′ := ∆ × Bρ, where ρ > 0 is the heating parameter and Bρ ⊂ R

d is the closed
ball centered in the origin with radius ρ, and let P

′ := P × U be the probability in
∆′ obtained as the product probability between P and the uniform probability U

in Bρ. Each z ∈ Bρ represents a constraint translation and the heated uncertain
program is defined as

HUP : min
x∈X⊆Rd

cT x

subject to: x ∈ [Xδ + z], (δ, z) ∈ ∆′,

where [Xδ + z] is set Xδ translated by z, and the new uncertain parameter (δ, z)
allows for different selections of Xδ constraints as well as for any translation z in
Bρ. We show that HUP is fully-ball-supported.

To start with, consider a given deterministic ball B(x, r). We first prove that the
strictly active constraints δ′ ∈ ∆′ for B(x, r) form a set of zero-probability P

′, and
later on from this we shall conclude that HUP is fully-ball-supported.



14 M.C. CAMPI AND S. GARATTI

Let δ′ = (δ, z) and let IA indicate the indicator function of set A, and write

P
′{δ′ is strictly active for B(x, r)}

=

∫

∆′

I{δ′ is strictly active for B(x,r)}P
′(dδ′)

= [by Fubini’s theorem [23]]

=

∫

∆

[∫

Bρ

I{(δ,z) is strictly active for B(x,r)}

dz

Vol(Bρ)

]
P(dδ). (3.7)

The result that

P
′{δ′ is strictly active for B(x, r)} = 0 (3.8)

is established by showing that the term within square brackets in formula (3.7) is
null for all δ’s.

Fix a δ and let C = {z ∈ Bρ : B(x, r) ⊆ [Xδ + z]} be the set of translations
not violating B(x, r). We show that C is convex and that the set {z ∈ Bρ :
(δ, z) is strictly active for B(x, r)} belongs to ∂C, the boundary of C. Since the
boundary of a convex set has zero Lebesgue measure4, the desired result that the
term within square brackets in formula (3.7) is null follows, viz.

∫

Bρ

I{(δ,z) is strictly active for B(x,r)}

dz

Vol(Bρ)
= 0. (3.9)

The convexity of C is immediate: let z1, z2 ∈ C, that is B(x, r) ⊆ [Xδ + z1] and
B(x, r) ⊆ [Xδ + z2] or, equivalently, B(x, r) − z1 ⊆ Xδ and B(x, r) − z2 ⊆ Xδ. From
convexity of Xδ, it follows that B(x, r) − αz1 − (1 − α)z2 ⊆ Xδ, ∀α ∈ [0, 1], that is
αz1 + (1 − α)z2 ∈ C and C is convex.
Consider now an interior point z of C (if any), i.e. it exists a ball centered in z all
contained in C. This means that [Xδ + z] can be moved around in all directions
by a small quantity and B(x, r) remains contained in it. It easily follows that (δ, z)
cannot be strictly active and, thus, {z ∈ Bρ : (δ, z) is strictly active for B(x, r)} has
to belong to ∂C.

Wrapping up, (3.9) is established and, substituting in (3.7), equation (3.8) is ob-
tained.

We next prove that (3.8) entails that HUP is fully-ball-supported.

Consider a finite instance HPm of HUP with m ≥ d. One by one, eliminate m − d
constraints choosing any time a constraint among those non-violated by the ball-
solution in such a way that the ball-solution does not change. This is certainly
possible because the ball-support constraints are at most d. In the end, we are
left with d constraints, say the first d δ′(1), . . . , δ′(d). A simple thought reveals that
these d constraints are actually of ball-support for HPm provided that none of the
other m − d constraints that have been removed was strictly active.
Repeat the same above procedure for every m-ple of constraints (that is for every
HPm generated by HUP), and group together all the m-ples for which the procedure
returns in the end the first d constraints δ′(1), . . . , δ′(d). Call this group of m-ples

4This simple fact follows from the observation that a convex set C in R
d either belongs to a flat

of dimension d−1 – and therefore C has zero R
d Lebesgue measure – or it admits an interior point

z̄ and every half-line from z̄ crosses the boundary of C in only one point (see e.g. Propositions
1.1.13 and 1.1.14 in [19]).



The Exact Feasibility of Randomized Solutions of Uncertain Convex Programs 15

G. We shall show that the probability of the m-ples in G such that HPm is not
fully-ball-supported is zero, and from this – by the observation that only a finite
number

(
m
d

)
of groups of m-ples can be similarly constructed – the final conclusion

that HUP is fully-ball-supported will be secured.

Select fixed values δ̄′(1), . . . , δ̄′(d) for the first d constraints and consider the ball-
solution B these constraints generate. Let the other m− d constraints vary in such
a way that the m-ple δ̄′(1), . . . , δ̄′(d), δ′(d+1), . . . , δ′(m) belongs to G. For one such m-
ple to correspond to a non fully-ball-supported HPm at least one among the m− d
constraints δ′(d+1), . . . , δ′(m) must be strictly active for B, but we have proven in
(3.8) that this happens with probability zero. Integrating over all possible values
δ̄′(1), . . . , δ̄′(d) for the first d constraints, the conclusion is drawn that the non fully-
ball-supported HPm in G have zero probability.
Hence, by the above observation that there are only a finite number

(
m
d

)
of groups

and by the fact that
(
m
d

)
times zero is zero, we obtain that HUP is fully-ball-

supported.

To conclude STEP 1, note that if we suppose to extract N constraints δ′(1), . . . , δ′(N)

from ∆′ according to probability P
′ and in an independent fashion, and we denote

by x′∗
N the corresponding solution, the result of PART 2.a can be invoked to establish

that

(P′)N{V ′(x′∗
N ) > ǫ} ≤

d−1∑

i=0

(
N

i

)
ǫi(1 − ǫ)N−i, (3.10)

where V ′(x) is the probability of violation for the heated problem (i.e. V ′(x) =
P
′{(δ, z) ∈ ∆′ : x /∈ [Xδ + z]}). (3.10) is the final result to which we wanted to

arrive in this heating STEP 1.

STEP 2 [Cooling]
Fix a multi-extraction (δ̄(1), . . . , δ̄(N)) ∈ ∆N , and consider x∗

N , the solution of the
original optimization problem PN with such constraints. We remark that in all
this STEP 2 the multi-extraction (δ̄(1), . . . , δ̄(N)) is kept fixed and never changed
throughout. Consider a closed ball B(xf , rf ), rf > 0, in the feasibility domain
of PN , which exists because the feasibility domain of PN has non-empty interior.
Further, let ρk ↓ 0 be a sequence of heating parameters monotonically decreasing to
zero (cooling of the heating parameter) and such that ρ1 <

rf

2 . For all ρk, consider

the heated versions of (δ̄(1), . . . , δ̄(N)), namely
(
(δ̄(1), z

(1)
k ), . . . , (δ̄(N), z

(N)
k )

)
where

z
(1)
k , . . . , z

(N)
k ∈ Bρk

, and let x′∗
N (z

(1)
k , . . . , z

(N)
k ) be the solution of the heated op-

timization problem HPN with heated constraints (δ̄(1), z
(1)
k ), . . . , (δ̄(N), z

(N)
k ). The

goal of this STEP 2 is to prove that

sup
z
(1)
k

,...,z
(N)
k

∈Bρk

∥∥∥x′∗
N (z

(1)
k , . . . , z

(N)
k ) − x∗

N

∥∥∥ −→ 0, as k → ∞, (3.11)

that is, the solution of the original problem is recovered by cooling the heated prob-
lem down5.

For brevity, from now on we omit the arguments z
(1)
k , . . . , z

(N)
k and write x′∗

N for

x′∗
N (z

(1)
k , . . . , z

(N)
k ).

5Although result (3.11) has an intuitive appeal, its proof is rather technical. The reader not
interested in these technical details can jump to Step 3 from here without loss of continuity.
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We first show that

lim sup
k→∞

sup
z
(1)
k

,...,z
(N)
k

∈Bρk

cT x′∗
N ≤ cT x∗

N . (3.12)

Following Figure 3.5, consider the convex hull co[B(xf , rf ) ∪ x∗
N ] generated by the

feasibility ball B(xf , rf ) and the solution x∗
N of the original problem with constraints

δ̄(1), . . . , δ̄(N). By convexity, co[B(xf , rf ) ∪ x∗
N ] is feasible for the original problem

rf

ρk

xf

xk

x∗
N

Figure 3.5. Convex hull of B(xf , rf ) and x∗
N , and construction of B(xk, ρk).

PN . Construct the closed ball B(xk, ρk) ⊂ co[B(xf , rf )∪x∗
N ] with radius ρk, whose

center xk is as close as possible to x∗
N and lies on the line segment connecting xf

with x∗
N (this ball exists since ρ1 < rf ; the assumed stricter condition that ρ1 <

rf

2
is required in a next construction). Clearly, xk → x∗

N as k → ∞. Since xk is in
the feasibility domain of PN at a distance at least ρk from where δ̄(1), . . . , δ̄(N) are
violated, xk is also in the feasibility domain of every heated problem HPN with
heating parameter ρk. Thus,

lim sup
k→∞

sup
z
(1)
k

,...,z
(N)
k

∈Bρk

cT x′∗
N ≤ lim sup

k→∞
cT xk = cT x∗

N ,

that is (3.12) holds.

Next, we construct a new convex hull which will allow us to reformulate goal (3.11)
in a different, handier, way. Based on this reformulation, (3.11) will then be estab-
lished in the light of (3.12).

The new convex hull is co[B(xf , rf −ρk) ∪ x′∗
N ], see Figure 3.6. Note that, for a

given k, B(xf , rf −ρk) is a fixed ball, instead x′∗
N depends on the specific choice of

z
(1)
k , . . . , z

(N)
k ∈ Bρk

; this means that there are actually as many convex hulls as

choices of z
(1)
k , . . . , z

(N)
k . Moreover, co[B(xf , rf −ρk) ∪ x′∗

N ] is feasible for problem

HPN with constraints translated by z
(1)
k , . . . , z

(N)
k since B(xf , rf −ρk) and x′∗

N are.
Construct then the closed ball B(x′

k, ρk) ⊆ co[B(xf , rf −ρk) ∪ x′∗
N ] with radius ρk,

whose center x′
k is as close as possible to x′∗

N and lies on the line segment connecting

xf with x′∗
N (this ball exists since ρ1 <

rf

2 ). Note that x′
k depends on z

(1)
k , . . . , z

(N)
k
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rf

rf −ρk

ρk

xf

x′
k

x′∗
N

Figure 3.6. Convex hull of B(xf , rf −ρk) and x′∗
N

, and construction of B(x′
k
, ρk).

too.
Since x′

k is in the feasibility domain of HPN with constraints translated by z
(1)
k , . . . , z

(N)
k

at a distance at least ρk from where these translated constraints are violated, x′
k is

also in the feasibility domain of PN .
What is different from the previous convex hull construction is that we cannot here
easily conclude that x′

k → x′∗
N as k → ∞ since x′∗

N is not a fixed point (it depends

on z
(1)
k , . . . , z

(N)
k ∈ Bρk

, a ball that changes with k). We can still, however, secure
a result that goes along a similar line, namely that

x′
k = αkxf + (1 − αk)x′∗

N , where αk =
ρk

rf − ρk

−→ 0 as k → ∞, (3.13)

as it results from Figure 3.6 by a simple proportion argument6. Reorganizing terms
in this equation, we obtain x′∗

N − x∗
N = − αk

1−αk
(xf − x∗

N ) + 1
1−αk

(x′
k − x∗

N ), from
which

‖x′∗
N − x∗

N‖ ≤
αk

1 − αk

‖xf − x∗
N‖ +

1

1 − αk

‖x′
k − x∗

N‖ .

We are now ready to reformulate goal (3.11) in a different way.

Note that the norm in (3.11) is the same as the left-hand-side of the latter equa-
tion. In the right-hand-side, ‖xf − x∗

N‖ is a fixed quantity multiplied by scalar
αk

1−αk
which goes to zero. So, this first term vanishes. In the second term, scalar

1
1−αk

→ 1, and hence (3.11) is equivalent to:

sup
z
(1)
k

,...,z
(N)
k

∈Bρk

‖x′
k − x∗

N‖ −→ 0, as k → ∞. (3.14)

The goal of establishing (3.11) is finally achieved by proving equation (3.14) by
contradiction.

Suppose that (3.14) is false; then, for a given µ > 0, we can choose translations

z̄
(1)
k , . . . , z̄

(N)
k ∈ Bρk

, k = 1, 2, . . ., such that
∥∥∥x′

k(z̄
(1)
k , . . . , z̄

(N)
k ) − x∗

N

∥∥∥ > µ, ∀k,

6Note that (3.13) does not imply that x′
k
→ x′∗

N
since x′∗

N
could in principle escape to infinity.
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where we have here preferred to explicitly indicate dependence of x′
k on z̄

(1)
k , . . . , z̄

(N)
k .

Note that, x′
k(z̄

(1)
k , . . . , z̄

(N)
k ) is asymptotically super-optimal for problem PN :

lim sup
k→∞

cT x′
k(z̄

(1)
k , . . . , z̄

(N)
k )

≤ [using (3.13) and since αk → 0]

≤ lim sup
k→∞

sup
z
(1)
k

,...,z
(N)
k

cT x′∗
N

≤ [using (3.12)]

≤ cT x∗
N . (3.15)

The line segment connecting x′
k(z̄

(1)
k , . . . , z̄

(N)
k ) with x∗

N intersects the surface of the
ball with center x∗

N and radius µ in a point that we name x′S
k . x′S

k is still feasible for

PN being a convex combination of x∗
N and x′

k(z̄
(1)
k , . . . , z̄

(N)
k ), both feasible points

for PN . In addition, since x′
k(z̄

(1)
k , . . . , z̄

(N)
k ) is asymptotically super-optimal for PN

(see (3.15)) and x∗
N is the solution of PN , x′S

k is asymptotically super-optimal for
PN too, i.e. lim supk→∞ cT x′S

k ≤ cT x∗
N . Finally, since x′S

k belongs to a compact, it
admits a convergent subsequence to, say, x′S

∞, a point which is still feasible for PN

due to that the feasibility domain of PN is closed. x′S
∞ would thus be feasible and

super-optimal for PN , so contradicting the uniqueness of the solution of PN .
This concludes STEP 2.

STEP 3 [Drawing the conclusions]

The theorem statement that P
N{V (x∗

N ) > ǫ} ≤
∑d−1

i=0

(
N
i

)
ǫi(1−ǫ)N−i is established

in this STEP 3 along the following line: by the convergence result (3.11) in STEP
2, a bad multi-extraction (δ̄(1), . . . , δ̄(N)) (i.e. one such that V (x∗

N ) > ǫ) is shown

to generate bad heated multi-extractions
(
(δ̄(1), z

(1)
k ), . . . , (δ̄(N), z

(N)
k )

)
for k large

enough; we thus have that the probability of bad multi-extractions can be bounded
by the probability of bad heated multi-extractions; by then using the bound for the
probability of bad heated multi-extractions derived in STEP 1, the thesis follows.

Fix a bad multi-extraction (δ̄(1), . . . , δ̄(N)) ∈ ∆N , and consider x∗
N , the solution

of the optimization problem PN with constraints δ̄(1), . . . , δ̄(N). For an additional
constraint δ ∈ ∆ to be violated by x∗

N , x∗
N must belong to the complement of Xδ, i.e.

X c
δ . Since X c

δ is open, we then have that there exists a small enough ball centered
in x∗

N fully contained in X c
δ . Thus,

{δ ∈ ∆ : x∗
N /∈ Xδ} =

⋃

n=1,2,...

{δ ∈ ∆ : B(x∗
N , 1/n) ⊆ X c

δ }, (3.16)

and

ǫ < [since (δ̄(1), . . . , δ̄(N)) is bad]

< V (x∗
N )

= P{δ ∈ ∆ : x∗
N /∈ Xδ}

= [using (3.16)]

= P

{ ⋃

n=1,2,...

{δ ∈ ∆ : B(x∗
N , 1/n) ⊆ X c

δ }
}

= lim
n→∞

P{δ ∈ ∆ : B(x∗
N , 1/n) ⊆ X c

δ },

from which there exists a n̄ such that

P{δ ∈ ∆ : B(x∗
N , 1/n̄) ⊆ X c

δ } > ǫ. (3.17)
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Let us now heat the constraints δ̄(1), . . . , δ̄(N) up by translation parameters z
(1)
k , . . . , z

(N)
k ∈

Bρk
, and ask the following question: is it true that the heated multi-extraction(

(δ̄(1), z
(1)
k ), . . . , (δ̄(N), z

(N)
k )

)
is bad for HUP with heating parameter ρk? It turns

out that the answer is positive for k large enough, a fact that is proven next.

Recall that x′∗
N is the solution with constraints (δ̄(1), z

(1)
k ), . . . , (δ̄(N), z

(N)
k ) and de-

fine dk := sup
z
(1)
k

,...,z
(N)
k

∈Bρk

‖x′∗
N − x∗

N‖ which, by (3.11), goes to 0 as k → ∞. Pick

a k̄ such that

dk + ρk < 1/n̄, ∀k ≥ k̄.

All heated solutions x′∗
N are apart from x∗

N by at most dk and all heated constraints
(δ, z) ∈ ∆ × Bρk

are apart from the corresponding unheated constraint δ by at
most ρk. Thus, if k ≥ k̄, all heated versions of a constraint δ in the set {δ ∈ ∆ :
B(x∗

N , 1/n̄) ⊆ X c
δ } in the left-hand-side of (3.17) are violated by x′∗

N . That is,

{δ ∈ ∆ : B(x∗
N , 1/n̄) ⊆ X c

δ } × Bρk
⊆ {(δ, z) ∈ ∆ × Bρk

: x′∗
N /∈ [Xδ + z]}, ∀k ≥ k̄.

(3.18)

Then, for any z
(1)
k , . . . , z

(N)
k ∈ Bρk

and for any k ≥ k̄, we have that

V ′(x′∗
N ) = P

′{(δ, z) ∈ ∆ × Bρk
: x′∗

N /∈ [Xδ + z]}

≥ [using (3.18)]

≥ P
′
{
{δ ∈ ∆ : B(x∗

N , 1/n̄) ⊆ X c
δ } × Bρk

}

= [recalling that P
′ = P × U]

= P{δ ∈ ∆ : B(x∗
N , 1/n̄) ⊆ X c

δ } · U{Bρk
}

> [since U{Bρk
} = 1 and using (3.17)]

> ǫ,

i.e.
(
(δ̄(1), z

(1)
k ), . . . , (δ̄(N), z

(N)
k )

)
is bad for HUP with heating parameter ρk for any

z
(1)
k , . . . , z

(N)
k ∈ Bρk

when k ≥ k̄. In turn, this entails that

∫

BN
ρk

I{V ′(x′∗

N
)>ǫ}

dzN

Vol(BN
ρk

)
= 1, ∀k ≥ k̄. (3.19)

Finally,

d−1∑

i=0

(
N

i

)
ǫi(1 − ǫ)N−i

≥ [using (3.10)]

≥ (P′)N{V ′(x′∗
N ) > ǫ}

=

∫

∆N

[∫

BN
ρk

I{V ′(x′∗

N )>ǫ}
dzN

Vol(BN
ρk

)

]
P

N (dδN )

≥

∫

{V (x∗

N
)>ǫ}

[∫

BN
ρk

I{V ′(x′∗

N )>ǫ}
dzN

Vol(BN
ρk

)

]
P

N (dδN )

−−−−→
k → ∞[recalling (3.19) and by the dominated convergence theorem, [26]]

−−−−→
k → ∞

∫

{V (x∗

N )>ǫ}

P
N (dδN )

= P
N{V (x∗

N ) > ǫ}.

This concludes the proof.
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