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Abstract

Linear System Identification yields a nominal model parameter, which minimizes a specific criterion based on the single input-
output data set. Here we investigate the utility of various methods for estimating the probability distribution of this nominal
parameter using only the data from this single experiment. The results are compared to the actual parameter distribution
generated by many Monte-Carlo runs of the data-collection experiment. The methods considered are collectively known as
resampling schemes, which include Subsampling, the Jackknife, and the Bootstrap. The broad aim is to generate an empirical
parameter distribution function via the construction of a large number of new data records from the original single set of data,
based on an assumption that this data is representative of all possible data, and then to run the parameter estimator on each
of these new records to develop the distribution function. The performance of these schemes is evaluated on a difficult, almost
unidentifiable system, and compared to the standard results based on asymptotic normality. In addition to the exploration of
this example as means to evaluate the strengths and weaknesses of these resampling schemes, some new theoretical results are
proven and demonstrated for Subsampling schemes.
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1 Introduction

Robust model-based control requires quantification of
plant model uncertainty, [13,14,20,17]. System identifi-
cation methods can be ill-equipped to provide a mea-
sure of parameter uncertainty other than that based on
asymptotic-in-data variance formulæ derived from the
Central Limit Theory, which in turn is based on a Tay-
lor expansion of the empirical identification cost func-
tion about the correct parameter value [18,24]. Recent
studies (in under-excited systems, [11,12]) have shown
that cases can be found where the cost function is non-
convex and these can have separated local minima. In
such cases, the uncertainty characterization from asymp-
totic theory can be misleading.

Here we seek to develop an approach to the empirical
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calculation of the underlying distribution function of the
parameter estimate, which is equally valid when the cost
function is non-convex and which, asymptotically as the
number of data points tends to infinity, fully character-
izes the finite-data parameter distribution and, in the
fixed-length case, yields a quantification of the error be-
tween the empirical distribution and the true underly-
ing (and unknown) distribution. The approach is based
on resampling ideas of the Bootstrap, the Jackknife, and
Subsampling [21,29]. Our aim is to use the data to de-
velop an approximation of the actual distribution func-
tion of the parameter estimate, based on the assump-
tion that the data set is representative of the underlying
stochastic processes.

We assume:

- We have N input-output pairs of data XN = {xi =
[ui yi]T , i = 1, . . . , N}, where ui and yi are
scalars 1 .

1 The multidimensional case (i.e. ui ∈ Rp and yi ∈ Rq.)
presents no conceptual differences. We have preferred how-
ever to stick on the scalar input scalar output case to avoid
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- These data are stationary and generated by a stable
bivariate ARMA process, that is

A(z)

[
ut

yt

]
= B(z)ηt, (1)

whereA(z) andB(z) are (2×2 and 2×1, respectively)
polynomial matrixes of the forward shift operator z,
and ηt is a bivariate i.i.d process. The (ut, yt) process
above encompasses open-loop as well as closed-loop
configurations.

- We seek to fit a fixed-order fixed-structure model
parametrized by θ to the N -data set and to char-
acterize the uncertainty in this parameter value.
Specifically, we choose an empirical cost func-
tion V (θ,XN ) = 1

N

∑N
i=1

(
yi − ŷi|i−1(θ)

)2, where
ŷi|i−1(θ) is the optimal predictor based on the model
corresponding to θ. If the data set to which the cost
function refers is clear from the context, we shall
write VN (θ) in place of V (θ,XN ). The minimizer of
V (θ,XN ) (assuming it is unique) is indicated by θ̂N .
Our goal is to reconstruct its probability distribution,
hereafter indicated by Fθ̂N (θ).

We present figures depicting distribution functions. To
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Figure 1. Distribution function (upper plot) and correspond-
ing density function (lower plot) for the first parameter

âN = θ̂1N . This illustrates that the steps in the distribution
function correspond to peaks in the density with the step
size related to the local density mass.

assist in the interpretation of these distribution func-

a cumbersome notation.

tions, Figure 1 shows the density and distribution func-
tions for the θ̂1N = âN component from an example to
follow.

The paper is organized as follows. First, an example
showing the limitations of the asymptotic theory of sys-
tem identification is presented in Section 2. Then, some
resampling strategies (namely; Monte-Carlo, Subsam-
pling, Model-Based Jackknife, and Model-Based Boot-
strapping) are briefly recalled in Section 3, with partic-
ular emphasis on their application in the system iden-
tification setting. The analysis of resampling techniques
is given in Sections 4 and 5, while Section 6 provides a
comparison based on the same example where asymp-
totic theory performed poorly.

2 Asymptotic theory and its limitations – the
SMS example

The following example is taken from [11], with its
eponym created as an acronym of the authors’ first
names. It shows a (somewhat contrived) situation where
the blind use of the asymptotic theory of system iden-
tification as in [18,24], leads to an unreliable estimate
of uncertainty unless the number of data is exceedingly
large.

Consider the following data generating system:

yt =
b0z
−1

1 + a0z−1
ut + (1 + h0z

−1)et, (2)

where θ0 = [a0 b0 h0]T = [−0.7 0.3 0.5]T and et ∼
WGN(0, 1), i.e. white gaussian noise with zero mean and
unity variance. The system is operated in closed loop
with the feedback law ut = rt − yt, and with reference
signal rt ∼ WGN(0, 10−4) independent of et. The re-
sulting closed-loop system is asymptotically stable. Note
also that the variance of rt is very small compared to the
noise variance, so the system is poorly excited.

The identification experiment is as follows: N = 2000,
(u, y) data points are collected, and a full-order model
of the type

yt =
bz−1

1 + az−1
ut + (1 + hz−1)et

is identified by minimizing the empirical cost, θ̂N =
arg minVN (θ), where θ = [a b h]T .

According to the asymptotic (N → ∞) theory of
system identification, the inflated estimation error,√
N(θ̂N − θ0), is asymptotically distributed as a gaus-

sian random variable with zero mean and covariance
Pθ = λ0 ·

[
Eψt(θ0)ψTt (θ0)

]−1, with λ0 = Ee2t and
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ψt(θ) = d
dθ ŷt|t−1(θ). Based on this theoretical result

then, θ̂N is typically (and heuristically) presumed to
be gaussian distributed too, with mean θ0 and co-
variance 1

N Pθ. These values θ0 and Pθ are replaced
by their empirical counterparts (typically, θ̂N and∑N
i=1(yi − ŷi|i−1(θ̂N ))2 ×

[∑N
i=1 ψi(θ̂N )ψTi (θ̂N )

]−1) so
as to obtain an empirical estimate of the probability
distribution of θ̂N based on available data only.

Though commonly used in practice, the above approach
has only heuristic validity with N finite, and, in the
present setting with N = 2000, it fails to return a sensi-
ble estimate of the distribution of θ̂N . This is clearly de-
picted in Figure 2, where the empirical distribution esti-
mate computed according to the rationale above is com-
pared with the actual distribution of θ̂N , reconstructed
here through Monte-Carlo simulations. From the plot, a
wide mismatch between the estimated distribution and
the actual one is apparent, with the former being a gaus-
sian centered on the estimate, θ̂N = [0.46 − 0.84 −
0.68]T , and the actual distribution being bi-modal and
hence not gaussian. The empirical distribution estimate
does not capture the mismatch between the obtained
θ̂N and θ0, so that the uncertainty evaluation via the
asymptotic theory is unreliable in this case. Notably, the
approximation by a gaussian is inadequate, even if this
gaussian were to be computed based on the exact pa-
rameter values.

Let us briefly discuss the mechanism underlying the un-
derperformance of the asymptotic theory. Asymptotic
theory, as presented by Ljung for example [18], involves
the Taylor expansion of the gradient of the identifica-
tion cost function VN (θ) about an isolated minimiz-
ing value θ0 of the probabilistic cost function V (θ) ,
E[(yk − ŷk|k−1(θ))2]. That is (here V ′N denotes the gra-
dient transpose and V ′′N is the Hessian matrix)

V ′N (θ̂N ) = 0 = V ′N (θ0) + V ′′N (ξN )(θ̂N − θ0), (3)

for some ξN = θ0 + diag([ε1 ε2 · · · εn])(θ̂N − θ0), εi ∈
[0, 1], i = 1, . . . , n.

Equation (3) in turn can be rewritten as:

√
N(θ̂N − θ0) = −V ′′N (ξN )−1 ·

√
NV ′N (θ0), (4)

and the explication of the terms
√
NV ′N (θ0) and V ′′N (ξN )

yields the standard results on asymptotic normality for
the various system identification criteria.

In the asymptotic theory, one relies on two properties
to recover the asymptotic variance formulæ used for pa-
rameter uncertainty estimation:

- the central limit theorem is used to describe the weak
convergence of

√
NV ′N (θ0) to a gaussian random vari-

able;
- the quantity V ′′N (ξN ) is replaced by V ′′N (θ̂N ), both of

which are assumed to be close to V
′′
(θ0).

It is this latter substitution which lies at the heart of the
difficulty in applying these results with “small” N .

As shown in [11] in the SMS example setting, V (θ) is a
non-convex function with several minima. Precisely, if rt
had been a zero signal, there would have been two global
minima, one corresponding to θ0 = [−0.7 0.3 0.5]T and
the other to θ∗ = [0.5 −0.9 −0.7]T , see [11]. When
instead rt is not zero but has only a small variance as
in our example, θ0 remains a global minimum while θ∗
becomes just a local one, but V (θ0) and V (θ∗) are very
close. (Actually, their difference can be made as small as
desired by reducing the variance of rt.) This latter fact in
turn implies that, because VN (θ) is a perturbed version
of V (θ), the minimizer θ̂N of VN (θ) will end up close
to θ∗ instead of θ0 with non-vanishing probability. With
N = 2000 this probability is about 38% as revealed by
the actual distribution function of θ̂N plotted in Figure 2.
When θ̂N ≈ θ∗, it is no longer true that V ′′N (ξN ) ≈
V
′′
(θ0) nor that V ′′N (ξN ) ≈ V ′′N (θ̂N ), and presuming the

gaussianity of
√
N(θ̂N − θ0) from (4) also is no longer

valid. Yet, in the neighborhood of each local minimum,
the distribution is approximately gaussian.

It is worth noticing that, as N increases, with proba-
bility tending to one, θ̂N lies in the neighborhood of θ0
and the asymptotic theory is valid. It should be clear
that theoretical achievements of the asymptotic theory
are not at issue in the SMS example. Our criticism re-
gards only the heuristic use of asymptotic results with
N finite. Clearly, the validity of the asymptotic theory
for N = 2000 in this example is compromised by the
paucity of excitation, leading to very weak identifiabil-
ity of the correct parameter value. For sufficiently large
N and even for this example, the asymptotic results are
valid.

3 Resampling Strategies

As shown in Section 2, there are cases where one cannot
rely on the asymptotic theory of system identification
for a reliable description of the probability distribution
of the identified parameter vector with seemingly large
values ofN . In particular, the SMS example reveals a cir-
cumstance where there are two closely competing but ge-
ometrically separated points θ∗ and θ0, and the asymp-
totic theory fails to reveal this dichotomy of solutions.

In order to provide a fair evaluation of uncertainty, some
different tools have to be considered, and in this paper
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Figure 2. The actual distributions of each component of θ̂N (solid blue line) vs. the distributions returned by the asymptotic
theory of system identification (dashed red line).

the focus is on resampling strategies, [8,9,10,21,23]. Re-
sampling methods have recently attracted the attention
of the systems and control community, [1,7,26,27,25,28].
Yet, they have not met with wide acceptance, at least
not as in other fields such as statistics, econometrics, and
signal processing. Our main objective here is to exam-
ine whether these methods overcome the difficulties of
the asymptotic theory in contexts as challenging as the
SMS example.

Four different resampling methodologies for the recon-
struction of the underlying probability distribution of
the identified parameter θ̂N are considered: namely,
Monte-Carlo, Subsampling, Model-Based Jackknife,
and Model-Based Bootstrapping. In the following, a
brief description of each of them is provided for the
sake of completeness. These approaches have been first
developed in the context of independent data and then
extended to the dependent case. Here, only the latter is
treated for it is the framework of system identification
problems. Should the reader desire further information
on resampling with dependent data outside the system
identification context, Lahiri’s recent book [15] may be
consulted.

3.1 Monte-Carlo

The Monte-Carlo procedure amounts to repeating the
identification experiment m times so as to collect m in-
dependent N -long data sequences (XN1 , . . . ,XNm ), which
in turn, by minimizing V (θ,XNi ), i = 1, . . . ,m, yield m
different parameter estimates (θ̂1N , . . . , θ̂

m
N ). These esti-

mates are then used to reconstruct the probability dis-
tribution of θ̂N as

FMC(θ) =
1
m

m∑
i=1

1[θ̂i
N
≤θ],

where the vector inequality θ̂iN ≤ θ is taken component-
wise and 1[·] is the indicator function. The Monte-Carlo
strategy scheme has been graphically depicted in Fig-
ure 3 to help the reader.

It is well known that FMC(θ) is an unbiased and con-
sistent (both mean square and almost sure) estimator
of the actual probability distribution Fθ̂N (θ) (see [23]).
However, computing FMC(θ) requires more data than

Figure 3. The Monte-Carlo procedure.

those actually available, and thus is infeasible in gen-
eral. The Monte-Carlo method has been introduced for
comparison with other resampling methodologies.

3.2 Subsampling

Subsampling was first introduced in [22], and despite its
attractive properties, has not received much attention
from the systems and control community yet except for
[7]. Subsampling is quite intuitive and is reminiscent of
the Monte-Carlo approach. A single data set, however,
is used. Precisely, choose m ≤ N and NS ≤ N − m +
1. From the N -long available data set XN , the set of
all NS-long sub-sequences of consecutive data points is
considered and, among these, m are extracted, that is:

(XNS1 , . . . ,XNSm ) ⊆ (XNS
1 , XNS

2 , . . . , XNS
N−NS ),

where XNS
j = {xj+1 xj+2 · · · xj+NS}.

Starting from the chosen sub-sequences (XNS1 , . . .XNSm ),
m different parameter estimates (θ̂1NS , . . . , θ̂

m
NS

) are de-
rived by minimizing each time the identification cost cri-
terion V (θ,XNSi ), i = 1, . . . ,m based on NS data points
only. The distribution of θ̂N is then reconstructed as the
empirical distribution of the θ̂iNS s, i.e.

FSS(θ) =
1
m

m∑
i=1

1[θ̂i
NS
≤θ].

The Subsampling scheme has been graphically depicted
in Figure 4.
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Figure 4. The Subsampling procedure.

The main point in Subsampling is that since the XNSi s
are taken from the actual data set XN , they are dis-
tributed identically to the original data, although their
length is reduced. The choice of NS is a degree of free-
dom of Subsampling, and a sensible tuning of NS is of
paramount importance. Also, the choice of the XNSi s
among (XNS

1 , XNS
2 , . . . , XNS

N−NS ) is relevant to the final
result, because of the inherent dependence between the
data sets. These aspects will be treated in the next Sec-
tion 4 where the analysis of Subsampling is provided. It
is worth noting that Subsampling does not correspond to
performing m Monte-Carlo NS-long simulations, since
the sub-sequences XNSi are correlated in general (actu-
ally, they can even be overlapping). Showing thatFSS(θ)
is unbiased and consistent is not straightforward.

3.3 Model-Based Jackknife & Bootstrap

Given the data sequence XN , estimates Â(z) and B̂(z)
of A(z) and B(z) in (1) are obtained according to some
identification algorithm. This identification algorithm
need not to be the same as that used for computing
θ̂N , and even the family of models from among which
Â(z) and B̂(z) are found can be different from that
parametrized by θ, see [7,28]. These authors consider,
for example, high-order modeling for the generation of
the residual sequence, which then is applied via the
Jackknife or Bootstrap for the development of further
“data” sequences. To be precise, given the model es-
timate {Â(z), B̂(z)}, the one-step prediction residuals
(ε1, . . . , εN ) are computed according to the following
equation:

εt = B̂(z)−1Â(z)

[
ut

yt

]
.

The residual sequence is asymptotically (asN increases)
independent and equal to ηt provided Â(z) and B̂(z) are
consistent estimates of A(z) and B(z). Such a sequence
of residuals is the basis of the Model-Based Jackknife
and Bootstrap procedures.

In Model-Based Jackknife, from (ε1, . . . , εN ), a new ar-
tificial residual sequence (εR1 , . . . , ε

R
N ) = (εi1 , . . . , εiN ) is

generated by picking (with or without replacement) in-
dices i1, . . . , iN at random from integers 1, . . . , N . The
new residual sequence (εR1 , . . . , ε

R
N ) can be thought of as

new extracted samples from the noise process ηt and it
can be used for computing a new (resampled)N -long in-
put/output data sequence (uR1 , y

R
1 , u

R
2 , y

R
2 , . . . , u

R
N , y

R
N )

according to the following mechanism:

Â(z)

[
uRt

yRt

]
= B̂(z)εRt .

This resampled data sequence in turn is used to pro-
duce a new parameter estimate θ̂1N by minimizing the
usual cost criterion. Repeating the residual resampling
process m times yields a sequence of m parameter es-
timates θ̂1N , . . . , θ̂

m
N whose empirical distribution is used

to reconstruct the probability distribution of θ̂N :

F JK(θ) =
1
m

m∑
i=1

1[θ̂i
N
≤θ].

See Figure 5 for a graphical representation of the Model-

Figure 5. The Model-Based Jackknife procedure.

Based Jackknife algorithm.

If one uses selection without replacement for sequences
of size N from a set of N residuals, then there are a
maximum of N ! distinct sequences, which are clearly
permutations of original sequence of residuals. With re-
placement, this maximal number of distinct residual se-
quences is NN .

The main idea behind Model-Based Bootstrapping is
similar to that for Model-Based Jackknife. That is, from
XN a consistent model is identified and its prediction
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residuals (ε1, . . . , εN ) are used to generate artificial resid-
ual and data sequences; from these latter, the corre-
sponding parameter estimates θ̂1N , . . . , θ̂

m
N are computed

and their empirical distribution,

FBS(θ) =
1
m

m∑
i=1

1[θ̂i
N
≤θ],

reconstructs the actual distribution of θ̂N . The differ-
ence between Bootstrapping and the Jackknife is that
the artificial residual sequences are not obtained by re-
sampling (ε1, . . . , εN ). Instead, this latter sequence is
first used to reconstruct the complete distribution func-
tion, F̂εt(ε), of the residual error εt; then, artificial resid-
ual sequences are generated by extracting each time N
samples according to F̂εt(ε). See Figure 6 for a graphical

Figure 6. The Model-Based Bootstrap procedure.

representation of the Model-Based Bootstrap algorithm.

The reconstruction of the distribution of εt can be per-
formed according to a number of techniques; empiri-
cal sum, L1 approximation, kernel methods, etc. It is
worth noticing that when the empirical sum is used (i.e.
F̂εt(ε) = 1

m

∑m
i=1 1[εi≤ε]) Model-Based Bootstrap is the

same as the Jackknife provided that (ε1, . . . , εN ) are re-
sampled with replacement. When the empirical residual
distribution is estimated in continuous functional form,
then the number of distinct resampled residual sequences
is unlimited, unlike the Jackknife. Because of the similar-
ities between Model-Based Jackknife and Model-Based
Bootstrap, the asymptotic analysis is considered only for
the Bootstrap in Section 5.

Remark 1 (Terminology issues) Normally, in the
independent data case, the Jackknife is based on sequen-
tially deleting one observation (or several observations
in the block or grouped Jackknife) and is used for esti-
mation of bias and variance. In the context considered,
however, this standard procedure seems to be ill-suited

due to the dependence between data, which requires that
resampling must be applied to some independent re-
constructed sequence like the residuals in Model-Based
Jackknife and Bootstrap, and to the fact that we are in-
terested in estimating the whole probability distribution
of θ̂N rather than its bias and variance. To the best of
our knowledge, there is no universal acceptance of what
the Jackknife is in the dependent case and for probability
distribution reconstruction. Some authors prefer to call
the procedure introduced above as “Resampling”. We
have, however, preferred to stick to “Jackknife” since
“Resampling” refers also to all the introduced schemes
(Monte-Carlo, Subsampling, Jackknife and Bootstrap).

3.4 Alternative Bootstrap approaches

Perhaps, it is worth mentioning that some alternative
schemes other than Model-Based Jackknife and Boot-
strap have been introduced in the literature in order to
cope with the data-dependent context. Among these,
Moving-Block Bootstrap and Transformation-Based
Bootstrap play a prominent role, see e.g. [16]. These two
methods do not require the identification of a consistent
model of the true system in order to compute residuals,
and this makes them attractive in the presence of under-
modeling. Nonetheless, Moving-Block Bootstrap and
Transformation-Based Bootstrap have their own draw-
backs, the most severe of which is that they have been
developed/studied for times series analysis only, and the
extension to the case of input/output system identifica-
tion does not seem trivial. In particular, to the best of
the authors’ knowledge, no consistency results are avail-
able in this latter case. For the sake of completeness,
however, Moving-Block Bootstrap and Transformation-
Based Bootstrap will be reconsidered in the simulation
results Section 6 by briefly introducing the correspond-
ing algorithms and presenting an informal comparison
based on the SMS example with the other approaches.

4 Analysis of the Subsampling method

In this section, we establish our main theoretical result
concerning the consistency of the Subsampling proce-
dure. To be precise, we will show that the probability
distribution reconstructed via Subsampling, FSS(θ),
is a consistent estimate of the actual distribution of
the parameter estimate identified with NS data points,
Fθ̂NS

(θ). The proof relies on the fact that, in ARMAX
processes, the dependence between data at two different
time instants vanishes as the time lag between them
increases, so that sufficiently distant Subsampled data
subsequences behave as if they were obtained by means
of independent experiments. In the following, we will
give some preliminary results on α-mixing processes
which characterize such dependence between data (Sub-
section 4.1). Based on these results, we will prove the
consistency of Subsampling (Subsection 4.2). Finally,
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some concluding considerations about Subsampling and
its usage are provided (Subsection 4.3).

4.1 Preliminary definitions and results

We need the following preliminary definition, see e.g. [3].

Definition 1 (α-mixing) Let {Yt}t∈Z be a stationary
random process in Rl and let A0 be the σ-algebra gener-
ated by {Yt}t≤0 andAτ that generated by {Yt}t≥τ , τ ≥ 0.
Then, the α- (or strong) mixing coefficient for {Yt} is
defined as:

αY (τ) , sup
A,B
{|P(A∩B)−P(A)P(B)|, A ∈ A0, B ∈ Aτ}.

If αY (τ) → 0 as τ → ∞, then {Yt} is said to be α- (or
strong) mixing. If in addition αY (τ) ≤ ρτ for a certain
ρ ∈ (0, 1) then {Yt} is said to be geometrically α- (or
geometrically strong) mixing.

We have the following lemma, in line with [22], bound-
ing the empirical distribution mean square error for α-
mixing processes.

Lemma 1 Let {Yt}t∈Z be a stationary random pro-
cess in Rl and suppose that Yt is α-mixing. Let
ϕ : Rl → Rk be any measurable function and let
F̂ (x) = 1

m

∑m
i=1 1[ϕ(Yi)≤x] be the empirical probability

distribution of ϕ(Yt) and F (x) = P(ϕ(Yt) ≤ x) be the
actual probability distribution. (Here, as usual, the vec-
tor inequalities are taken componentwise.) Then, for
every x, we have that

E
(
(F̂ (x)− F (x))2

)
≤ 12
m2

m∑
τ=−m

(m− |τ |) · αY (|τ |).

Proof : Clearly, P(ϕ(Yt) ≤ x) = E(1[ϕ(Yt)≤x]). LetZt =
1[ϕ(Yt)≤x]−E(1[ϕ(Yt)≤x]).Zt is zero mean and, moreover,
it is stationary since Yt is. Letting γZ(τ) = E

(
ZtZt+τ

)
=

γZ(−τ) be the covariance function of Zt, we have that

E
(
(F̂ (x)− F (x))2

)
= E

(( 1
m

m∑
i=1

Zi
)2)

=
1
m2

m∑
i=1

m∑
j=1

E(ZiZj)

=
1
m2

m∑
τ=−m

(m− |τ |)γZ(τ)

≤ 1
m2

m∑
τ=−m

(m− |τ |)|γZ(τ)|.

Since Zt ∈ [−1, 1] and is measurable with respect to the
σ-algebra generated by Yt, then we have that |γZ(τ)| ≤

12αY (|τ |) (See the Corollary of Lemma 2.1 in [6].) lead-
ing to the requisite bound. 2

The following result is a straightforward consequence of
Lemma 1

Corollary 1 If 12
m2

∑m
τ=−m(m − |τ |) · αY (|τ |) → 0 as

m→∞, then F̂ (x) is mean square convergent to F (x)

4.2 Subsampling strategies and mixing conditions

We want now to apply Lemma 1 to the Subsam-
pling reconstructed distribution function FSS(θ) =
1
m

∑m
i=1 1[θ̂i

NS
≤θ]. In this case, XNSi plays the role of

the process Yt in Lemma 1 while θ̂iN , the parameter
vector estimated from the subsequence XNSi , plays that
of ϕ(Yt). Clearly, θ̂iN is a measurable function of XNSi .
As for the process XNSi we need to check whether it is:

1. stationary;
2. α-mixing.

As for Point 1, recall that

(XNS1 , . . . ,XNSm ) ⊆ (XNS
1 , XNS

2 , . . . , XNS
N−NS ),

where XNS
j = {xj+1 xj+2 · · · xj+NS}; xt = [ut yt]T ,

in turn, is generated as a stationary ARMA process:

A(z)xt = B(z)ηt.

It easily follows thatXNS
j is stationary too, while XNSi is

stationary as long as theXNSi s are chosen from theXNS
j s

in a equally time-spaced manner. That is, ifXNSi = XNS
j1

and XNSi+1 = XNS
j2

, then the difference j2−j1 must be the
same whatever i is. Some possible choices ensuring sta-
tionarity are the following ones where subsequences are
overlapping in the first two cases and non-overlapping
in the later two. In the following, b·c denotes the integer
part and k ≤ NS .

(XNS1 , . . .XNSm ) = (XNS
1 , XNS

2 , . . . , XNS
N−NS ),

(XNS1 , . . .XNSm ) = (XNS
1 , XNS

k+1, . . . , X
NS

bN−NSk c·k+1
),

(XNS1 , . . .XNSm ) = (XNS
1 , XNS

NS+1, . . . , X
NS
b NNS −1c·NS+1

),

(XNS1 , . . .XNSm ) = (XNS
1 , XNS

2NS+1, . . . , X
NS
b N

2NS
−1c·2NS+1

).

As for Point 2, note first that, since xt is a stationary
ARMA process, it is geometrically α-mixing as long as
the mild assumption that the probability distribution
of the noise ηt admits a probability density is satisfied,
[3,19]. Thus, letting αx(τ) be the α-mixing coefficient of

7



xt, we have that αx(τ) ≤ ρτx for a certain ρx ∈ (0, 1).
(It is worth noticing that ρx is strictly related to the
maximum modulus pole of the ARMA system in (1).)
From the α-mixing property of xt it easily follows that
XNS
t and, in turn, XNSt are α-mixing too.

The α mixing coefficient of XNSt (say αX (τ)), however,
depends on how subsequences (XNS1 , . . . ,XNSm ) are cho-
sen from (XNS

1 , XNS
2 , . . . , XNS

N−NS ). With reference to
the examples given above we have for (XNS1 , . . .XNSm ):

(XNS
1 , XNS

2 , . . .) =⇒ αX (τ) ≤ ρ(τ−NS+1)·1[τ≥NS ]
x ,

(XNS
1 , XNS

k+1, . . .) =⇒ αX (τ) ≤ ρ[τk−NS+1]·1[τk≥NS ]
x ,

(XNS
1 , XNS

NS+1, . . .) =⇒ αX (τ) ≤ ρ[(τ−1)NS+1]·1[τ>0]
x ,

(XNS
1 , XNS

2NS+1, . . .) =⇒ αX (τ) ≤ ρ[(2τ−1)NS+1]·1[τ>0]
x .

Lemma 1 can now be invoked to prove that FSS(θ) is a
(mean-square) consistent estimate of Fθ̂NS (θ). Precisely,

for the choice (XNS1 , . . .XNSm ) = (XNS
1 , XNS

2 , . . . , XNS
N−NS ),

we have that

E
(
(FSS(θ)− Fθ̂NS (θ))2

)
≤ 12
m2

m∑
τ=−m

(m− |τ |)ρ(|τ |−NS+1)·1[|τ|≥NS ]
x

=
12
m2

NS−1∑
τ=−NS+1

(m− |τ |) +
24
m2

m∑
τ=NS

(m− τ) · ρτ−NS+1
x

= 12
2(NS − 1)

m
− 12

NS(NS − 1)
m2

+

+
24
m2

m−NS+1∑
i=1

(m−NS + 1− i) · ρix,

≤ 12
NS − 1
m

·
(

2− NS
m

)
+

24
m

m−NS+1∑
i=1

ρix,

≤ 12
NS − 1
m

·
(

2− NS
m

)
+

24
m
· ρx

1− ρx
,

= 12
NS − 1
N −NS

·
(

2− NS
N −NS

)
+

24
N −NS

· ρx
1− ρx

, (5)

where the last term follows since m = N − NS in this
case.

Equation (5) provides a non-asymptotic bound on the
mean square mismatch between the Subsampling recon-
structed distribution FSS(θ) and Fθ̂NS

(θ) for given N

and NS . The bound holds independently of the underly-
ing data-generating mechanism, apart from the knowl-
edge of ρx, a parameter which could be estimated. Be-
sides, (5) implies that, as N →∞,

E
(
(FSS(θ)− Fθ̂NS (θ))2

)
→ 0.

That is, FSS(θ) is a mean-square consistent estimator
of Fθ̂NS (θ) as long as NS is chosen such that NS

N → 0
when N →∞. A typical choice for NS guaranteeing this
latter condition is NS = Np, where p ∈ (0, 1).

For reference, this result is stated as a theorem.

Theorem 1 Suppose that sub-sequences are extracted
from the available data according to the following scheme:
(XNS1 , . . .XNSm ) = (XNS

1 , XNS
2 , . . . , XNS

N−NS ). Then, we
have that

E
(
(FSS(θ)− Fθ̂NS (θ))2

)
≤ 12

NS − 1
N −NS

·
(

2− NS
N −NS

)
+

24
N −NS

· ρx
1− ρx

.

If moreover NS is such that NS
N → 0 as N → ∞, then

the reconstructed distribution FSS(θ) is a mean-square
consistent estimator of Fθ̂NS (θ).

Expressions like (5) can be similarly derived for all other
choices of (XNS1 , . . .XNSm ) given before, and correspond-
ingly quantified theorems hold.

For instance, when

(XNS1 , . . .XNSm ) = (XNS
1 , XNS

NS+1, . . . , X
NS
b NNS −1c·NS+1

)

we have that:

E
(
(FSS(θ)− Fθ̂NS (θ))2

)
≤ 12
m2

m∑
τ=−m

(m− |τ |)ρ[(|τ |−1)NS+1]·1[|τ|>0]
x

=
12
m

+
24
m2

m∑
τ=1

(m− τ) · ρ(τ−1)NS+1
x

≤ 12
m

+
24
m
ρx

m−1∑
i=0

(ρNSx )i,

≤ 12
b NNS c

+
24
b NNS c

· ρx

1− ρNSx
, (6)

where the last inequality follows since m = b NNS c in this
case. Similarly to the previous case, (6) gives a non-
asymptotic bound for the reconstructed vs. actual dis-
tribution mean square error and from (6) it follows that
if NS is chosen such that NS

N → 0 then

E
(
(FSS(θ)− Fθ̂NS (θ))2

)
→N→∞ 0.

In other words, the following theorem holds.
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Theorem 2 Suppose that sub-sequences are extracted
from available data according to the following scheme:
(XNS1 , . . .XNSm ) = (XNS

1 , XNS
NS+1, . . . , X

NS
b NNS −1c·NS+1

).

Then, we have that

E
(
(FSS(θ)− Fθ̂NS (θ))2

)
≤ 12
b NNS c

+
24
b NNS c

· ρx

1− ρNSx
.

If moreover NS is such that NS
N → 0 as N → ∞, then

the reconstructed distribution FSS(θ) is a mean-square
consistent estimator of Fθ̂NS (θ).

Remark 2 The interpretation of this convergence of
empirical distribution function to the actual ensemble
value is in terms of the probability space describing the
data-generating mechanism presented in (1). This cap-
tures the requirement that the data be representative of
this underlying distribution.

Remark 3 Using either of these theorems and consider-
ing bothN →∞ andNS →∞ withNS/N → 0 exponen-
tially, it should be possible using Tchebychev’s inequal-
ity and the Kronecker Lemma to develop a large-N (i.e.
asymptotic) theory in which the Subsampled distribution
estimate converges almost surely to the ensemble distri-
bution function. However to do so here, would take us too
far afield from our finite-N , single-data-record emphasis.

4.3 Critique of Subsampling

As previously seen, Subsampling has many appealing
features.

- It is easily implementable at a low computational cost.
- The reconstructed distribution FSS(θ) is a mean

square consistent estimate of Fθ̂NS (θ).
- More importantly, the quantification of the mean

square error E
(
(FSS(θ) − Fθ̂NS

(θ))2
)

is non-
asymptotic, and depends only on a parameter, ρx,
which might be retrieved from basic experiments on
the data generating system.

Subsampling, however, has some drawbacks the most
central of which is that it reconstructs the distribution of
a different parameter. That is, Fθ̂NS (θ), the probability
distribution of the parameter estimated with NS data
points only, in place of Fθ̂N (θ), the distribution of θ̂N .
Clearly, there is a deep kinship between θ̂N and θ̂NS as
well as between Fθ̂NS (θ) and Fθ̂N (θ), so that estimating

the uncertainty of θ̂N with that of θ̂NS is reasonable.
However, the uncertainty of θ̂N is less than that of θ̂NS .
In this respect, it is clear that NS has to be chosen as a
trade-off between two opposite effects:

1. too small anNS means that FSS(θ) is close to Fθ̂NS (θ)
but Fθ̂NS (θ) 6= Fθ̂N (θ);

2. too large an NS implies that Fθ̂NS (θ) ≈ Fθ̂N (θ) but

FSS(θ) 6= Fθ̂NS
(θ).

One mechanism advocated to deal with this mismatch
between distribution functions is to appeal to the un-
derlying asymptotic theory based on the Central Limit
Theorem and to rescale the variance, see [22]. Accord-
ing to asymptotic normality results, whose finite sample
validity is in question here, the parameter estimate is
asymptotically normally distributed with mean θ0 and
variance dependent on

√
N . For the Subsampled scheme,

this variance is replaced by the same term multiplied by√
NS/
√
N , which is necessarily larger. If the estimated

distribution, Fθ̂NS (θ), is close to gaussian, then such a
scaling is possible. However, if it is wildly different from
gaussian, then some other ad hoc approach is necessary,
such as describing the distribution as a gaussian mix-
ture, say. However, since the underlying problem is to
assess the uncertainty in the parameter vector, the un-
certainty associated with Fθ̂NS (θ) does provide an over-
bound on the actual uncertainty from Fθ̂N (θ), as will be
demonstrated in the subsequent Section 6.

5 Analysis of Model-Based Jackknife & Boot-
strap

As remarked earlier, given the similarity between Model-
Based Jackknife and Model-Based Bootstrapping, we
shall concentrate solely on analytical results for the lat-
ter.

Differently from Subsampling, the consistency of the
Bootstrap procedure has been intensively studied dur-
ing the last two decades, and many results are available
in the literature, [23]. In particular, we have the follow-
ing result from [2], which mirrors Theorems 1-2 for Sub-
sampling.

Theorem 3 ([2], Theorem 3.9) Suppose that:

- the data are generated by an autoregressive (AR) pro-
cess yt = θT0 ϕt + et, ϕt = [yt−1 · · · yt−n]T , with roots
inside the unit circle,

- the AR driving noise process, et, is independent and
identically distributed with zero mean, unit variance,
and has bounded (2s+ 1)th moment with s ≥ 3,

- the variables e1 and e21 satisfy Cramèr’s Condition,
which is implied by their having probability distribu-
tions absolutely continuous with respect to Lebesgue
measure.

Denote the empirical Bootstrapped distribution function
based on m resamplings of the N -long data sequence as
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FBS(θ̂BSN ) and let the associated probability be PBS. Fur-
thermore let Σ be the covariance of ϕt and let ΣBSN be
the covariance of the Bootstrap version of ϕt (i.e. the re-
gressor obtained from the model yt = θ̂TNϕt + εt, with θ̂N
the parameter estimate from actual data and εt the Boot-
strapped residuals). Provided m is chosen sufficiently
large for convergence of the estimate FBS , then almost
surely,

supx
∣∣∣PBS

(
N1/2

[
ΣBSN

]1/2 (
θ̂BSN − θ̂N

)
≤ x

)
−P

(
N1/2Σ1/2

(
θ̂N − θ0

)
≤ x

)∣∣∣
= o

(
N−1/2

)
.

(7)

The first comment about this result is to remark on its
similarity to the earlier theorems on Subsampling. The
underlying conditions on the stochastic processes are ef-
fectively the same. (The limitation to autoregressive pro-
cesses is extensible to ARX, ARMA, and ARMAX with a
small amount of work.) The quantification is marginally
different and the result is almost sure rather than mean-
square. Since Bootstrapping permits an extraordinar-
ily large number of resampled data sequences, the lim-
itation on m is not regarded as a problem. There are,
however, some implied restrictions compared with Sub-
sampling. The model structure of the true system and
that of the Bootstrapping model must be identical, so
under-modeling is not permitted in the theory. That be-
ing said, [28,7] both use high-order models to Bootstrap
new data sequences and then explore the distribution of
reduced-order models. Subsampling handles this distri-
bution directly. Secondly, the Bootstrapping results pro-
vide no explicit, finite-N quantification of distribution
error, and thus are contingent on asymptotic behavior.

In terms of quantifying the uncertainty in the param-
eter vector, we see that the result measures the Boot-
strapped variable’s deviation from the estimate θ̂N and
compares this to the deviation about the true parame-
ter value. Accordingly, there is an implicit requirement
for near consistency of the initial parameter estimator
before the Bootstrapped distribution estimator can be
reliably applied. We shall see this feature demonstrated
in the reconsideration of these estimators with the SMS
Example next.

6 SMS Example Redux

Both Subsampling and the Jackknife/Bootstrapping
have been applied to the SMS Example from Section 2 in
order to reconstruct empirically the probability distri-
bution of the identified model parameter θ̂N , N = 2000.
In this section, some results which permit better under-
standing of Subsampling and Bootstrapping estimators’
performance are developed.

6.1 Subsampling Estimated Distributions

Figure 7 depicts the probability distribution FSS(θ) re-
constructed via Subsampling by setting m = 250, NS =
150, and by choosing subsequences so as to achieve the
smallest overlap compatibile with the number of col-
lected data. The actual distribution of θ̂NS (i.e. Fθ̂NS (θ))

as well as that of θ̂N (i.e. Fθ̂N (θ)) are displayed too.
The two reference distributions, Fθ̂NS (θ) and Fθ̂N (θ),
have been calculated by Monte-Carlo simulations with
m = 500.

As is apparent and according to Theorem 1, FSS(θ) and
Fθ̂NS

(θ) are quite close to each other, showing that Sub-
sampling indeed provides a reliable estimate of the distri-
bution function of θ̂NS including capturing the local vari-
ances about the two modal points. On the other hand,
Fθ̂NS

(θ) and Fθ̂N (θ) differ with the latter being more
tightly centered on the modal points than the former.
Consequently, the uncertainty reconstructed via Sub-
sampling results as predicted in an oversized empirical
local variance. As remarked earlier, one might contem-
plate rescaling these empirical distribution functions to
accommodate this known feature. However, this would
require firstly parametrizing the empirical distribution
function as, say, a mixture of gaussians. This is a difficult
problem to resolve. From our perspective of uncertainty
estimation for control though, the central question about
the quality of the plant parameter estimate is answered
primarily by the detection of the two distinct modes.

If we increase the Subsample size, NS , from 150 to 500,
Fθ̂NS

(θ) gets closer to Fθ̂N (θ) for N = 2000; but, the re-

constructed distributionFSS(θ) does not matchFθ̂NS (θ)
any more because NS is now too big and the available
set of representative Subsampled sequences is too small
to achieve an accurate approximation. This is shown in
Figure 8.

This behavior is more emphatic if we take NS = 1000.
In this case, Fθ̂NS (θ) and Fθ̂N (θ) are almost identical (as

is expected), but the reconstructed distribution FSS(θ)
is quite far away from both. See Figure 9.

6.2 Bootstrap Estimated Distributions

For the Jackknife/Bootstrap, we set m = 500 and gen-
erated this number of N = 2000-long data sets by re-
sampling with replacement the empirical residual dis-
tribution generated as per the Jackknife procedure. We
used the full order model corresponding to θ̂N with the
original data as an estimate of the true data-generating
system in computing the unresampled original residual
sequence. The distribution of residuals was estimated by
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Figure 7. Distribution functions: Subsampling empirical distribution with NS = 150 (dashed green line), the Monte-Carlo

distribution of θ̂NS (solid thin black line), and the Monte-Carlo distribution θ̂N with N = 2000 (solid thick blue line).
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Figure 8. Distribution functions: Subsampling empirical distribution with NS = 500 (dashed green line), the Monte-Carlo

distribution of θ̂NS (solid thin black line), and the Monte-Carlo distribution of θ̂N with N = 2000 (solid thick blue line).
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Figure 9. Distribution functions: Subsampling empirical distribution with NS = 1000 (dashed green line), the Monte-Carlo

distribution of θ̂NS (solid thin black line), and the Monte-Carlo distribution of θ̂N with N = 2000 (solid thick blue line).

the empirical sum method. The reconstructed distribu-
tion FBS(θ) along with the actual distribution of θ̂N is
displayed in the next two figures.

We provide two separate plots. The first, in Figure 10
is based on the initial identified parameters being close

to the correct value; θ̂N ≈ θ0 =
[
−0.7 0.3 0.5

]T
. Here

we see very close agreement between the Bootstrap em-
pirical distribution function and the underlying actual
parameter distribution, as determined by Monte-Carlo
simulation. This includes the identification of the bi-
modal distribution, the relative probabilities of the two
modal points, and the local variances.

As remarked in Section 5, the accuracy of FBS(θ) may
be adversely affected by deviation of θ̂N , the initial
identified model parameter vector, from the true value,
θ0. In our particular experiment, poorer results are
achieved with the actually identified parameter vector
θ̂N = [0.46 − 0.84 − 0.68]T , which is significantly
different from θ0. This is depicted in Figure 11. The
Monte-Carlo analysis shows that for this example set-
up the likelihood of estimating such a distant parameter
vector is 38%. The Bootstrap correctly picks up the
bi-modality, but errs in estimating the probabilities and
local variances.

This example shows that in situations like the SMS ex-
ample, where θ̂N ends up far away from θ0 with high

probability, the Jackknife/Bootstrap can yield poor es-
timates for the distribution functions. Such behavior is
comparable to that displayed by the asymptotic normal
approximation discussed earlier and shown in Figure 2.
Although, it must said that the Bootstrap proved quite
capable of detecting the bi-modal behavior of the distri-
bution, which is inherently not possible with a normal
approximation. Of course, as the number of data, N ,
increases without bound, the probability of identifying
the correct parameter value tends to one and then the
asymptotic theory also takes hold in describing the local
behavior around this point. However, for small N this
need not be the case.

6.3 Comparison with other Bootstrap methods

For the sake of completeness, Moving-Block Bootstrap
and Transformation-Based Bootstrap have been tested
on the SMS example too. A description of the two ap-
proaches is briefly recalled prior to giving simulation re-
sults, see [16].

Moving-Block Bootstrap consists of splitting the original
N -long 2-dimensional data sequence{

y(1) y(2) · · · y(N)

u(1) u(2) · · · u(N)

}

into N/l blocks whose length is equal to l. Then, resam-
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Figure 10. Bootstrap empirical distribution function (dashed magenta line) and the Monte-Carlo distribution function of θ̂N

(solid blue line) for the case where θ̂N ≈ θ0.
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Figure 11. Bootstrap empirical distribution function (dashed magenta line) and the Monte-Carlo distribution function of θ̂N

(solid blue line) for the case where θ̂N ≈ θ? 6= θ0.

pling is performed over blocks, instead of single data
points, so as to construct a number of different artificial
data sequences, each made of shuffled blocks. This way,
the correlation between data points is preserved within
each block although discontinuities are created where
two consecutive blocks are pasted together.

Figure 12 shows the result obtained for the SMS exam-
ple with l = 100. As it appears, Moving-Block Bootstrap
detects bi-modality but errs in estimating local prob-
abilities. Yet, differently from Model-Based Bootstrap,
we have noticed that the error in estimating local prob-
abilities does not depend on whether θ̂N is close to the
true system parameter vector or not. Other choices of l
do not seem to improve the result.

As for Transformation-Based Bootstrap, the idea is to
compute the Discrete Fourier Transform of the avail-
able data sequence via the FFT algorithm and to di-
vide it by the square root of the spectrum (obtained
e.g. by averaging the periodogram of the data sequence
over a moving window in the frequency domain). This
way, we get a frequency-domain signal whose spectrum
is approximately constant, and thus, in time-domain, it
corresponds to an independent residual sequence. This
latter can be recovered by applying the inverse FFT al-
gorithm. Bootstrap is then performed over the obtained
residuals, and bootstrapped data sequences are eventu-
ally retrieved by transforming the bootstrapped residual
sequences via FFT, multiplying by the square root of
the spectrum of the original data sequence, and taking
the inverse FFT.

In the SMS example, Transformation-Based Bootstrap
has been applied to the 2-dimensional input and output
data sequence and the obtained results are depicted in
Figure 13. Again, Transformation-Based Bootstrap de-
tects bi-modality but errs in estimating local probabili-
ties. Again, the error does not depend on the closeness

of θ̂N to the true system parameter vector.

7 Conclusions

In this paper, we considered the problem of reconstruct-
ing the probability distribution of the identified model
parameter θ̂N based on a single finite-length data record.
After showing that the heuristic use (withN finite) of the
classical asymptotic theory of system identification can
be misleading, we introduced procedures based on re-
sampling ideas and discussed their advantages and draw-
backs. Theorems were developed on Subsampling and
compared to the Bootstrap results. A somewhat patho-
logical example was used as a vehicle for this evaluation.

In particular, in the Subsampling framework non-
asymptotic guaranteed results can be given, although
the estimated uncertainty tends to be oversized with
respect to the actual one. Yet, Subsampling requires
minimal assumptions to work properly, and the proce-
dure presented in this paper can be applied verbatim in
the presence of under-modeling.

The Jackknife and the Bootstrap may return sharper
results than Subsampling, but they require that the
true system be consistently estimated, i.e. no under-
modeling, because of the need for the reconstruction of
the residual sequence. Furthermore, the reconstructed
distribution is only asymptotically guaranteed to con-
verge to the actual one, and its quality with finite data
depends conditionally on whether the system estimate
is close enough to the true system itself.

Although this paper focused on probability distributions
only, another important topic in uncertainty evaluation
is the estimation of confidence regions for the true sys-
tem parameter θ0 (assuming that there is no under-
modeling). A promising approach, would be to derive
such regions from the reconstructed distribution of θ̂N .
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Figure 12. Moving-Block Bootstrap empirical distribution function (dashed magenta line) and the Monte-Carlo distribution

function of θ̂N (solid blue line).

Figure 13. Transformation-Based Bootstrap empirical distribution function (dashed magenta line) and the Monte-Carlo dis-

tribution function of θ̂N (solid red line).

To this end, the guarantees on the probability distribu-
tion reconstructed via Subsampling could be useful to
provide non-asymptotic guaranteed confidence region for
θ0. See also [4] and [5], where non-asymptotic guaran-
teed confidence regions for θ0 are constructed following
a different approach.
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