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Abstract

Iterative control has been widely studied in recent years as an efficient methodology
for the design of highly-performing controllers of complex plants. The idea behind
iterative design is that, when the plant is exceedingly complex, the design of the
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to increase the control performance through experience.

In this paper, we introduce a new iterative control scheme which explicitly ac-
counts for the presence of uncertainty in the plant description (iterative robust
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stability of the closed-loop system.
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1 Introduction

1.1 Why iterative control?

Consider the problem of designing a highly-performing controller C for an
uncertain plant P (see Figure 1). We suppose that the control performance is

PC
y(t)r(t) u(t)

Figure 1. Closed-loop system.

evaluated by means of a given control cost J(C, P ) ≥ 0 such that the lower J
the better the performance. The final objective is to find a controller C that
guarantees a given performance level: J(C, P ) ≤ J̄ .
The main feature of the control problem under consideration is that the plant
dynamics is assumed to be unknown, a situation which occurs in many prac-
tical engineering problems.
A typical way to deal with uncertainty in the plant dynamics is to resort to
identification methods to obtain a model P̂ of the plant. Then, the controller
is designed based on P̂ . This way of proceeding, however, calls for some care.
Indeed, it is well known, [19,20,35], that identifying the plant dynamics in
one-shot may often result in a model which is unsuitable for controller design
purposes. The reason is that it is a-priori difficult to select an appropriate
model class which achieves a sensible compromise between plant complexity
and the limitations posed by the finiteness of the data set (bias vs. variance
error trade-off). Moreover, when the plant input can be manipulated, design-
ing a suitable experiment can be difficult.
A well recognized fact, [2,19,20,35], is that not all the plant characteristics are
important for closed-loop performance. Thus, the goal of the identification
step is that of accurately identifying only those (usually few) plant dynam-
ical features which are relevant to control design. Though the system-model
mismatch may still remain large, highly-performing controllers can then be
designed as the identified model turns out to be properly tuned towards con-
trol objectives (identification for control, [12,18,21]).
Clearly, the problem here is how to perform the identification experiment so
as to identify the “plant dynamical features which are relevant to control de-
sign”. Iterative procedures prove powerful to this purpose, [19,26,35].
In general terms, an iterative control scheme goes as follows. Suppose that
a controller Ci−1 has been already designed, whose performance is however
not good enough. The controller Ci−1 is updated to Ci through the following
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steps:

Step 1. data are collected in closed-loop with Ci−1 in place, and a plant model P̂i is
estimated;

Step 2. a new controller Ci is designed based on P̂i;
Step 3. Ci is connected to the plant and the performance is checked: if J(Ci, P ) ≤ J̄

then the procedure is halted; otherwise i = i + 1 and the procedure is
repeated from step 1.

The controller validation at step 3 is performed by means of experimental data
collected while the real plant is operated with Ci.
As it appears, iterative control consists in a sequence of intertwined closed-loop
identification and control design steps. The goal is to unveil the plant dynam-
ical features relevant to control design through small adjustments. The effec-
tiveness of this idea can be better understood through the following metaphor.

A metaphor that catches the essence of iterative control
Suppose a person is not too far from a cliff. It is dark and he can only light
the scenery up by means of a few matches he has is his pocket. The objective

N

Figure 2. An iterative procedure for the cliff problem.

is to get as close as possible to the northernmost point on the edge of the cliff
without falling down (see Figure 2).
A decision needs to be made as to whether to use the matches altogether or
individually one after the other. By striking the matches altogether, the hope
is to bring light into the whole route to the cliff’s edge (one-shot full plant
identification). There is, however, the risk that the light would be too dim to
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reveal where the edge is located exactly, and the matches would probably be
wasted if used this way. A wiser strategy consists instead in lighting one match
at a time so as to reveal the scene in the vicinity of the current position, and
then moving a little step towards the north in the area that is visible. As the
person moves in the new position, he cannot proceed any further safely in the
darkness. At this point, another match is used so that the next step can be
performed in a safe way, and so on and so forth until the northernmost point
is reached. ∗

Iterative control works similarly. The closed-loop setting at step 1 is intro-
duced to avoid a full plant identification. Indeed, in closed-loop only some
features of the plant are excited and estimated. Thus, during the first itera-
tions – when poorly-performing controllers are connected to the plant – only
certain plant dynamical features are unveiled. This information is then used
to adjust in step 2 the current controller, so moving a little step in the direc-
tion of improving the control performance. Iterating this scheme, the desired
performance can be eventually reached.
One important aspect which is worth emphasizing in the metaphor is that the
northernmost point was reached by enlightening not all the cliff but only a
path connecting the initial position to the target position. Therefore, the iden-
tification effort is spent towards achieving the final objective without learning
“too much” of the system. Similarly, when improving the control system per-
formance step by step in an iterative controller design scheme, we do not
explore the whole plant dynamics to achieve the final result.

1.2 The need for robustness in iterative control

The goal of the present paper is to introduce and discuss iterative robust
control. Our contention is that incorporating robustness in iterative schemes
permits one to improve the performance through iterations more rapidly. The
idea is better put in context by first emphasizing some drawbacks with clas-
sical (non-robust) iterative schemes.

Iterative control has been intensively studied in the last decade, [2,14,23,29,30,31],
and there is a variety of iterative techniques with different and specific fea-
tures, [4,6,7,13,19,22,26,35]. Yet, as shown in [3,5], a common feature of iter-
ative methods is the need for cautious adjustments at each controller update
step. This can be easily understood considering that, at each iteration i, only
a partial description of the plant becomes available, and, consequently, the
controller Ci has to be designed on a conservative ground (catious controller).
In many iterative schemes, the model P̂i at step 1 of the procedure is simply
a nominal model of the plant with no concern for its reliability. Consequently,
when the controller Ci is designed at step 2, one has no hints on its range of
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validity. This circumstance reflects into an over-conservative use of the model.
In e.g. the well known “windsurfer” approach, [15,25,26], the fact that the
model reliability is unknown is taken care of by splitting step 2 into a number
of sub-steps (Figure 3.a): using the model identified at step 1 and without
updating it, the controller is progressively tuned so as to improve the control
performance (e.g. when the plant is linear, one typically tries to progressively
increase the closed-loop bandwidth); at any sub-step, the designed controller
is tested on the real plant to avoid reaching the closed-loop stability limit.
When it is detected that a further performance improvement is likely to gen-

Iteration

i

Identification step

(a) (b)

Controller design sub-steps

Iteration

i

Identification step

Controller design step

.

.

.

Figure 3. Iterative schemes (a) vs. Robust Iterative schemes (b).

erate instability, the model P̂i is no longer deemed reliable and a new model
is identified. This means that step 2 is halted and the procedure moves on to
step 3.
Unfortunately, this way of proceeding has a drawback: each intermediate con-
troller has to be tested on the real plant and this requires to access the plant
many times for experiment. This results in a relatively long and expensive
design procedure.

The drawbacks in the above approach can be alleviated by resorting to robust
iterative control techniques, i.e. iterative schemes which explicitly account for
the presence of uncertainty in the control design phase at step 2. In this way,
it will be possible to design the controller at each iteration in a single shot
(Figure 3.b), so reaching high performances without experimental over-effort.
Precisely, this can be obtained by replacing steps 1 and 2 with the following
ones:

Step 1′. from the data collected in closed-loop:
1′.a estimate a nominal model;
1′.b estimate a model of uncertainty;
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Step 2′. design the best possible robust controller according to the existing level of
uncertainty.

The idea behind points 1′ and 2′ above can be explained as follows. At iteration
i, a sensible selection of the controller has to meet two different and conflicting
objectives:

- on the one hand, the controller has to be cautious to avoid a possible desta-
bilization of the control system;

- on the other hand, it should not be overconservative, otherwise the corre-
sponding performance improvement is not significant.

The robust controller design at step 2′ performs in a single step the best
compromise between these two objectives according to the present level of
uncertainty. In this way, the achieved performance rapidly improves through
iterations, while preserving the robust stability of the closed-loop system. This
is an important achievement, and we expect that the algorithm here introduced
will impact on the real implementation of iterative control, by also fostering
a more widespread acceptance of iterative schemes among practitioners.

1.3 Outline of the paper

The iterative algorithm outlined above describes the essential idea of itera-
tive robust control as introduced in this paper. This idea is more concretely
developed in the subsequent sections by performing specific choices for the
implementation of steps 1′ and 2′.

For the sake of concreteness, all the choices are first presented in Section 2 for a
simple example of an elastic transmission system. However, these choices carry
a general applicability. Further discussion on alternative choices is provided
in Section 3, while Section 4 contains some final conclusions.

2 Robust iterative control: the example of an elastic transmission
system

2.1 Plant description

Consider the Grenoble transmission system of [24]. This system is formed
by three pulleys connected by two elastic belts as shown in Figure 4. The
system input u(t) is the angular position of the first pulley, while the output
y(t) is the angular position of the third pulley. The control objective is to make
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u(t) y(t)

Figure 4. The Grenoble transmission system.
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Figure 5. Bode diagram and poles and zeros of P (z)

PC
y(t)r(t) u(t)+

-

Figure 6. Closed-loop system.

the angular position of the third pulley as close as possible, over a suitable
bandwidth, to a given reference signal r(t) (tracking control problem).
The discrete-time u to y transfer function of the system is (see [24]):

P (z) =
0.033z + 0.054

z4 − 2.85z3 + 3.72z2 − 2.65z + 0.87
.

It has two pairs of complex conjugate stable poles, giving rise to two resonant
peaks. A zero outside the unit circle (non minimum phase zero) is also present.
See Figure 5 for the system Bode diagram and for a graphical representation
of its poles and zeros.
A 1-degree-of-freedom control scheme as shown in Figure 6 is considered. Ini-
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Figure 7. Step response of the initial closed-loop system.

tially, the plant was operated with the following PI controller:

C0(z) = 0.01 ·
z + 0.5

z − 1
,

which resulted in a stable but slow closed-loop system (Figure 7).

2.2 Identification and uncertainty estimation (step 1′)

Closed-loop identification was performed with a square wave with period T =
100 and amplitude 1 as reference input, and data collection lasted N = 3000
instants. The system output was generated by simulation from system:

y(t) = P (z)u(t) + d(t),

where noise d(t) was

d(t) =
z − 2

z − 0.9
e(t), e(t) = WGN(0, 0.0001)

(WGN = White Gaussian Noise). Note that d(t) is a highly-correlated stochas-
tic noise as it is typical of many real applications. Its standard deviation is
0.026.

As prescribed by the robust iterative scheme in steps 1′.a and 1′.b, we need
to estimate a nominal model as well as a model of uncertainty. These models
have to be used in the subsequent step 2′ to design a robust controller.
As we shall see (Section 2.3), the nominal model and the uncertainty de-
scription play very different roles in the control design step and, thus, it is
advisable to consider different classes of models for the two steps 1′.a and
1′.b. Specifically, the nominal model of step 1′.a needs to be simple to facili-
tate the construction of a nominal controller, while the model for uncertainty
description of step 1′.b is complex enough to capture all system parts.
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For nominal model identification, we considered an ARMAX(4,2,4) model
class:

M =
{
y(t) =

B(z, λ)

A(z, λ)
u(t) +

C(z, λ)

A(z, λ)
η(t)

}
,

where η(t) is white noise and λ is the vector of A, B, C coefficients, and the
model M(λ̂i) at iteration i was obtained by resorting to Prediction Error
Methods (PEM), [27,33].

The model class for uncertainty evaluation was instead:

P =
{
y(t) = P (z, ϑ)u(t) + v(t)

}
,

where v(t) is a noise process and P (z, ϑ) is parameterized through a Finite
Impulse Response (FIR) filter, i.e. P (z, ϑ) = ϑ1z

−1 +ϑ2z
−2 + . . .+ϑnz−n with

n = 100. The choice of n was based on an inspection of the plant impulse
response.
The FIR structure of order 100 carries 100 parameters, a large amount. This
choice was made because we supposed we had no clue on the real system struc-
ture other than that its transient drops off in approximately 100 instants, in
which case the FIR structure is the most reasonable choice. Should some in-
formation on the system structure be known, such an information could be
conveniently incorporated in the model P (z, ϑ).
The uncertainty evaluation was performed by means of the asymptotic the-
ory of system identification, [27,33], that provides a probability density fi(ϑ)
describing the likelihood that the model corresponding to ϑ is the true sys-
tem. This density is Gaussian with a mean and a variance estimated from data.
Specifically, the asymptotic theory of Instrumental Variable (IV) methods was
used (e.g. [27], Chapter 9.5) with [ur(t − 1) . . . ur(t − 100)]′ as instrument,
where ur(t) was obtained by simulating noise-free the nominal model with
the latest designed controller in the loop and with reference r(t). This is a
standard choice in IV implementation, see e.g. [32].
We feel advisable to remark that fi(ϑ) is not a descriptor of the uncertainty
in the nominal model M(λ̂i), it instead directly describes how reliable the full
description of the real plant provided by P (z, ϑ) is, based on the available
batch of data. This is the relevant information used in the controller design
step 2′ to detune the nominal controller, as described in the next section.

2.3 Controller design (step 2′)

The objective of this section is to describe how the information supplied by
step 1′ (i.e. M(λ̂i) and fi(ϑ)) can be used to design the “best possible robust
controller” in step 2′.
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A well known fact is that designing a controller with robust features is a hard
task in general. We therefore introduce a specific two-stage easy-to-implement
approach as follows:

a. first, a nominal controller Ci is designed based on the nominal model M(λ̂i);
b. the nominal controller is detuned in the light of the existing level of uncer-

tainty as described by fi(ϑ), so as to meet robustness requirements.

The big part of the controller is selected in point a. based on the nominal
model with no concern for uncertainty, and this makes the design simple.
Uncertainty comes into play only for detuning, which is much easier a robust
design than determining the whole robust controller.
Nominal controller design and detuning are now discussed in turn.

As nominal controller we used a linear deadbeat controller which can be ob-
tained from the identified u to y nominal transfer function B(z, λ̂i)/A(z, λ̂i)
as follows (see [1]):

Ci(z) =
A(z, λ̂i)

B(1, λ̂i)zk − B(z, λ̂i)
, (1)

where k = 4 is the order of A(z, λ̂i).
When connected to P (z), Ci(z) yields the following complementary sensitiv-
ity function (here BP (z) and AP (z) are respectively the numerator and the
denominator of P (z)):

Fi(z) =
BP (z)A(z, λ̂i)

AP (z)B(1, λ̂i)zk − AP (z)B(z, λ̂i) + BP (z)A(z, λ̂i)
.

If B(z, λ̂i) = BP (z) and A(z, λ̂i) = AP (z) (i.e. the real plant P (z) is exactly
identified), Fi(z) = B(z, λ̂i)/B(1, λ̂i)z

k, a FIR system. This means that the
reference signal is tracked in a finite number of steps (the controller is high-
performing in the nominal case). However, Ci(z) is also very sensitive to model
inaccuracy and when P (z) is not correctly identified, Ci(z) may even lead to
instability. The detuning is introduced to safeguard the control system against
instability, at the price of a degradation of the nominal performance.

The detuning was obtained with a well known technique in the Internal Model
Control (IMC) context, [28], which has been also used in the windsurfer iter-
ative scheme, [26]. The idea is to augment the structure of Ci(z) by forcing in
a detuning parameter γ, through which one can incorporate robustness.
Precisely, the augmented controller Ci(z, γ) is as follows:

Ci(z, γ) =
A(z, λ̂i)(1 − γ)k

B(1, λ̂i)(z − γ)k − B(z, λ̂i)(1 − γ)k
,

where γ ∈ Γ = [0, 1). Note that Ci(z, 0) = Ci(z).
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The complementary sensitivity function obtained when P (z) is operated with
Ci(z, γ) is

Fi(z, γ) =
BP (z)A(z, λ̂i)(1 − γ)k

AP (z)B(1, λ̂i)(z − γ)k − (AP (z)B(z, λ̂i) − BP (z)A(z, λ̂i))(1 − γ)k
,

whose DC gain is always 1.
When γ → 1, the poles of Fi(z, γ) tend to the roots of AP (z)Bi(1, λ̂i)(z− γ)k,
which are stable provided that P (z) is stable, independently of the mismatch
between P (z) and the identified model (robust stability). On the other hand,
when γ → 1, the dominant poles are those placed in γ, which means that the
control system response is very slow. Thus, altogether, γ plays the role of a
detuning parameter: as γ → 0, the nominal performance is retrieved, whereas
γ → 1 leads to a guarantee of internal stability at the price of performance
degradation.

The question now arises as to how γ should be selected based on the existing
level of uncertainty as given by fi(ϑ). Following [8], an approach robust in
probability is adopted here as explained next.

Denote by (γ, ϑ) the closed-loop system formed by controller Ci(z, γ) and
model P (z, ϑ). The robust controller is then obtained as the solution of the
following optimization program:

minγ∈Γ γ

subject to P{(γ, ϑ) is not stable} ≤ α.
(2)

Here, P{A} denotes the probability of event A with respect to the density
function fi(ϑ), and α is a robustness level chosen by the user. Note that
P{(γ, ϑ) is not stable} =

∫
Θ 1(γ,ϑ) is not stable · fi(ϑ) · dϑ, where 1. denotes indi-

cator function. P{(γ, ϑ) is not stable} is therefore a function of the sole vari-
able γ. Thus, in the optimization program (2), the detuning effect is kept
as moderate as possible, provided that a robust requirement on stability is
satisfied. Since fi(ϑ) is a Gaussian with the whole R

n as its support, a non-
zero level α must be accepted. The degree of freedom in the choice of α has
to be spent depending on the required level of robustness in the application
at hand, also bearing in mind that the lower α the stronger the detuning effect.

To solve (2), we here suggest using randomized methods (see e.g. [9,34,36,37])
as explained in the next subsection.
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2.4 Randomized methods

Randomized methods are Montecarlo-like methods through which an approx-
imate solution to (2) can be computed at low computational cost.

Let
{
γ1, . . . , γp

}
be a grid of points densely covering [0, 1). In the randomized

approach, one searches for the best detuning parameter among
{
γ1, . . . , γp

}
,

rather than over the entire feasible set [0, 1). One should note that the pro-
posed detuning method has just 1 detuning parameter, so that a suitable
covering of the domain for γ can be obtained with a reasonable amount of
grid points.

Optimization over
{
γ1, . . . , γp

}
is based on an empirical approximation of

probability P. Precisely, define

P̂{(γh, ϑ) is not stable} =
1

q

q∑

k=1

1(γh,ϑk) is not stable, h = 1, . . . , p,

where the ϑk’s are q parameters extracted from Θ in an independent fashion
according to the probability density fi(ϑ). Note that P̂{(γh, ϑ) is not stable}
is again a function of the sole γh.

Interestingly, the approximation introduced by using P̂ in place of P can be
kept moderate at will by suitably selecting the number q of the extracted ϑk’s.
The well known Hoeffding theorem ([34,36]) can be used to this aim:

Theorem 1 (Hoeffding) Fix two real numbers ǫ > 0 and δ > 0. If

q > (2ǫ2)−1 ln(2p/δ), (3)

then we have that

P{(γh, ϑ) is not stable} ≤ P̂{(γh, ϑ) is not stable} + ǫ

for every h = 1, . . . , p, with a probability greater than or equal to 1 − δ.

Remark 1 Theorem 1 says that P{(γh, ϑ) is not stable} can be approximated
by P̂{(γh, ϑ) is not stable} with arbitrary precision as long as the number q of
the ϑk extractions is sufficiently high. Note however that the theorem statement
holds true with a certain probability 1−δ only. This is a consequence of the fact
that P̂{(γh, ϑ) is not stable} is a random element depending on the extracted
ϑ1, . . . , ϑq: P{(γh, ϑ) is not stable} − P̂{(γh, ϑ) is not stable} can be smaller
than ǫ for some multi-samples and not for others, and δ refers to the probability
of extracting a “bad” multi-sample ϑ1, . . . , ϑq such that P{(γh, ϑ) is not stable}−
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P̂{(γh, ϑ) is not stable} ≤ ǫ does not hold for some h. It is also important to
note that q in (3) depends on δ logarithmically so that a very small value of δ
can be forced in without significantly affecting q.

Differently from other non-randomized numerical methods for computing P{(γh, ϑ) is not stable},
q does not depend on the size n of ϑ. Therefore, using high order FIR models
for uncertainty description (we used n = 100) does not adversely affect the
computational complexity and this is the chief advantage of using the intro-
duced randomized method over deterministic approaches.

Based on the above discussion, program (2) can be substituted by its ran-
domized counterpart:

minγ∈{γ1,...,γp} γ

subject to 1
q

∑q
k=1 1(γ,ϑk) is not stable ≤ α − ǫ.

Thanks to Theorem 1, the solution γo to this program is such that P{(γo, ϑ) is not stable} ≤
α holds with high probability 1 − δ. See Section 2.6 for a numerical example.

2.5 The complete iterative robust controller design scheme

In summary, the iterative scheme is so described:

0. (initialization step) connect an initial controller C0(z) to the plant. Set i = 1;
1. from the data collected in closed-loop:
1.a identify a low-order model M(λ̂i) in M;
1.b estimate the probability density fi(ϑ) over the high order model class P;

2. design the nominal controller Ci(z) based on M(λ̂i), and from Ci(z) con-
struct Ci(z, γ). Extract ϑk, k = 1, . . . , q, according to fi(ϑ) and let

γo = arg min
γ∈{γ1,...,γp}

γ subject to
1

q

q∑

k=1

1(γ,ϑk) is not stable ≤ α − ǫ;

3. connect Ci(z, γ
o) to the plant and check for the performance: if the perfor-

mance is satisfactory then stop; else set i = i + 1 and go to 1.

2.6 Simulation results

By applying the iterative controller design scheme of Section 2.5 to the Greno-
ble system we achieved the following results.
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Figure 8 represents the reduced order u to y transfer function B(z, λ̂1)/A(z, λ̂1)
estimated at the first iteration. From Figure 8, a large error between the es-
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Figure 8. Estimated nominal model at the first iteration (continuous line) and true
system (dashed line).
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Figure 9. Uncertainty at the first iteration: some models extracted from f1(ϑ).
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Figure 10. Estimated nominal models at the second iteration (continuous line) and
at the third iteration (dashed line).
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Figure 11. Uncertainty at the third iteration.

timated model and the plant is apparent. In Figure 9, the Bode plot of some
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models extracted according to f1(ϑ) are represented.
The randomized algorithm for the detuning was applied by uniformly sam-
pling [0, 1) in p = 20 points: γ1 = 0, γ2 = 0.05, γ3 = 0.1, . . . , γ20 = 0.95.
The choices α = 0.04, ǫ = 0.02 and δ = 0.0001 were made. By equation (3),
the number q of models extracted according to the probability density f1(ϑ)
was 16125. Large values of q are not a significant problem since the procedure
is totally off-line.
The obtained detuning parameter γo turned out to be equal to 0.85. Its large
value indicates a conservative choice which is justified by the high level of un-
certainty. The step-response of the obtained closed-loop system is the slowest
curve depicted in Figure 12.
Carrying on the iterative procedure, the identified nominal model became more
and more accurate (see Figure 10), and uncertainty concentrated around the
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Figure 12. Closed-loop step response for the first five iterations.
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Figure 13. γo at each iteration.

true system (see Figure 11). This led to the selection of the γo’s as indicated
in Figure 13. Figure 12 shows that the control performance rapidly improved
through iterations, while preserving the robust stability.
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3 Some further remarks on the implementation of the iterative
scheme

Though applied to a specific example, the iterative control scheme presented in
the previous section is of general applicability and it is intended as a complete
and ready-to-use method. On the other hand, the user may want to stray from
this scheme and make different controller/identification choices (i.e. different
choices for M, P, Ci(z), and Ci(z, γ)). In this section, we provide some hints
on a number of specific aspects that the user should account for when making
a selection.

Choice of the class of models M for nominal controller design
M should be a class of sufficiently low order models so as to obtain a simple
enough nominal controller. As iterations progress, this model gets tuned to
the system dynamics that are relevant for controller design. In general, the
selection of M is not a critical one. Indeed, selecting too a simple M class
does not cause any important problem with the developed iterative scheme
because the detuning mechanism will automatically reveal the occurrence of
this fact: the inability to describe relevant dynamics will result in that uncer-
tainty will remain significant and the robust features will stop the detuning
effect reduction from proceeding. When this happens, the user can be advised
to increase the order of M.

Choice of the class of models P for detuning
The user should be warned that not all model classes are suitable for uncer-
tainty description, a fact recently pointed out in [16]. In fact, for some classes
of models (e.g. Box-Jenkins models) and in condition of poor excitation (as
is often the case in iterative control), the asymptotic theory of system iden-
tification may lead to unreliable results. Precisely, there are situations where
the estimated density turns out to be peaky – suggesting that uncertainty is
restricted – and yet the real plant is located quite afield from the peak.

To be more concrete, let us show what happens in the first iteration of our
simulation of Section 2.6 if uncertainty is evaluated by means of a full order
(i.e. the same order of the real plant) Box-Jenkins model class:

PBJ =
{
y(t) = G(z, ϑ)u(t) + H(z, ϑ)ξ(t)

}
,

where ξ(t) is white noise and ϑ is the vector of the numerator and denominator
polynomial coefficients of G and H .
In Figure 14, the Bode plot of some models extracted according to the den-
sity fBJ

1 (ϑ) obtained via the asymptotic theory of Prediction Error Methods,
[27,33], are represented, showing that uncertainty concentrates around a model
far from the true system, in agreement with the discussion above. See [16] for
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Figure 14. Uncertainty at the first iteration (Box-Jenkins model class).

a comprehensive presentation of these phenomena.

Fortunately enough, according to the discussion in [17], the above problem
is avoided when IV identification is used (as we did in Section 2), and that
is the reason why IV techniques have to be preferred when the asymptotic
theory of system identification is resorted to. Perhaps, it is worth noticing
that one can as well resort to methodologies for model uncertainty evaluation
other than the asymptotic theory and which does not suffer from the problem
described above; one such alternative is LSCR, [10,11].

Choice of nominal controller and detuning
The nominal controller choice is simply dictated by the specific application
objectives.
As for the detuning, a simple usage of the randomized method suggests that
it has to contain one single parameter only. For deadbeat, the detuning in
Section 2.3 can be used with generality. As another example, when P (z) and
Ci(z) are stable, one can simply consider Ci(z, γ) = (1 − γ)Ci(z): with γ = 0
the nominal controller is recovered, while γ → 1 leads to a stable open-loop
configuration.

4 Conclusions

In this paper, we have introduced a new iterative controller design scheme
based on an explicit use of robustness features. It has been shown that, by in-
corporating robustness, the controller performance rapidly improves through
iterations, with no experimental over-effort, while the robust stability is al-
ways preserved.
From the technical side, the strength of this paper rests in the development
of an original mathematical solution to the iterative robust controller design
problem. Particularly, a two-stage controller design procedure - with a con-
troller de-tuning in the second stage - has been developed so as to apply
randomization to only compute the probability of destabilization, while deter-
ministically optimizing over a single de-tuning parameter. Moreover, random-
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ization allows for the use of different model classes for nominal identification
and for identification of uncertainty, where the complexity of this second class
does not impact on the size of the randomized sample.
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