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Abstract

This paper addresses the problem of constructing reliable interval predictors directly from observed data. Differently from standard
predictor models, interval predictors return a prediction interval as opposed to a single prediction value. We show that, in a stationary
and independent observations framework, the reliability of the model (that is, the probability that the future system output falls in the
predicted interval) is guaranteed a-priori by an explicit and non-asymptotic formula, with no further assumptions on the structure of the
unknown mechanism that generates the data. This fact stems from a key result derived in this paper, which relates at a fundamental level
the reliability of the model to its complexity and to the amount of available information (number of observed data).
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1 Introduction

In this paper we present a novel approach for the construction
of predictor models — that is, models that can be used for
prediction purposes — directly from observed data, and for
assessing the reliability of the prediction generated by these
models.

Along the standard routes in system identification (see, e.g.,
[19] and [24]), a model is typically obtained by first select-
ing a parametric model structure, and then by estimating the
model parameters, either using an available batch of obser-
vations, or by on-line parameter estimation. The so-obtained
model may be used to predict the future output of the sys-
tem. The predicted value is however of little use if derived
without a tag certifying its accuracy ([6], Chapters 1 and 5,
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[13], Section 4.1, [21]). A practical way of assigning the ac-
curacy tag is to provide an interval of confidence around the
predicted value, to which the future output is guaranteed to
belong with a certain probability (reliability of prediction).
For the construction of this interval, two sources of informa-
tion are used in this standard identification process: a-priori
information on the true system, and a-posteriori informa-
tion (the data). The mutual strength of this two-layers in-
formation set-up drives the compromise in the choice of the
model class complexity (bias vs. variance trade-off). More-
over, the final reliability of the obtained model depends on
such a compromise, and attaching a reliability certificate to
the model calls for the use of a-priori knowledge to quantify
the bias component.

1.1 Objectives of this paper

In this paper we propose an alternative approach that, under
suitable hypotheses (stationarity and independence of the
system variables) stated formally in the next section, per-
mits one to derive a reliable interval of confidence for the
system output, with no further assumptions on the structure
of the mechanism that generates the data. In other words, no
a-priori information on the system structure is used to assess
reliability. This result is achieved by abandoning the tradi-
tional perspective that the model is a one-valued function.
We instead introduce models directly returning an interval
as output (IPM – Interval Predictor Models). The IPM se-
lection is driven by the principle that the model should cor-
rectly describe the already seen data. Among models cor-
rectly describing the data, the one returning the smallest
possible prediction interval is chosen.
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By the use of IPMs, a key conceptual separation is obtained:
the reliability tag only depends on the chosen model class
and by the number of observed data and it is therefore al-
ways guaranteed, independently of what the data-generating
mechanism is. On the other hand, a-priori information still
has a role in the proposed approach since selecting a suit-
able model class results in an IPM with smaller prediction
intervals. A strength of the proposed approach is that of re-
turning the smallest possible interval predictor within the
chosen class.

1.2 Problem statement

Let Φ⊆Rn and Y ⊆R be given sets, called respectively the
explanatory variable set and the outcome set. An unknown
(but a-priori fixed) stochastic data generation mechanism
generates the data in the form of a sequence of explana-
tory variables and corresponding outcomes: (ϕ(t),y(t)), t =
1,2, . . ., with ϕ(t) ∈ Φ, y(t) ∈ Y . We shall assume that this
data generation process is stationary.

Assumption 1 (Stationarity) The process x(t)= (ϕ(t),y(t)),
t = 1,2, . . ., with ϕ(t) ∈ Φ ⊆ Rn and y(t) ∈ Y ⊆ R, is a
(strict-sense) stationary discrete-time stochastic process.
The (unknown) marginal distribution of the process at time
t, which is the same for any t, is denoted with P.

Remark 1 P can be interpreted as a “probabilistic cloud”
in the Φ×Y space. The case in which y(t) is obtained as a
function of ϕ(t) is just a particular case where the probability
P is concentrated over the function. In general, the fact that P
is a “cloud” accommodates situations where the fluctuation
in y(t) is caused by other sources (noise sources) besides
the explanatory variable ϕ(t). ?

Remark 2 Stationarity simply says that the system is oper-
ating in steady-state. No assumption is made on the marginal
P so that the structural or functional form relating ϕ(t) to
y(t) can be arbitrary. The system can be e.g. linear corrupted
by noise, nonlinear corrupted by noise, or anything else. ?

For the reliability results we shall develop in Section 4, the
following additional hypothesis of independence is made on
x(t).

Assumption 2 (Independence) The process x(t)= (ϕ(t),y(t)),
t = 1,2, . . ., is an independent sequence.

We underline that independence is just a technical addi-
tional assumption that we introduce for two reasons: (i)
this basic setting permits one to better understand the ideas
behind the theorems by focusing on conceptual aspects; (ii)
admittedly, quantifying the IPM reliability is more involved
in the dependent case. This latter assumption is relieved
in Section 4.2 of this paper, where an extension to M-
dependent processes is provided. In the independent case,
time ordering is not significant and t can also be seen just
as an index to enumerate the data.

The problem addressed in this paper is described as follows.

Problem (Reliable interval prediction) Suppose a finite
number N of data from the unknown process x(t) have been

observed, and call DN = {ϕ(t),y(t)}t=1,...,N the collection of
these observations. We want to find a rule that when fed with
ϕ(N +1) returns an informative (i.e., not too large) interval
I to which the next (unobserved) output y(N + 1) belongs
with high probability. Moreover, this probability should be
quantified only on the basis of the structure of the rule and
of the number of observations, without further assumptions
on the mechanism that generates the data.

To achieve these goals we first introduce interval predictor
models IPMs, which are the tools through which prediction
intervals are generated. Then, we show that these models
can actually “learn” from data, that is once the IPM has been
“trained” on a batch DN , it may fail to correctly predict future
outcomes with an a-priori quantifiable probability only.

1.3 Structure of the paper

In Section 2, interval predictor models are introduced and the
notion of reliability of such models is defined. The problem
of identifying an interval predictor from data is the subject
of Section 3. The main results on reliability assessment for
interval predictors are given in Section 4, which also con-
tains some remarks and comments on the general philosophy
underlying the method. Illustrative numerical examples are
presented in Section 5, and conclusions are finally drawn in
Section 6. To keep the focus of the discussion on the main
concepts and to improve readability, all technical proofs are
given in the Appendix.

2 Interval predictor models

In this section, we introduce the key instrumental element of
our approach, that is models that return an interval as output:
Interval Predictor Models (IPMs). The origin of this kind
of models has to be found in the theory of differential in-
clusions and set-valued dynamical systems (see e.g. [1], [2]
and [3]). Interval models have been previously considered
in other contributions along routes that are quite different
from that of this paper. In [22] and [23], interval predictors
identification is performed under certain a-priori Lipschitz
conditions on the underlying system function. Utilizing this
prior assumption allowed the authors of these papers to es-
tablish guaranteed results without resorting to any station-
arity assumption. Of course, however, the results are reliant
on the a-priori known bounds and this sets serious limita-
tions to the applicability of the method. Set prediction has
also been developed in [14], [15], and [17]. By combining
prior feasible sets with observations, guaranteed regions for
the state vector and the system parameters are obtained.

Some basic concepts on IPMs are recalled next. Then, a
new type of parametric IPMs of use in the present paper is
introduced in Section 2.1; see also [8].

An interval predictor model is simply a rule that assigns to
each instance vector ϕ ∈Φ a corresponding output interval
in Y . That is, an IPM is a set-valued map

I : ϕ → I(ϕ)⊆ Y. (1)

In (1), ϕ is a regression vector containing explanatory vari-
ables on which the system output y depends, and I(ϕ) is the
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prediction interval. We are interested in building IPMs such
that, given an observed ϕ , I(ϕ) is an informative interval
containing y with high guaranteed probability. Output inter-
vals are here obtained by considering the span of parametric
families of functions, as detailed in the next section.

2.1 Interval models described in parametric form

Consider a family of functions M mapping Φ into Y , param-
eterized by a vector q ranging in some set Q⊆ Rnq , i.e.

M = {y = M(ϕ ,q), q ∈ Q⊆ Rnq},

where, for a given q, M is a one-valued map Φ→ Y . Then,
a parametric IPM is obtained by associating to each ϕ ∈Φ
the set of all possible outputs given by M(ϕ,q) as q varies
over Q, viz.

I(ϕ) = {y : y = M(ϕ ,q) for some q ∈ Q}. (2)

An example of a parametric IPM is that derived from stan-
dard linear regression functions:

M = {y = ϑ T ϕ + e, ϑ ∈Θ⊆ Rn, |e| ≤ γ ∈ R}. (3)

In this case, q = [ϑ T e]T ∈ Rn+1 and Q = Θ× [−γ,γ]. A
possible choice for the set Θ is a ball with center c and
radius r:

Θ = Bc,r = {ϑ ∈ Rn : ‖ϑ − c‖ ≤ r}. (4)

A more general choice for Θ is an ellipsoidal region:

Θ = Ec,P = {ϑ ∈ Rn : (ϑ − c)T P−1(ϑ − c)≤ 1}, (5)

where P is a symmetric positive definite matrix.

For the model structure (3),(4), given an instance ϕ , the
interval output of the IPM obtained through equation (2) can
be explicitly computed as

I(ϕ) = [cT ϕ− (r‖ϕ‖+ γ),cT ϕ +(r‖ϕ‖+ γ)]. (6)

To verify this, rewrite (4) as {ϑ ∈Rn : ϑ = c+ρ , ‖ρ‖ ≤ r}
and write

y = ϑ T ϕ + e = cT ϕ +ρT ϕ + e≤ cT ϕ + r
ϕT

‖ϕ‖ϕ + γ

= cT ϕ + r‖ϕ‖+ γ.

Similarly, y≥ cT ϕ− r‖ϕ‖− γ , leading to (6).

Similar considerations show that for the ellipsoidal
model (3),(5) the interval is given by:

I(ϕ) = [cT ϕ− (
√

ϕT Pϕ + γ),cT ϕ +(
√

ϕT Pϕ + γ)]. (7)

2.1.1 Classes of IPMs

Note that a parametric IPM as defined in (2) is assigned once
a set Q is given. For this reason, parametric IPMs shall be
usually denoted by IQ.

For identification purposes, we shall consider classes of
parametric IPMs, among which the predictor model is se-
lected. A class of parametric IPMs is simply a collection
of IQ, where Q belongs to a family Q of feasible sets.
For instance, for the parametric IPM defined by (3),(4),
Q = Bc,r× [−γ ,γ] is uniquely determined by c, r and γ , and
Q can e.g. be given by

Q = {Q = Bc,r× [−γ,γ] : c ∈ Rn,r ≥ 0,γ ≥ 0}, (8)

that is, Q is the family of all cylinders obtained by letting
the spherical basis and height vary in all possible ways.
Similarly, when Q = Ec,P× [−γ,γ] we can choose

Q = {Q = Ec,P× [−γ,γ] : c ∈ Rn,P ∈ S+,γ ≥ 0}, (9)

where S+ is the set of symmetric positive definite n× n
matrices.

2.2 Reliability of IPMs

Recalling that P is the probability distribution in the space
Φ×Y , we have the following definition.

Definition 1 (Reliability of an IPM) Let I be a given IPM.
The reliability of I is defined as

R(I) := ProbP{y ∈ I(ϕ)},

that is R(I) is the probability that the pair (ϕ,y) falls in the
IPM.

Note that this definition refers to picking a random ϕ and a
y such that y belongs to I(ϕ); in other words, this notion is
not conditional to a given ϕ .

2.3 An example of IPM

Assume that an output y ∈ R is generated according to the
following data-generating mechanism:

y = y(ϕ) = ϕ · (1+ |ϕ |), with ϕ ∈ [−1,1].

Suppose this mechanism is actually unknown, and consider a
parametric IPM defined according to the following equation:

I(ϕ) = {y : y = ϑϕ , ϑ ∈ [1,2]}

(note that this is a particular instance of a predictor model
as in (2),(3),(4)). The prediction interval I(ϕ) can be explic-
itly computed according to (6), leading to I(ϕ) = [1.5ϕ −
0.5|ϕ|,1.5ϕ +0.5|ϕ |]. The map I(ϕ) is depicted in Figure 1,
where function y(ϕ) is also represented. In this case, for
each ϕ the output y(ϕ) is contained in the predicted interval
I(ϕ), so that the reliability of the predicted interval is 100%.
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Figure 1. I(ϕ) (textured region) and y(ϕ) (dashed line).

Remark 3 Note that y = ϑϕ should not be considered as
a function family from which a specific function has to be
selected to represent the data-generating system. Instead,
these parametric functions are merely an instrument through
which the interval map I(ϕ) is defined. As a matter of fact,
y(ϕ) does not belong to the family y = ϑϕ , and yet the
predicted interval I(ϕ) always contains the output y(ϕ) for
suitable values of ϑ that depend on ϕ . ?

In this example, the ϕ to y map is deterministic. In more
general situations the data-generating system is not a deter-
ministic map. Rather it is a “cloud” in the Φ×Y space and
the interval map is used to describe the vertical dispersion
of y.

3 Identification of IPMs

In this section we discuss the problem of selecting an inter-
val predictor from a parametric class on the basis of criteria
of consistency with the observed data and of optimality. This
section is focused on the numerical techniques for construct-
ing an IPM, whereas the fundamental issue of assessing the
reliability of the IPM is deferred to Section 4.

Suppose that the observations

DN = {ϕ(t),y(t)}t=1,...,N

have been collected. Based on DN we want to identify an
interval predictor model IQ̂N

from a given class of parametric
IPMs IQ, Q ∈Q.

In this work, identification is guided by two different criteria
as explained in the following.

First, we require IQ̂N
to be consistent with the available

observations, according to the following definition.

Definition 2 An IPM I is consistent with the batch of ob-
servations DN if y(t) ∈ I(ϕ(t)), for t = 1, . . . ,N.

In other words, consistency means that the interval I(ϕ(t))
for the given ϕ(t) is not falsified by the observed y(t), for
t = 1, . . . ,N.

Clearly, consistency alone does not make IQ̂N
a good pre-

dictor. The second requirement on IQ̂N
is that it satisfies a

tightness criterion, expressed in terms of the minimization
of an index µQ measuring how wide the intervals returned
by the IPM are. The tightness criterion should reflect the
specific needs of the problem at hand and is model class
dependent. For example, for parametric IPMs with ϑ in a
ball defined by (3),(4), given a ϕ , the size of the predicted
interval increases linearly with r and γ (see (6)), so that we
may want to consider

µQ = αr + γ, (10)

where α is a fixed nonnegative number. If e.g. α =
E[‖ϕ(t)‖], then µQ = rE[‖ϕ(t)‖] + γ = E[r‖ϕ(t)‖ + γ]
measures the average (half) width of IQ.

Combining the consistency requirement with the require-
ment of tightness, the identification of IQ̂N

can be formu-
lated as the following constrained optimization problem (to
ease the notation we shall write ÎN in place of IQ̂N

in the
following).

Problem 1 (IPM identification)
Find ÎN := IQ̂N

such that

Q̂N = arg min
Q∈Q

µQ,

subject to y(t) ∈ IQ(ϕ(t)), t = 1, . . . ,N.

Problem 1 might be hard to solve in general. However,
for some standard IPM parameterizations and cost criteria,
Problem 1 turns out to be a convex optimization problem,
which can be solved at low computational effort.
For instance, for parametric IPMs with ϑ in a ball defined
by (3),(4) with Q and µQ as in (8) and (10), Problem 1 be-
comes the following linear program (note that Q = Q(c,r,γ)
in this case).

Problem 1.a (spherical parameter set)
Find ÎN := IQ(ĉN ,r̂N ,γ̂N) such that

ĉN , r̂N , γ̂N = argminc,r,γ αr + γ, subject to

r,γ ≥ 0
y(t)≥ cT ϕ(t)− r‖ϕ(t)‖− γ, t = 1, . . . ,N
y(t)≤ cT ϕ(t)+ r‖ϕ(t)‖+ γ, t = 1, . . . ,N.

A similar result also holds for the IPMs with ϑ in an ellipsoid
defined by (3),(5) with Q as in (9) and

µQ = Tr[PW ]+ γ2,

where W is a weighting matrix and Tr[·] means trace. If
e.g. W = E[ϕ(t)ϕ(t)T ] then µQ relates to the width of IQ as
follows:

E[(half width)2] = [see (7)] = E[(
√

ϕ(t)T Pϕ(t)+ γ)2]

≤ 2E[ϕ(t)T Pϕ(t)+ γ2] = 2E[Tr[ϕ(t)T Pϕ(t)]+ γ2]

= 2E[Tr[Pϕ(t)ϕ(t)T ]]+2γ2 = 2Tr[PE[ϕ(t)ϕ(t)T ]]+2γ2

= 2µQ.
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Notice that minimizing E[half width] is not suitable since
this quantity is not convex in the optimization variables.
In this case, as shown in [11], Problem 1 can be rewritten
as follows (ε1, . . . ,εN are slack variables).

Problem 1.b (ellipsoidal parameter set)
Find ÎN := IQ(ĉN ,P̂N ,γ̂N) such that

ĉN , P̂N , γ̂2
N = argminc,P,γ2,ε1,...,εN

Tr[PW ]+ γ2, subject to

PÂ 0,[
γ2 εt

εt 1

]
º 0,

[
ϕ(t)T Pϕ(t) y(t)− cT ϕ(t)− εt

y(t)− cT ϕ(t)− εt 1

]
º 0,

t = 1, . . . ,N.

Problem 1.b is a convex semi-definite optimization prob-
lem, for which many efficient numerical solvers have been
developed (see e.g. [7], [25]).

Numerical examples of IPM identification can be found in
Section 5.

3.1 Identification with discarded constraints

It is well known that in some cases there can be some “ex-
ceptional” data points (the so-called outliers) whose value is
anomalous as compared to other observations. In presence
of outliers, requiring consistency for all the available obser-
vations as in Problem 1 may be unsuitable. Indeed, even a
single anomalous datum may adversely affect the final re-
sult, generating a wide identified model. In this case, a wiser
procedure would be to discard “bad data”, and use the re-
maining ones to do identification, [18], [4], and [16].

The presence of outliers is not the only reason justifying
data discarding, though. Indeed, there are situations where
one is willing to accept a decrease in prediction reliability
in favor of a narrower interval model and, as we will show
in this section, this can be obtained by discarding some data
even when these data cannot be regarded as outliers. As
an example, we may think of prediction of stock market
returns or volatilities. Here, a 60-70% confidence prediction
interval of small enough size may be more suitable than a
99% confidence prediction interval which is, however, too
loose to reveal the future index trend.

From an optimization point of view, the IPM identification
with discarded constraints can be outlined as follows. Let
k < N be a fixed number and let A be a decision algorithm
through which k observations are discarded from DN . The
output of A is the set A (DN) = {i1, . . . , iN−k} of N − k
indexes from {1, . . . ,N} representing the constraints that are
used in identification. By ÎA

N,k we denote the identified IPM
when k constraints are removed as indicated by A . Precisely:

Problem 1′ (IPM identification with k discarded con-
straints)
Find ÎA

N,k := IQ̂A
N,k

such that

Q̂A
N,k = arg min

Q∈Q
µQ,

subject to y(t) ∈ IQ(ϕ(t)), t ∈A (DN).

Notice that, for k = 0, ÎA
N,0 ≡ ÎN , so that Problem 1 is a

particular case of Problem 1′.

Two main issues now arise:

(i) How should A be chosen?
(ii) Which is the loss in reliability when ÎA

N,k is used in place
of ÎN?

Point (ii) will be postponed to Section 4, while point (i) is
the subject of the next Section 3.2.

3.2 Choice of the data discarding algorithm A

3.2.1 Greedy constraints removal

A straightforward approach to remove constraints is to se-
lect in succession those constraints which – if removed one
by one – lead each time to the largest immediate improve-
ment in µQ. This approach does not of course give the over-
all optimal result with k constraints removed. It has however
the great advantage of being implementable at a low com-
putational effort. Moreover, the reliability analysis of Sec-
tion 4 is algorithm-independent, and rigorously applies to
this greedy approach as well.

3.2.2 Optimal constraints removal

In order to achieve the best possible benefit from constraints
removal, algorithm A should be chosen so to discard those
constraints whose removal leads to the largest overall drop
in the cost µQ. To this end, one can try to solve Problem 1
for all possible combinations of N− k constraints taken out
from the initial N constraints, and then choose that combi-
nation resulting in the lowest value of µQ. This brute-force
way of proceeding, however, is computationally very de-
manding, since it requires to solve N!/(N−k)!k! optimiza-
tion problems, a truly large number in general.

The main aim of this section is to present a better algorithm
for solving the problem of constraints removal. The approach
taken here is in the same spirit as in [4] and [20], though in a
different setting. We inform the reader that is not interested
in computational aspects that he/she can jump from here to
Section 4, where the key issue of reliability is discussed,
without any loss of continuity.

We first give some definitions. To avoid notational clutter,
these definitions are given with reference to a generic con-
strained optimization problem:

P : Find ẑ = arg min
z∈Z⊆Rd

f (z),

subject to z ∈ Zt , t = 1, . . . ,N.
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Existence and uniqueness of ẑ is taken here for granted.
More generality can be achieved by extra technicalities. Let
w(P) := f (ẑ) be the optimal value for problem P . We have
the following definition.

Definition 3 (Support constraint) The l-th constraint Zl is
a support constraint for P if w(Pl) < w(P), where Pl is
the optimization problem obtained from P by removing the
l-th constraint, namely:

Pl : Find ẑl = arg min
z∈Z⊆Rd

f (z),

subject to z ∈ Zt ,

t = 1, . . . , l−1, l +1, . . . ,N.

In other words, a support constraint is a constraint whose
elimination improves the optimal solution. The following
theorem is taken from [9]; see Theorem 2 and Section 4.3
in that reference.

Theorem 1 If P is a convex optimization problem (i.e. if
f (z) is a convex function of z, Z is a convex set, and Zt is a
convex set for any t), then the number of support constraints
for P is at most d, the number of optimization variables.

We also need the following definition.

Definition 4 (Non-degenerate problem) P is non-
degenerate if w(Psc) = w(P), where

Psc : Find ẑsc = argmin
z∈Z

f (z),

subject to z ∈ Zt , for any Zt

that is a support constraint of P.

Thus, a non-degenerate problem is one such that the optimal
solution with the sole support constraints in place is the same
as the optimal solution with all constraints. A degenerate P
is illustrated in the example below.

Example 1 Let

P : Find (ẑ1, ẑ2) = arg min
(z1,z2)∈R2

z2, (11)

subject to (z1,z2) ∈ Za∩Zb∩Zc,

where Za, Zb and Zc are as in Figure 2.

In this case, only Za is a support constraint since removing
Zb or Zc does not change the optimal solution. However, con-
sidering the optimization problem subject to Za only leads
to a different solution than the original problem. ?

We now go back to the problem of optimally removing k
constraints from the initial set of constraints DN (with a lit-
tle abuse of terminology, we say “constraints DN” for “con-
straints generated by DN”). We shall consider a sequence
of optimization problems obtained from Problem 1 by re-
moving some constraints from the initial set DN . For each
of these problems we assume that the optimal solution ex-
ists and is unique, and moreover that the problem is non-
degenerate. While these assumptions can be relaxed (e.g.

Za

Zb

Zc

z2

z1

objective direction

Figure 2. Constraints for the optimization problem (11)

tie-break rules can be introduced to avoid non-uniqueness,
see e.g. [9]), we prefer to maintain them to avoid unduly
technical complications.

For F ⊆ DN , let w(F) be the optimal value for Problem 1
with F in place of DN . We will also denote by sc(F) and
by sci(F) respectively the set of support constraints and the
i-th support constraint of the problem with constraints F .
Finally, suppose that Problem 1 is a convex problem (this
is true e.g. for Problems 1.a and 1.b) so that |sc(F)| ≤ d,
∀F ⊆DN , according to Theorem 1 (| · | denotes cardinality).

The following Algorithm A ∗ optimally discards k con-
straints. The strength of this algorithm lies in that, instead
of considering all possible combinations of N − k con-
straints from the N initial ones, it only considers a subset
of situations. Precisely, it constructs a tree of optimization
problems as follows: the root is given by Problem 1, with
the initial set of constraints DN ; each problem in the tree is
obtained from a parent problem simply removing one of the
parent problem support constraints. In the end, one has to
solve the optimization problems at level k in the tree (that
is with k constraints removed).

The pseudo-code of the algorithm is as follows (here, Dh
N−i

denotes the constraints of the h-th problem at level i, while
Mi is the number of problems at level i).

Algorithm A ∗

0. D1
N := DN; M0 := 1; i := 0;

1. Mi+1 := 0
FOR h = 1 TO Mi
FOR l = 1 TO |sc(Dh

N−i)|
Mi+1 := Mi+1 +1
DMi+1

N−i−1 := Dh
N−i− scl(Dh

N−i)
END
END

2. IF i+1 < k THEN i := i+1; GO TO 1.
ELSE A ∗(DN) := Dr

N−k where Dr
N−k is such that

w(Dr
N−k)≤ w(D j

N−k), j = 1, . . . ,Mk.

The optimality of Algorithm A ∗ is guaranteed by the fol-
lowing theorem.
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Theorem 2 Under the non-degeneracy assumption (Defini-
tion 4), algorithm A ∗ is optimal, in the sense that it returns
a set of N− k constraints resulting in the largest possible
drop of the cost value µQ.

Proof: see Appendix A.

We next provide an evaluation of the computational effort
required to implement algorithm A ∗. The core of Algorithm
A ∗ is the inner FOR loop where one support constraint at a
time has to be removed from Dh

N−i. In order to spot the sup-
port constraints in Dh

N−i one tests all the constraints: each
constraint is eliminated in turn and one checks whether the
optimal solution improves.

In A ∗, the computation of support constraints has to be
repeated for all the problems in the tree, from level 0 to level
k− 1. Since for each problem there are at most d support
constraints, the number of problems at level i is at most
di. Moreover, each of these problems has N− i constraints.
Thus, a bound to the number of problems which A ∗ requires
to solve is N +(N−1) ·d+ . . .+(N−k−1) ·dk−1 ≤N · dk−1

d−1 .
Note that this number is much smaller than N!/k!(N− k)!.

As an additional remark, since support constraints have to be
active constraints (i.e. constraints whose boundary contains
the solution of the optimization problem), sc(Dh

N−i) can be
determined by searching among active constraints of Dh

N−i
only. This may further reduce the number of optimization
problems to test significantly.

4 Reliability of IPMs

This section contains the main results of the paper. Here, we
tackle the fundamental issue of quantifying the reliability
R(I) of the IPM (recall Definition 1) identified according to
Problem 1′. The reliability result applies to any constraints
removal algorithm A and, in particular, to the greedy al-
gorithm in Section 3.2.1, to the optimal algorithm A ∗ of
Section 3.2.2, and, of course, to the particular case when no
observations are removed.

A quantification of the reliability of the IPM will be given
in the next two sections. Section 4.1 concentrates on an in-
dependent setting (e.g. data are generated by a static system
fed by an independent input), while extensions to dependent
settings are discussed in Section 4.2.

4.1 Independent observations

The following main theorem permits one to quantify the re-
liability of an IPM whenever the optimization Problem 1′
used for its identification is convex (i.e. µQ and the con-
straints are convex in the optimization variables).

Theorem 3 Let x(t) = (ϕ(t),y(t)), t = 1,2, . . ., satisfy As-
sumptions 1 and 2. Moreover, suppose that Problem 1′ is a
convex constrained optimization problem, and that its so-
lution exists and is unique. Then, for any ε ∈ (0,1) and
k < N− d (k is the number of constraints discarded by A

and d is the number of optimization variables in Problem 1′)
it holds that

ProbPN{R(ÎA
N,k)≥ 1− ε}> 1−β , (12)

where

β = β0

k

∑
i=0

(N−d)!
(N−d− i)!i!

· ε i

(1− ε)i , (13)

β0 =
N!

(N−d)!d!
(1− ε)N−d , (14)

and PN is the probability with which data x(t), t = 1, . . . ,N,
are observed.

Proof: see Appendix B.

Theorem 3 is a “generalization” theorem, in the sense that
the solution obtained by looking at N observations gener-
alizes to unseen data. Precisely, the theorem states that the
reliability of ÎA

N,k is no worse than 1− ε , with high proba-
bility greater than 1−β . As for the probability 1−β , one
should note that ÎA

N,k is a random element that depends on the
observed realization x(1), . . . ,x(N) of the stochastic process
x(t). Therefore, its reliability R(ÎA

N,k) can be greater than or
equal to 1− ε for some random observations and not for
others, and β refers to the probability PN = P× . . .×P of
observing a “bad” multi-sample x(1), . . . ,x(N) such that the
reliability of ÎA

N,k is less than 1− ε . Parameter ε is referred
to as the “reliability parameter” while β is the “confidence
parameter”.

The confidence probability 1−β is the key to obtain results
that are guaranteed independently of the data-generating
system. Without this probability, a reliability result would
certainly require some a-priori assumption on the data-
generating mechanism. It is worth noticing that the confi-
dence parameter can be pushed down to values such that
the probability 1−β is so close to 1 that it loses any prac-
tical significance (so that R(ÎA

N,k) ≥ 1− ε is for practical
purposes guaranteed) and this is obtained without letting
N increase too much. This is due to that β exponentially
vanishes with N. See e.g. Table 1 for a numerical example.

We further remark that a confidence probability is common
in many different contexts of classical probability theory,
starting from the Glivenko-Cantelli theorem, [12], and going
down to Vapnik-Chervonenkis uniform law of large num-
bers, [27], [28], [26].

For k = 0, equation (13) tells us that R(ÎN)≥ 1−ε holds with
confidence at least 1−β0; see (14). This bound for k = 0
previously appeared in [10] in a robust control context. In
the expression for β in (13), the term ∑k

i=0
(N−d)!

(N−d−i)!i! · ε i

(1−ε)i

represents the confidence degradation due to the discarding
of k observations.

A number of remarks on Theorem 3 are now in order.

Remark 4 The requirement that the optimization problem
be convex is e.g. satisfied for the model classes used in
Problems 1.a and 1.b, and further investigations are expected
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N 500 600 700 800 900 1000

β 4.1 ·10−3 1.3 ·10−6 3.2 ·10−10 5.5 ·10−14 7.5 ·10−18 8.8 ·10−22

Table 1
β given by (13) with ε = 0.1, d = 4 and k = 10.

in the direction of determining other convex classes. We
further note that convexity is not only the key property to
obtain reliability results; it is also crucial in making the
resulting optimization problem computationally tractable. ?

Remark 5 The relation (12) holds for given N and k. In
certain applications one may want to let k vary with a fixed
number of observations to meet a suitable balance between
performance and reliability, or one may want to let N in-
crease as the time horizon extends. If so, relation (12) can
still be applied and the simultaneous satisfaction of the reli-
ability results for different k and N holds with a confidence
1−∑ j β j, where j runs over the different situations. Having
a sum of β j is not a hurdle since β j is very small in normal
situations. ?

Remark 6 The reader may wonder how the result in Theo-
rem 3 is possible since, after all, reality has been inspected in
correspondence of N points only and, since no assumptions
are made on the data-generating system, reality can be any-
thing elsewhere. The reason why this perhaps surprisingly
result is possible relies on the role played by the probability
1−β , a role that can be easily appreciated through a simple
example.

Suppose that reality is represented by some function, and that
the IPM does not correctly predict part of it. Two situations
can occur. In the first situation in Figure 3(a), only a small
part of reality is outside the IPM (in the terminology of this
paper, R(ÎA

N,k)≥ 1−ε), and the IPM is reliable in the context
of Theorem 3.

(b)

Figure 3. IPM vs. reality, ’x’ = data

In the second situation (Figure 3(b)) a large part of reality
is outside the IPM (R(ÎA

N,k) < 1− ε) so that the IPM is not
reliable. For this situation to occur, however, data have to
be confined where reality and the IPM agree. This happens
only with small probability with respect to data extraction,
and it is taken into account in Theorem 3 by the confidence
parameter β .

To put it differently, it is true that, once the data have been
collected, reality can be anything elsewhere so that a data-
generating system which is consistent with the observed data
and such that the IPM is not reliable can always be con-
structed. On the other hand, if the data-generating system
had been the one we have constructed, we would hardly have
seen data leading us to construct such an IPM. Theorem 3
provides a quantitative measure of this unlikelihood, in gen-
eral situations and uniformly with respect to the probability
measure P.

In some more specific and quantitative terms, expres-
sion (14) for β0 has the following intuitive motivation. β0
represents an upper bound to the probability of obtaining
an IPM whose reliability is < 1− ε (poorly reliable IPM)
if no data are discarded. Only few data determine the IPM
(actually at most d, inspect the proof). Term N!

(N−d)!d! is the
number of possible choices of d data points out of N, that
is the total number of potential IPMs. All other N−d data
have to be contained in the actually obtained IPM. When
the reliability is < 1− ε , the probability of another point
lying in the IPM is < 1− ε , so that the probability that all
other N− d data are in the IPM is < (1− ε)N−d , and this
generates the second term in (14). The degradation term
∑k

i=0
(N−d)!

(N−d−i)!i! · ε i

(1−ε)i in (13) to obtain β from β0 accounts
for the possibility of having data points outside the IPM. ?

Equation (13) is a fundamental relation linking the level of
available information (represented by the number N of ob-
servations and the number k of discarded data), the com-
plexity of the model (represented by the number d of de-
cision variables in the IPM identification problem), and the
probabilistic levels of reliability ε and confidence β .

In equation (13), the confidence parameter β is explicitly
computed from ε , N, k, and d. Such equation, however,
should be better thought of as a relation among five different
variables (ε,β ,N,k,d), and making such a relation explicit
with respect to a variable or another is a matter of conve-
nience dictated by the application context. The interpreta-
tion of (13) when it is made explicit with respect to other
variables than β is briefly discussed next.

- N = N(ε,β ,k,d)
This case is related to the design of an identification exper-
iment, where the number of observations to be collected
has to be chosen by the user;

- ε = ε(β ,N,k,d)
This is the most typical identification framework where
data points are given and one would like to determine the
prediction reliability of the identified IPM;

- k = k(ε,β ,N,d)
In this case, one wants to establish how many data points
can be removed, without going below a chosen reliability
level;

- d = d(ε,β ,N,k)
In this case, one evaluates the maximal complexity al-
lowed for the explanatory model, for given ε , β , N, and k.

Though analytical expressions may be difficult to obtain in
all the above cases, the inversion of equation (13) can be
easily performed through numerical methods.

4.2 Dependent observations

Assuming independence in x(t) is a condition that applies
to many identification problems in econometrics, in pattern
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recognition and more generally in learning theory where no
dynamics is present. On the other hand, it may be of interest
to generalize results to a dependent context. Such general-
ization is still unavailable in any general form and we limit
here to just discuss the case of M-dependent observations,
[5].

Definition 5 (M-dependent sequence) A (strict-sense) sta-
tionary stochastic sequence x(t) is said to be M-dependent
if x(t) and x(t +s) are independent random variables when-
ever |s|> M.

M-dependence can be also regarded as an approximation of
situations where the dependence between data points decays
quickly enough so that it is negligible after M time instants.

We have the following theorem, which is here quoted with-
out proof since the proof can be derived along similar lines
as that of Theorem 3. It suffices here to say that, in order
to test the reliability of the constructed IPM, in the proof
of Theorem 4 one simply concentrates on data that are M
instants apart from each other.

Theorem 4 Let x(t) = (ϕ(t),y(t)), t = 1,2, . . ., satisfy As-
sumption 1 and assume that it is an M-dependent sequence.
Moreover, suppose that Problem 1′ is a convex constrained
optimization problem, and that its solution exists and is
unique. Then, for any ε ∈ (0,1) and k < N−d it holds that

ProbPN{R(ÎA
N,k)≥ 1− ε}> 1−β ,

where

β =
N!

(N−d)!d!

k

∑
i=0

W !
(W − i)!i!

ε i(1− ε)W−i,

and W = d(N−d(2M +1))/(M +1)e.

4.3 Reviewing the philosophy underlying IPM identifica-
tion

The reliability of the identified IPM is guaranteed by Theo-
rem 3 for stationary and independent observations, with no
further assumptions on the data-generating mechanism, that
is on P. On the other hand, as it is obvious, a-priori knowl-
edge on what is being identified has certainly to play a role
in the identification procedure. So, the question is: where
does a-priori knowledge enter the picture in the theoretical
approach of this paper? The answer is that a selection of an
IPM model class which is suitably tailored to the structure
of the data-generating mechanism generally leads to a nar-
rower model, that is, one with smaller prediction intervals.
Thus, the reliability of the IPM is always guaranteed and the
a-priori knowledge impacts the other side of the coin, that
is the width of the model. The point is that such a width can
be assessed at the end of the identification procedure before
the IPM is used.

5 Numerical examples

Two simple examples illustrate the idea of interval predictor
models and IPM identification. The second example deals
also with the presence of outliers.

5.1 Example A

Consider the static data-generating mechanism:

y(t) = sin(2u(t))+w(t), (15)

where u(t) is an i.i.d. (independent and identically dis-
tributed) sequence of random variables with uniform dis-
tribution in U = [−1,1], and w(t) is i.i.d. with normal
distribution N (0,0.01).

N = 300 observations u(t),y(t) were generated ac-
cording to (15) and used for identification. We took
ϕ(t) = [u(t) u2(t)]T as explanatory variable, and considered
interval models in the form (2),(3),(4) with n = 2:

I(ϕ(t)) = {y(t) : y(t) = ϑ1u(t)+ϑ2u(t)2 + e,

ϑ = [ϑ1 ϑ2]T ∈Bc,r, |e| ≤ γ},

where Bc,r is the 2-dimensional ball with radius r and center
c.

Setting µQ = 0.6r + γ (note that E[‖ϕ(t)‖]≈ 0.6) and solv-
ing the linear Problem 1.a yielded

ĉ300 = [1.2870 0.0220]T ; r̂300 = 0.0503; γ̂300 = 0.3839

as optimal solution. The obtained IPM is depicted in Figure 4
directly as a set-valued map from U to Y = R. In the same
plot, the available u(t),y(t) data points are also represented.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

u(t)

y(t)

Figure 4. IPM (2-dimensional ϑ ) and data points for Example A

Theorem 3 guarantees that the reliability of the identified
model is no less than 1− ε = 0.92, with high confidence
1−β = 0.999 (equation (13) with d = 4).

On the other hand, the obtained IPM is loose. This is appar-
ent from the blank areas between the cloud of data-points
and the border of the interval prediction region, and reflects
into the optimal cost value µQ̂300

= 0.4140. A better descrip-
tion of reality can be achieved by suitably modifying the
class of IPMs over which identification is performed.

By taking ϕ(t) = [u(t) u2(t) u3(t)]T and

I(ϕ(t)) =

{y(t) : y(t) = ϑ1u(t)+ϑ2u(t)2 +ϑ3u(t)3 + e,

ϑ = [ϑ1 ϑ2 ϑ3]T ∈Bc,r, |e| ≤ γ},
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with µQ = 0.67r+γ as a cost function (E[‖ϕ(t)‖]≈ 0.67 in
this case), we obtain

ĉ300 = [1.9665 −0.0174 −1.1606]T ;

r̂300 = 0.0529; γ̂300 = 0.2320,

and the corresponding IPM is as depicted in Figure 5. The
optimal cost turns out to be µQ̂300

= 0.2674, with an almost
40% reduction with respect to the previous situation. Fur-
thermore, Theorem 3 guarantees a reliability no less than
1− ε = 0.9 with confidence 1−β = 0.999, where the loss
in reliability is due to the increase of the number of opti-
mization variables from 4 to 5.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

u(t)

y(t)

Figure 5. IPM (3-dimensional ϑ ) and data points for Example A

5.2 Example B

Data were generated according to the following mechanism

y(t) = u(t)(1+w1(t))+w2(t),

where the i.i.d. signal u(t) = ϕ(t) is the explanatory variable
and has distribution N (0,1), w1(t) is i.i.d. with distribution
N (0,0.01), and w2(t) is a sequence of independent random
variables taking values 0, +1,−1 with probability 0.98, 0.01
and 0.01 respectively. The sequence w2(t) is regarded as a
source of outliers.

After collecting 300 observations u(t),y(t), we sought an
interval predictor model of the form (2),(3),(4) with n = 1,
i.e.

I(ϕ(t)) = {y(t) : y(t) = ϑu(t)+ e, |e| ≤ γ, ϑ ∈Bc,r}.

Setting µQ = 0.8r + γ , and solving Problem 1.a returned

ĉ300 = 1.1204; r̂300 = 0.0453; γ̂300 = 0.9988;

and µQ̂300
= 1.0351. The resulting set-valued map I(ϕ(t)) is

depicted in Figure 6, along with the collected data points.
As it appears, the identified IPM is loose because of the
presence of outliers.

Suppose now that one had selected to remove k = 10 ob-
servations according to the optimal algorithm A ∗ of Sec-
tion 3.2.2. Solving Problem 1′, the IPM depicted in Figure 7
was found, corresponding to

ĉA ∗
300,10 = 0.9724; r̂A ∗

300,10 = 0.1942; γ̂A ∗
300,10 = 0.0197;

-5 -4 -3 -2 -1 0 1 2 3 4 5
-6

-4

-2

0

2

4

6
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Figure 6. IPM and data points for Example B.

and µQ̂A ∗
300,10

= 0.1750. Thus, discarding 10 observations
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Figure 7. IPM and data points for Example B – k = 10 outliers
removed.

yielded a 83% reduction of the cost µQ. As for the IPM re-
liability, Theorem 3 says that, with confidence at least equal
to 1−β = 0.99, R(I) is no less than 0.935 if no constraints
are removed and no less than 0.864 when k = 10 constraints
are removed. Thus, the reliability loss is only 0.071.

6 Conclusions

In this paper, we discussed the identification and reliability
analysis of interval models for prediction. From the compu-
tational side, we showed how to construct IPMs for some
specific parametric classes, with the objective of minimizing
a measure of the prediction interval while maintaining con-
sistency either (a) with all of the observed data, or (b) with
all except k of them. The first case is the easiest and can be
efficiently handled via linear programming (in the spherical
parameter case), or via convex semi-definite programming
(in the ellipsoidal parameter case). In case (b), we proposed
an optimal algorithm that alleviates the inherent combinato-
rial complexity of the partial consistency problem. Alterna-
tively a greedy approach can be used.

From the theoretical side, we provided reliability guaran-
tees given by way of an explicit, non-asymptotic, formula
that relates the reliability to the degrees of freedom of the
explanatory model class and to the number of available ob-
servations.
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We believe that these results are bound to launch a new
philosophical foundation in system identification. This new
approach is here put on solid mathematical grounds and de-
veloped algorithmically for spherical and ellipsoidal mod-
els. On the other hand, the results are currently given in the
stationary and independent or M-dependent setup, whereas
the dynamic case requires further study.

Appendix
A Proof of Theorem 2

Let X be an optimal set of N−k constraints which gives the
largest drop of the cost criterion. Starting from the root of the
tree of problems constructed by A ∗, generate a descending
path as follows: at the root, eliminate a support constraint
which is also an element in DN−X (if more than one support
constraint exist in DN −X , choose any one at will in this
set) and move one level down to a problem with N − 1
constraints. Then, again eliminate a support constraint which
is also an element in DN−X . Proceed this way until you get
stuck, that is, no support constraints in DN −X to eliminate
can be found, and let Dr

N−l be the constraints of the problem
that has been reached. We then have:

w(X) ≥ w(sc(Dr
N−l)) (since sc(Dr

N−l)⊆ X)

= w(Dr
N−l) (thanks to non-degeneracy)

≥ w(X) (since X is optimal),

so that equality holds throughout and w(sc(Dr
N−l)) = w(X).

Thus, an optimal problem is reached at some level of the
tree, and this trivially entails that the leaves generated at
level k from this problem are optimal too.

B Proof of Theorem 3

Let ∆ = Y × Φ be the set where observations x(t) =
(ϕ(t),y(t)) live and let ∆N = ∆× ·· ·×∆ the N-fold prod-
uct of ∆’s. Moreover, let (x(1), . . . ,x(N)) denote a generic
element of ∆N .

Select a subset H = {i1, . . . , id} of d indexes from {1, . . . ,N}
and let ÎH be the optimal solution of the following optimiza-
tion problem with d constraints only:

min
Q∈Q

µQ, subject to y(t) ∈ IQ(ϕ(t)), t ∈ H.

Based on ÎH , introduce a subset ∆N,k
H of ∆N defined as fol-

lows:

∆N,k
H = {(x(1), . . . ,x(N)) ∈ ∆N : ÎH = ÎA

N,k}. (B.1)

In other words, ∆N,k
H contains those observations such that,

if we apply algorithm A to them, we obtain the same IPM
as if we optimized with constraints x(i1), . . . ,x(id) only.

Let now H range over the collection H of all possible
choices of d indexes from {1, . . . ,N} (H contains N!/(N−
d)!d! sets). We prove that:

∆N =
⋃

H∈H

∆N,k
H . (B.2)

Take any (x(1), . . . ,x(N)) in ∆N and let x( j1), . . . ,x( jN−k),
{ j1, . . . , jN−k} ⊂ {1, . . ., N}, be the remaining constraints
after that k constraints have been discarded according to
algorithm A . These N− k constraints determine the opti-
mal solution ÎA

N,k. From x( j1), . . . ,x( jN−k), eliminate a con-
straint which is not a support constraint (see Definition 3
for the notion of support constraint). This is possible since
in view of Theorem 1 there are at most d support con-
straints and N− k > d. The resulting optimization problem
with N − k− 1 constraints has still ÎA

N,k as optimal solu-
tion. Consider now the set of the remaining N− k−1 con-
straints, and among these, remove a constraint which is not
a support constraint. Again, the optimal solution does not
change. If we keep going this way, we are eventually left
with d constraints and ÎA

N,k is still the optimal solution. Thus,

(x(1), . . . ,x(N)) ∈ ∆N,k
H where H are the indexes we are left

with at the end of the elimination procedure. Since this is
true for any (x(1), . . . ,x(N)) ∈ ∆N , (B.2) is proven.

Consider now the following subsets of ∆N :

B = {(x(1), . . . ,x(N)) ∈ ∆N : R(ÎA
N,k) < 1− ε}

(i.e. B is the set of ‘bad’ observations which lead to an IPM
which is not reliable as we would like it to be), and

BH = {(x(1), . . . ,x(N)) ∈ ∆N : R(ÎH) < 1− ε}.

We have that:

B = B∩∆N = [using (B.2)] = B∩ (
⋃

H∈H ∆N,k
H )

=
⋃

H∈H (B∩∆N,k
H ) = [using (B.1)]

=
⋃

H∈H (BH ∩∆N,k
H ).

A bound for ProbPN{B} is now obtained by bounding
ProbPN{BH ∩∆N,k

H } first, and then summing over H ∈H .

Fix any H, e.g. H = {1, . . . ,d} to be more explicit. Since
the condition R(ÎH) < 1− ε involves only the first d con-
straints, the set BH is a cylinder with base in the carte-
sian product of the domains of the first d constraints. Fix
now (x̄(1), . . . , x̄(d)) in the base of this cylinder. For a point
(x̄(1), . . . , x̄(d),x(d +1), . . . ,x(N)) to belong to BH ∩∆N,k

H , at
least N−d−k constraints among (x(d +1), . . . ,x(N)) must
be satisfied by ÎH , for, otherwise, ÎH would satisfy less than
N− k constraints among (x̄(1), . . . , x̄(d),x(d +1), . . . ,x(N))
and we would not have ÎH = ÎA

N,k as required by defini-
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tion (B.1) of ∆N,k
H . Therefore, we have that:

{(x(d +1), . . . ,x(N)) :

(x̄(1), . . . , x̄(d),x(d +1), . . . ,x(N)) ∈ BH ∩∆N,k
H }

⊆ {(x(d +1), . . . ,x(N)) :
at least N−d− k constraints are satisfied by ÎH}

= Ω0∪Ω1∪ . . .∪Ωk,

where Ωi is the set where N−d− i constraints among (x(d +
1), . . . ,x(N)) are satisfied by ÎH and i are not.

Let ζ = ProbP{y /∈ ÎH(ϕ)}. Then, thanks to the fact that
observations are independent, we have that:

ProbPN−d{(x(d +1), . . . ,x(N)) :

(x̄(1), . . . , x̄(d),x(d +1), . . . ,x(N)) ∈ BH ∩∆N,k
H }

≤
k

∑
i=0

(N−d)!
(N−d− i)!i!

ζ i(1−ζ )N−d−i

<
k

∑
i=0

(N−d)!
(N−d− i)!i!

ε i(1− ε)N−d−i, (B.3)

where the latter inequality follows since ProbP{y /∈
ÎH(ϕ)}> ε in BH , and since ∑k

i=0
(N−d)!

(N−d−i)!i! ζ i(1−ζ )N−d−i

is a strictly decreasing function of ζ , as it can be checked
by differentiation.

The probability on the left hand side of (B.3) is nothing but
the conditional probability that (x(1), . . . ,x(N)) ∈ BH ∩∆N,k

H
given x(1) = x̄(1), . . . ,x(d) = x̄(d). Integrating over the base
of the cylinder BH we obtain:

ProbPN{BH ∩∆N,k
H }

<
k

∑
i=0

(N−d)!
(N−d− i)!i!

ε i(1− ε)N−d−i ·ProbPd{base of BH}

≤
k

∑
i=0

(N−d)!
(N−d− i)!i!

ε i(1− ε)N−d−i.

Recalling that B =
⋃

H∈H (BH ∩ ∆N,k
H ), the bound for

ProbPN{B} sought after is finally obtained:

ProbPN{B} ≤ ∑
H∈H

PN{BH ∩∆N,k
H }

<
N!

(N−d)!d!

k

∑
i=0

(N−d)!
(N−d− i)!i!

ε i(1− ε)N−d−i.
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