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Abstract

In this paper, we study the link between a Chance-Constrained optimization Problem (CCP) and its
sample counterpart (SP). SP has a finite number, say N , of sampled constraints. Further, some of these
sampled constraints, say k, are discarded, and the final solution is indicated by x

∗
N,k. Extending previous

results on the feasibility of sample convex optimization programs, we establish the feasibility of x
∗
N,k for

the initial CCP problem.
Constraints removal allows one to improve the cost function at the price of a decreased feasibility. The
cost improvement can be inspected directly from the optimization result, while the theory here developed
permits to keep control on the other side of the coin, the feasibility of the obtained solution. In this way,
trading feasibility for performance is put on solid mathematical grounds in this paper.
The feasibility result here obtained applies to all chance-constrained optimization problems with convex
constraints, and has the distinctive feature that it holds true irrespective of the algorithm used to discard
k constraints in the SP problem. For constraints discarding, one can thus, e.g., resort to one of the many
methods introduced in the literature to solve chance-constrained problems with discrete distribution, or
even use a greedy algorithm, which is computationally very low-demanding, and the feasibility result
remains intact.
We further prove that, if constraints in the SP problem are optimally removed – i.e., one deletes those
constraints leading to the largest possible cost improvement –, then a precise optimality link to the
original chance-constrained problem CCP in addition holds.

Keywords: Chance-constrained optimization, Stochastic optimization, Convex optimization, Sample-based opti-

mization, Randomized methods.

1 Introduction

Letting X ⊆ R
d be a convex and closed domain of optimization, consider a family of constraints x ∈ Xδ

parameterized in δ ∈ ∆, where the sets Xδ are convex and closed. Convexity of the sets Xδ is an assumption
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in effect throughout this paper. δ is the uncertain parameter and it describes different instances of an

uncertain optimization scenario. Adopting a probabilistic description of uncertainty, we suppose that the

support ∆ for δ be endowed with a σ-algebra D and that a probability measure P be defined over D. P

describes the probability with which the uncertain parameter δ takes value in ∆. Then, a chance-constrained

optimization program is written as:

CCPǫ : minx∈X cT x

s.t. P{δ : x ∈ Xδ} ≥ 1 − ǫ.

(1)

Here, the σ-algebra D is large enough, so that {δ : x ∈ Xδ} ∈ D, that is {δ : x ∈ Xδ} is a measurable

set. Also, linearity of the objective function is without loss of generality, since any objective of the kind

minx∈X c(x), where c(x) : X → R is a convex function, can be re-written as minx∈X ,y≥c(x) y, where y is a

scalar variable.

In CCPǫ, constraint violation is tolerated, but the violated constraint set must be no larger than ǫ. This

parameter ǫ allows one to trade robustness for performance: the optimal objective value J∗
ǫ of CCPǫ is a

decreasing function of ǫ and provides a quantification of such a trade-off. Depending on the application

at hand, which can cover a wide range from control to prediction and from engineering design to financial

economics, ǫ can take different values and has not necessarily to be thought of as a “small” parameter.

Chance-constrained programming has been around for a long time, at least since the work of Charnes,

Cooper and Symonds in the fifties, see [1]. In [1], however, only individual chance-constraints were con-

sidered. Joint probabilistic constraints, as in (1), were first considered by Miller and Wagner, [2], in an

independent context, while a general theory is due to the work of Prèkopa, see [3, 4]. Prèkopa also intro-

duced the convexity theory based on logconcavity, a fundamental step toward solvability of a large class of

chance-constrained problems. [5, 6, 7] are excellent references providing a broad overview on logconcavity

theory in stochastic programming, and related results. Yet another study about the convexity of chance-

constrained problems is [8], while convex approximations of chance-constrained problems are considered in

[9, 10, 11, 12]. Stability of the solution under perturbation of the chance-constrained problem is studied in

[13, 14]. The case of discrete distribution is dealt with using efficient points in [15, 16, 17, 18, 19, 20], see

also [21, 22, 23] for other studies.

Though chance-constrained problems can be efficiently solved in some notable cases as outlined above,

it remains true that the feasible set of CCPǫ is in general non-convex in spite of the convexity of the sets

Xδ. Consequently, an exact numerical solution of CCPǫ is in general hard to find.
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1.1 Contribution of this paper

In this paper, we consider sample-based approximations of chance-constrained optimization problems. Pre-

cisely, by replacing ∆ with a finite sample of independent instances δ(1), δ(2), . . . , δ(N) ∈ ∆ distributed

according to P, an optimization program with a finite number of constraints is obtained (the sample op-

timization program), and we further allow one for removal of constraints from this finite set to improve

the cost value1. Our main objective is to quantitatively relate the sample-based approximation to the initial

chance-constrained optimization program and to provide sample size results on the number of constraints to

sample to make the solution of the former a feasible solution of the latter.

Sample-based approximations are chance-constrained problems with discrete distribution. Chance-

constrained problems with discrete distribution have been previously considered in many papers, e.g.

[15, 21, 16, 17, 18, 19, 22, 20, 23], where effective resolution methods have been introduced. Our stand-

point here is that one can use anyone of these resolution methods, or even any other method, e.g., based

on a greedy removal of the constraints, and our feasibility Theorem 2.1 always holds true to establish the

feasibility of the solution with respect to the initial CCPǫ problem. This theorem precisely establishes that:

if N constraints are sampled and k of them are eliminated according to any arbitrary rule, then the

solution that satisfies the remaining N − k constraints is, with high confidence, feasible for the chance-

constrained optimization program CCPǫ in (1), provided that N and k satisfy a certain condition

(3).

This theorem justifies, at a very deep theoretical level, the use of sampling in chance-constrained. Its strength

is that it applies to all chance-constrained problems with convex constraints. Moreover, condition (3) is very

tight, in the sense that it returns values for N and k close to the best possible values guaranteeing feasibility,

a fact also shown in this paper.

Theorem 2.1 opens up practical routes to address chance-constrained optimization problems: after sam-

pling, constraints are removed according to any procedure, and, at the end of the elimination process, the

actually incurred optimization cost is inspected for satisfaction, while Theorem 2.1 allows one to keep control

on the feasibility of the obtained solution. To illustrate the result in more concrete terms, we anticipate

here in Figure 1 a graph referring to a numerical example that we shall develop in full later in Section 3.

In the figure, the curve with circled markers represents the optimization cost of the sample-based solution

as a function of the number k of removed constraints, while the curve with squared markers represents

the constraints violation of the sample-based solution as guaranteed by the theory developed in this paper.

1These δ(i) can have in applications one of the following two interpretations: 1. they are artificially extracted by the user

from ∆; 2. they come as observations. Section 4.1 provides a more detailed discussion of these interpretations.
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Based on an assessment of the two curves, the user can choose his favorite compromise between performance

and violation.

Depending on the elimination rule, the incurred objective value can be close or less close to the optimal

objective value J∗
ǫ of the CCPǫ optimization program. Working on this aspect, we further prove in Theorem

6.1 that, when k constraints are optimally removed, the objective value gets close to J∗
ǫ in a sense precisely

stated in the theorem.

Figure 1: Optimization cost (curve with circled markers) and constraints violation (curve with squared

markers) against the number of the removed constraints in the x-axis.

1.2 Connection with other results on sample-based methods

Sample-based techniques, also known as Monte Carlo methods, have been around for decades, but only re-

cently they have started to spread in the context of stochastic optimization due to the increase of computing

capabilities, see e.g. [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], and sample-based optimization has also

been used in connection of various application domains, see e.g. [36, 37, 38, 39, 40]. We here give a brief

resume of previous results about the feasibility of sample-based optimization programs, that have a close

relation to the present paper.

Chapter 5 in [34] provides a thorough presentation of the conditions for the sample-based approximation to

asymptotically reconstruct the original chance-constrained problem. Unlike Chapter 5 in [34], the present

paper deals with a finite-sample analysis, in that we want to determine the sample size N guaranteeing

a given level of approximation. Finite-sample properties are also the topic of the interesting paper [41],
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which presents an analysis applicable in a set-up complementary to that of the present paper. Specifically,

feasibility results are established for possibly non-convex constraints, provided that the optimization domain

has finite cardinality or in situations that can be reduced to this finite cardinality set-up. An excellent

contribution with many results for possibly non-convex constraints is also [42].

The approach of the present paper builds on the so-called “scenario” approach of [43, 44, 45]. The funda-

mental progress over [43, 44, 45] here made is that the results in [43, 44, 45] do not allow one for constraints

removal, a possibility which is of crucial importance any time one wants to trade feasibility for performance.

1.3 Structure of the paper

In next Section 2, we formally introduce the sample-based approach with constraints elimination to prepare

the terrain for the feasibility Theorem 2.1 given at the end of the same section. To avoid breaking the flow

of discourse, the proof of Theorem 2.1 is postponed to Section 5, while Section 3 presents how to trade

feasibility for performance and Section 4 provides complimentary theoretical material. Finally, optimality

results are given in Section 6.

2 Sample-based chance-constrained optimization: feasibility re-

sults

Suppose that N samples δ(1), δ(2), . . . , δ(N) independent and identically distributed according to the prob-

ability measure P are available. The idea behind the scenario approach of [43, 44, 45] is to substitute the

vast multitude of constraints in the infinite initial domain ∆ with these N constraints only, and to find the

optimal solution that satisfies all of these N constraints. If all the N constraints are enforced, however, one

cannot expect that good approximations of chance-constrained solutions are obtained2. Thus, we allow in

this paper for violating part of the sampled constraints to improve the optimization value. A general removal

procedure is formalized in the following definition.

Definition 2.1 Let k < N . An algorithm A for constraints removal is any rule by which k constraints out of

a set of N constraints are selected and removed. The output of A is the set A{δ(1), . . . , δ(N)} = {i1, . . . , ik}

of the indexes of the k removed constraints. �

The fact that A can be any removal algorithm provides us with an opportunity to pick the most suitable

algorithm for the situation at hand, selecting from a range that goes from a handy greedy algorithm to the

2The fundamental role of constraint removal can be fully appreciated by way of a simple 1-dimensional example. We provide

such an example in Appendix A, part A.1, for the benefit of the reader who is interested to gain more insight.
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optimal algorithm where k constraints are eliminated to best improve the cost objective. All methods in

[15, 21, 16, 17, 18, 19, 22, 20, 23] can be used and thus this paper leverages on these previous contributions.

Another choice is a recursive optimal elimination of groups of p, with p ≪ k, constraints at a time (when

p = 1 the greedy algorithm is recovered). Yet another choice consists in progressively updating the solution

by eliminating all the active constraints at the currently reached solution.

The sample-based optimization program where k constraints are removed as indicated by A is expressed

as

SPA
N,k : minx∈X cT x

s.t. x ∈ Xδ(i) , i ∈ {1, . . . , N} − A{δ(1), . . . , δ(N)},

and its solution will be hereafter indicated as x∗
N,k.

We introduce the following assumptions.

Assumption 2.1 Every optimization problem subject to only a finite subset F of constraints from ∆, i.e.

min
x∈X

cT x s.t. x ∈ Xδ, δ ∈ F ⊆ ∆, (2)

is feasible, and its feasibility domain has a nonempty interior. Moreover, the solution of (2) exists and is

unique. �

Assumption 2.1 requires that problems with finitely many constraints be feasible. It applies to most sit-

uations of practical interest, notably in all chance-constrained minmax problems where one minimizes the

maximum value of an uncertain cost cδ(x), with maximum taken with respect to all δ ∈ ∆ǫ and minimum

with respect to x ∈ X and to the choice of the subset ∆ǫ ⊆ ∆ among sets whose probability is at least 1− ǫ,

viz. minx∈X ,∆ǫ
maxδ∈∆ǫ

cδ(x). This problem can be rewritten within the formalism of (1) as minx∈X ,h∈R h

s.t. P{δ : cδ(x) ≤ h} ≥ 1 − ǫ. One example of this type of problems is provided in Section 3.

We also introduce the following assumption on algorithm A.

Assumption 2.2 Almost surely with respect to the multi-sample (δ(1), . . . , δ(N)), the solution x∗
N,k of the

sample-based optimization program SPA
N,k violates all the k constraints that A has removed. �

This assumption requires that A chooses constraints whose removal improves the solution by violating the

removed constraints, and it rules out for example algorithms that remove inactive constraints only. Thus,

this assumption is very natural and reflects the fact that constraints are removed for the purpose of improv-

ing the optimization value. In general, Assumption 2.2 can be made true by simply incorporating in A a
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test to verify if the removed constraints are indeed violated and, if not, by further allowing the algorithm to

remove other constraints. The “almost surely” specification at the beginning of the assumption is introduced

because for non-generic δ(1), . . . , δ(N) samples, that e.g. cluster together (δ(1) = δ(2) = . . . = δ(N)), removal

of k constraints so that they are violated may be impossible.

Finally, we introduce the following definition.

Definition 2.2 (violation probability) The violation probability of a given x ∈ X is defined as V (x) =

P{δ ∈ ∆ : x /∈ Xδ}. �

The next Theorem 2.1 provides theoretical guarantees that V (x∗
N,k) ≤ ǫ, i.e. that the solution x∗

N,k of the

optimization program SPA
N,k is feasible for problem CCPǫ. Note that x∗

N,k is a random variable because it

depends on the random multi-sample (δ(1), . . . , δ(N)), so that its violation probability V (x∗
N,k) is a random

variable too defined over the product space ∆N = ∆ × · · · × ∆ endowed with the product σ-algebra DN =

D⊗· · ·⊗D and the probability measure P
N = P×· · ·×P, where the probability is a product probability because

the samples δ(i) are independent. Thus, V (x∗
N,k) can be less than ǫ for some multi-samples (δ(1), . . . , δ(N))

and not for others, and the theorem establishes the condition under which V (x∗
N,k) > ǫ has any arbitrarily

small probability β.

Theorem 2.1 Let β ∈ (0, 1) be any small confidence parameter value. If N and k are such that

(

k + d − 1

k

) k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i ≤ β (3)

(recall that d is the number of optimization variables), then P
N{V (x∗

N,k) ≤ ǫ} ≥ 1 − β. �

In the theorem the measurability of set {V (x∗
N,k) ≤ ǫ} is taken as an assumption; the same convention

applies elsewhere to other subsets of ∆N . The theorem holds true for any optimization problem with convex

constraints, any constraints removal algorithm A, and any probability measure P. To avoid breaking the

flow of presentation, the proof is given in the next Section 5.1.

Theorem 2.1 is a feasibility theorem and says that the solution x∗
N,k obtained by inspecting N constraints

only is a feasible solution for CCPǫ with high probability 1− β, provided that N and k fulfill condition (3).

Formula (3) establishes a relation among variables N , k, ǫ, and β. A typical use of this formula con-

sists in selecting an N within the computational limit of the used solver, ǫ according to the acceptable level

of risk, and β small enough to be negligible, e.g. β = 10−10, and computing from (3) the largest number k

of constraints that can be discarded.

7



For an easy visualization of Theorem 2.1, we have represented in Figure 2 the region in the N, k space

such that condition (3) is satisfied when ǫ = 0.1, β = 10−10 and d = 5. The interpretation is that, if any

Figure 2: Grey region: values of N and k satisfying condition (3) for ǫ = 0.1, β = 10−10 and d = 5.

pair (N, k) is picked from the grey region, then, if N constraints are sampled and k of them are removed,

the obtained solution is, with high confidence 1 − 10−10, feasible for the chance-constrained problem with

parameter ǫ = 0.1. As we shall discuss in detail in the Section 4.2, formula (3) provides a tight evaluation

for N and k.

3 Trading feasibility for performance

In some applications, one may want to reach a suitable compromise between violation and performance, in

which case one discards a progressively increasing number k of constraints, while inspecting the corresponding

cost improvement for satisfaction. Theorem 2.1 holds for given N and k; yet, by a repeated application of

the theorem for k = k1, k2, . . . , kM , one concludes that

P
N{V (x∗

N,ki
) ≤ ǫi, ∀i = 1, . . . , M} ≥ 1 −

M
∑

i=1

βi. (4)

This result permits one to keep simultaneous control on the obtained violations after an increasing number

of constraints are eliminated. Thus, after the user has computed x∗
N,ki

, i = 1, . . . , M , and the corresponding

cost values cT x∗
N,ki

, he can select his favorite violation/performance trade-off by assessing the ǫi’s against
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the cT x∗
N,ki

values. We also note that having a sum of βi in (4) is not a hurdle since the βi can be chosen

to be very small in normal situations. To illustrate ideas, we provide next an example taken from linear

regression.

Example 3.1 (minimax regression) The N = 2000 points (ui, yi), i = 1, . . . , 2000, displayed in Figure

3 are independently generated in R
2 according to an unknown probability measure P. We want to construct

−1 −0.5 0 0.5 1
−4

−2

0

2

4

6

8

10

u

y

Figure 3: (ui, yi) data points.

an interpolating polynomial of degree 3, y = x0 + x1u + x2u
2 + x3u

3, where x0, . . . , x3 are parameters to be

chosen, so that a strip of minimal vertical width centered around the polynomial contains all the generated

points. In mathematical terms, this problem can be cast as the following optimization program

min
x0,...,x4

x4 s.t.
∣

∣yi − [x0 + x1ui + x2u
2
i + x3u

3
i ]

∣

∣ ≤ x4, i = 1, . . . , 2000, (5)

and the optimal polynomial is named minimax regressor. Problem (5) is a sample optimization program

where δ(i) = (ui, yi). The solution we have obtained with the data at hand is shown in Figure 4.

The above problem can be interpreted as an identification problem where u is the input, y is the output,

P is the probability measure describing an underlying data generation mechanism, the N = 2000 points are

the data, and the strip is a data-based descriptor of the generator. Given the next input u, the interval in the

strip corresponding to that u provides a prediction of the associated unseen y. Correspondingly, one would

like to have a strip of small width so as to make a tight prediction, while keeping low the probability of not

capturing the next unseen y, that is the probability that (u, y) falls outside the strip.
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Figure 4: Strip containing all points.

To make the strip width smaller, we further removed some of the sampled (ui, yi) points. Figure 5 de-

picts, stacked one on top of the other, the strips obtained by a greedy removal of ki = 10, 20, . . . , 90 points.

Figure 5: Strips with increasing points violation.

The corresponding strip widths are displayed in Table 1.
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ki 0 10 20 30 40 50 60 70 80 90

width 6.08 4.32 3.90 3.46 3.08 2.84 2.54 2.36 2.14 2.06

Table 1: Strip widths vs. ki.

Turning to consider the reliability of the various strips obtained for different ki values, from (5) it is clear

that each point corresponds to a constraint and the probability that (u, y) falls outside the i-th strip is the

same as the probability of constraint violation V (x∗
N,ki

). Using ki = 0, 10, 20, . . . , 90 and βi = 10−10, ∀i, in

(3), this formula is satisfied for the ǫi values given in Table 2. These ǫi are upper bounds to the probability

ki 0 10 20 30 40 50 60 70 80 90

ǫi 0.017 0.031 0.041 0.051 0.059 0.068 0.075 0.083 0.090 0.097

Table 2: ǫi vs. ki.

that (u, y) does not belong to the i-th strip and Table 2 should be assessed by the user against Table 1 for his

violation/width favorite compromise. Figure 1 visually depicts the values in the tables. According to equation

(4), the confidence in the final result will be 1 −
∑10

i=1 10−10 = 1 − 10−9. �

4 Remarks on Theorem 2.1

4.1 Data-based optimization

The example of the previous section offers an opportunity to broaden the discussion so far in relation to the

interpretation and the applicability of the theoretical findings of this paper.

In some applications, ∆ and P represent a model we introduce to describe uncertainty. Correspondingly,

samples δ(i) are extracted by us along the process of replacing the CCPǫ program with its sample counterpart

SPA
N,k, having in mind the goal of making the problem computationally tractable. This way of proceeding

has been sometimes called “randomization”, referring to the artificial process of sampling as part of the

algorithmic solution methodology.

On the other hand, the example of Section 3 offers a second interpretation of the sampling scheme discussed

in this paper: there δ(i) = (ui, yi) is an observation that comes to us through a procedure of data acquisition.

(ui, yi) is generated by an underlying system, so that ∆ and P exist but are not known to us. The achieve-

ments of this paper find direct applicability to this context as well since all the optimization program SPA
N,k

uses are the samples δ(i) (so that if the δ(i) are available we do not need to know ∆ and P) and since applying

the theoretical result of Theorem 2.1 does not require any knowledge of ∆ and P as well (distribution-free

result). For these reasons, we expect that the findings of this paper will have a significant impact in all fields
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where data-based optimization is used including signal processing, system identification, statistical learning,

financial economics, and others.

4.2 A remark on the quality of bound (3)

We discuss the bound (3) and its margin of improvement.

From Theorem 2.1, we have that
(

k+d−1
k

)
∑k+d−1

i=0

(

N
i

)

ǫi(1 − ǫ)N−i is an upper bound to P
N{V (x∗

N,k) > ǫ}

valid for any removal algorithm A and for any optimization problem P (that is for any set of constraints Xδ,

δ ∈ ∆, probability measure P, and cost function cT x). I.e.

sup
P,A

P
N{V (x∗

N,k) > ǫ} ≤

(

k + d − 1

k

) k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i. (6)

It is a fact that a lower bound to the same probability is

sup
P,A

P
N{V (x∗

N,k) > ǫ} ≥
k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i, (7)

and this sets a limit to the margin of improvement of the bound in Theorem 2.1. For a visual understanding

UPPER฀BOUND

LOWER฀BOUND

Figure 6: Grey region: values of N and k satisfying condition
∑k+d−1

i=0

(

N
i

)

ǫi(1 − ǫ)N−i ≤ β; Light grey

region: values of N and k satisfying condition
(

k+d−1
k

)
∑k+d−1

i=0

(

N
i

)

ǫi(1− ǫ)N−i ≤ β; ǫ = 0.1, β = 10−10 and

d = 5.

of this result, in Figure 6 we have represented the region in the N, k space where condition
∑k+d−1

i=0

(

N
i

)

ǫi(1−
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ǫ)N−i ≤ β is satisfied for ǫ = 0.1, β = 10−10 and d = 5 superimposed to the region obtained by using (6),

i.e. by imposing
(

k+d−1
k

)
∑k+d−1

i=0

(

N
i

)

ǫi(1 − ǫ)N−i ≤ β (this is the same region as in Figure 2).

The proof of (7) is provided in Section 5.2.

4.3 An explicit formula for k

Using the Chernoff bound for the Binomial tail (see e.g. Section 2.3.1 in [46]) yields

k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i ≤ e−
(ǫN−k−d+1)2

2ǫN , for ǫN ≥ k + d − 1.

Moreover,

(

k + d − 1

k

)

=
(k + d − 1)!

(d − 1)!k!
≤ (k + d − 1)(k + d − 2) · · · (k + 1) ≤ (k + d − 1)d−1 ≤ (ǫN)d−1,

where the last inequality follows from condition ǫN ≥ k + d − 1.

Hence, the left-hand-side of (3) is bounded by (ǫN)d−1 · e−
(ǫN−k−d+1)2

2ǫN . Given N , ǫ, β, and d, we compute a

k such that

(ǫN)d−1 · e−
(ǫN−k−d+1)2

2ǫN ≤ β.

This latter equation can be rewritten as

(ǫN − k − d + 1)2 ≥ 2ǫN ln
(ǫN)d−1

β
,

which, solved for k with the condition ǫN ≥ k + d − 1, gives

k ≤ ǫN − d + 1 −

√

2ǫN ln
(ǫN)d−1

β
. (8)

Equation (8) is an explicit handy formula for k which can be used to compute the number of constraints

that can be discarded. More precise evaluations can be obtained by numerically solving (3).

4.4 A remark on the fact that, although the bound is problem-independent, it

is non-conservative

In [45], we showed that the only characteristic of an optimization problem that counts in determining the

violation properties of a solution that satisfies all the sampled constraints is the number of support constraints

of the sample-based optimization program. This number of support constraints is further bounded in [45]

by d, the number of optimization variables, and this may introduce some conservatism. When we allow

for constraints removal, as we do here, we see from formula (3) that d does not count as such, and it

only appears summed to k: d + k, where k is the number of removed constraints. The presence of k,
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which is deterministically known and chosen by the user, levels out the differences among optimization

problems, so that results like those of this paper that hold true for any chance-constrained problem become

nonconservative.

To gain extra quantitative insight on this point, notice that, letting kmax(N) be the maximum integer k such

that (8) is satisfied for a given ǫ and β, we see from (8) that limN→∞
kmax(N)

N
= ǫ. Indeed, the first term

in the right hand side increases linearly in N whereas the other terms are sublinear and vanish for N → ∞

when divided by N . The interpretation is that the empirical violation kmax(N)
N

tends to the true violation ǫ

as N is let increase, and this is the best possible result one can expect. For finite N , instead, random effects

introduce a variability in the violation of the solution, so that the number of constraints that can actually be

removed need to be less than ǫ ·N to obtain high confidence that the solution violates less then ǫ. Inspecting

e.g. Figure 1 we see that to achieve a violation below 10% we have to eliminate no more that 90 constraints

out of 2000, i.e. 4.5%, introducing a factor of approximately 2 between the two percentages.

4.5 A further comment on the choice of N

In applications where the δ(i) are associated to observations and one has no active role in designing the

experiment, the number N is dictated by the size of the available data record; this was e.g. the case in

the example of Section 3. Other times, however, N can be selected as part of the experiment design. If so,

formula (8) offers practical information for the selection of N : compatibly with other limitations, term

−d + 1 −
√

2ǫN ln (ǫN)d−1

β

N

should be made small enough by properly selecting N so that the mismatch between empirical violation k
N

and the theoretical limit ǫ is kept below a desired level.

5 Proofs

5.1 Proof of Theorem 2.1

Introducing the notation δ := (δ(1), . . . , δ(N)), in this proof we shall write x∗
N,k(δ) instead of x∗

N,k to empha-

size the stochastic nature of the solution. The “bad” multi-samples from ∆N leading to a solution x∗
N,k(δ)

violating a portion of constraints larger than ǫ form an event

B = {δ ∈ ∆N : V (x∗
N,k(δ)) > ǫ},

and, in these notations, the theorem statement can be rephrased as P
N{B} ≤ β.
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Given a subset I = {i1, . . . , ik} of k indexes from {1, . . . , N}, let x∗
I(δ) be the optimal solution of the

optimization problem where the constraints with index in I have been removed, i.e.

x∗
I(δ) := arg min

x∈X
cT x s.t. x ∈ Xδ(i) , i ∈ {1, . . . , N} − I. (9)

Moreover, let

∆N
I = {δ ∈ ∆N : x∗

I(δ) violates the constraints δ(i1), . . . , δ(ik)}. (10)

Thus, ∆N
I contains the multi-samples such that removing the constraints with indexes in I leads to a solution

x∗
I(δ) that violates all the removed constraints.

Since the solution of SPA
N,k almost surely violates k constraints (Assumption 2.2), it is clear that x∗

N,k(δ) =

x∗
I(δ) for some I such that δ ∈ ∆N

I . Thus,

B = {δ ∈ ∆N : V (x∗
N,k(δ)) > ǫ} ⊆

⋃

I∈I

{δ ∈ ∆N
I : V (x∗

I(δ)) > ǫ} (11)

up to a zero probability set, where I is the collection of all possible choices of k indexes from {1, . . . , N}.

A bound for P
N{B} is now obtained by first bounding P

N{δ ∈ ∆N
I : V (x∗

I(δ)) > ǫ}, and then summing

over I ∈ I.

Fix an I = {i1, . . . , ik}, and write

P
N{δ ∈ ∆N

I : V (x∗
I(δ)) > ǫ}

=

∫

(ǫ,1]

P
N{∆N

I |V (x∗
I(δ)) = v} dFV (v)

=

∫

(ǫ,1]

P
N{x∗

I(δ) violates the constraints δ(i1), . . . , δ(ik)|V (x∗
I(δ)) = v} dFV (v), (12)

where FV is the cumulative distribution function of the random variable V (x∗
I(δ)), and P

N{∆N
I |V (x∗

I(δ)) =

v} is the conditional probability of the event ∆N
I under the condition that V (x∗

I(δ)) = v (see eq.(17), § 7,

Chapter II of [47]).

To evaluate the integrand in (12), remind that V (x∗
I(δ)) = v means that x∗

I(δ) violates constraints with

probability v; then, owing to that the δ(i) samples are independent, the integrand equals vk. Substituting

in (12) yields

P
N{δ ∈ ∆N

I : V (x∗
I(δ)) > ǫ} =

∫

(ǫ,1]

vk dFV (v). (13)

To proceed, we have now to appeal to a result on FV from [45]: FV (v) ≥ F̄V (v) := 1 −
∑d−1

i=0

(

N−k
i

)

vi(1 −

v)N−k−i, see Theorem 1 in [45] and recall that FV (v) is the cumulative distribution function of the violation

of a solution obtained with N − k constraints. This inequality is tight, i.e. it holds with equality for a whole

class of optimization problems, that called “fully-supported” in [45], Definition 3.

Now, the integrand vk in (13) is an increasing function of v, so that FV (v) ≥ F̄V (v) implies that

15



∫

(ǫ,1]
vk dFV (v) ≤

∫

(ǫ,1]
vk dF̄V (v). This can be verified by the calculation:

∫

(ǫ,1]

vk dFV (v) = [Theorem 11, §6, Chapter II of [47]]

= 1 − ǫkFV (ǫ) −

∫

(ǫ,1]

FV (v)kvk−1 dv

≤ 1 − ǫkF̄V (ǫ) −

∫

(ǫ,1]

F̄V (v)kvk−1 dv

=

∫

(ǫ,1]

vk dF̄V (v).

Hence, P
N{δ ∈ ∆N

I : V (x∗
I(δ)) > ǫ} can finally be bounded as follows:

P
N{δ ∈ ∆N

I : V (x∗
I(δ)) > ǫ} ≤

∫

(ǫ,1]

vk dF̄V (v)

= [the density of F̄V is d

(

N − k

d

)

vd−1(1 − v)N−k−d]

=

∫

(ǫ,1]

vk · d

(

N − k

d

)

vd−1(1 − v)N−k−d dv

= [integration by parts]

=
d
(

N−k
d

)

(k + d)
(

N
k+d

)

k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i. (14)

To conclude the proof, go back to (11) and note that I contains
(

N
k

)

choices. Thus,

P
N{B} ≤

∑

I∈I

P
N{δ ∈ ∆N

I : V (x∗
I(δ)) > ǫ}

=

(

N

k

)

P
N{δ ∈ ∆N

I : V (x∗
I(δ)) > ǫ}

≤ [use (14)]

≤

(

N

k

)

d
(

N−k
d

)

(k + d)
(

N
k+d

)

k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i

=

(

k + d − 1

k

) k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i

≤ β,

where the last inequality follows from (3). �

5.2 Proof of (7)

Consider a fully-supported problem P (see Definition 3 in [45]). Equation (14) in the proof of Theorem 2.1

holds true in this case with equality, that is

P
N{δ ∈ ∆N

I : V (x∗
I(δ)) > ǫ} =

d
(

N−k
d

)

(k + d)
(

N
k+d

)

k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i, (15)
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with x∗
I(δ) and ∆N

I defined as in (9) and (10).

For a multi-sample δ, let # be the number of solutions of level k (that is solutions that violate exactly k of

the sampled constraints) whose violation is more than ǫ. From (9) and (10), one easily sees that

# =
∑

I∈I

1{δ∈∆N

I
: V (x∗

I
(δ))>ǫ},

where 1A denotes the indicator function of set A. We now have that

E∆N [#] =

∫

∆N

∑

I∈I

1{δ∈∆N

I
: V (x∗

I
(δ))>ǫ} P

N{dδ}

=
∑

I∈I

P
N{δ ∈ ∆N

I : V (x∗
I(δ)) > ǫ}

= [use (15) and recall that I contains

(

N

k

)

choices]

=

(

N

k

)

d
(

N−k
d

)

(k + d)
(

N
k+d

)

k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i

=

(

k + d − 1

k

) k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i. (16)

Now, letting S(#) be the set in ∆N where # 6= 0, that is the set of multi-samples such that at least one

solution of level k violates more than ǫ, the algorithm A that always selects the solution x∗
N,k(δ) of level k

with the largest violation leads to the fact that V (x∗
N,k(δ)) > ǫ holds on S(#), that is with a probability

P
N{S(#)}. Nobody to date knows the exact value of P

N{S(#)}, but it turns out that we can compute a

lower bound to it. In fact, a fully supported problem has
(

k+d−1
k

)

solutions of level k, see e.g. [48], so that

# ≤
(

k+d−1
k

)

. Using this fact in (16) yields:

(

k + d − 1

k

) k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i = E∆N [#] ≤

(

k + d − 1

k

)

· P
N{S(#)},

from which P
N{S(#)} ≥

∑k+d−1
i=0

(

N
i

)

ǫi(1 − ǫ)N−i. Since P
N{S(#)} is the probability that the solution of

algorithm A violates more than ǫ, the found number
∑k+d−1

i=0

(

N
i

)

ǫi(1 − ǫ)N−i represents a lower bound to

supP,A P
N{V (x∗

N,k(δ)) > ǫ}. �

6 Optimality results

In this section we establish the result that the objective value of CCPǫ can be approached at will, provided

that sampled constraints are optimally removed. Though at the present state of knowledge optimal removal

can be impractical due to the ensuing high computational burden, this study has a theoretical interest and

sheds further light on the relation between chance-constrained optimization and its sample counterpart.
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Let Aopt be the optimal constraints removal algorithm which leads – among all possible eliminations of

k constraints out of N – to the best possible improvement in the cost objective; further, let x∗
N,k opt and

J∗
N,k opt = cT x∗

N,k opt be the corresponding optimal solution and cost value. We have the following theorem.

Theorem 6.1 Let β ∈ (0, 1) be any small confidence parameter value, and let ν ∈ (0, ǫ) be a performance

degradation parameter value. If N and k are such that

(

k + d − 1

k

) k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i +

N
∑

i=k+1

(

N

i

)

(ǫ − ν)i(1 − ǫ + ν)N−i ≤ β, (17)

then

(i) V (x∗
N,k opt) ≤ ǫ

(ii) J∗
N,k opt ≤ J∗

ǫ−ν

simultaneously hold with probability at least 1 − β.

As in Theorem 2.1, point (i) is a feasibility result. Instead, point (ii) states that the performance achieved by

x∗
N,k opt is no worse than the performance of CCPǫ−ν, where ν is a degradation margin. A result similar to

(ii) has also been independently established in [41]. A simple example illustrating Theorem 6.1 is provided

in Appendix A, part A.2.

Proof: Let

Bi = {δ ∈ ∆N : V (x∗
N,k opt(δ)) > ǫ},

Bii = {δ ∈ ∆N : J∗
N,k opt(δ) > J∗

ǫ−ν}.

We have to prove that P
N{Bi ∪ Bii} ≤ β.

Write P
N{Bi∪Bii} ≤ P

N{Bi}+P
N{Bii}. By Theorem 2.1, P

N{Bi} is bounded by
(

k+d−1
k

)
∑k+d−1

i=0

(

N
i

)

ǫi(1−

ǫ)N−i. We here bound P
N{Bii}.

For the sake of simplicity, in what follows we assume that a solution x∗
ǫ−ν of CCPǫ−ν exists. If not, the

result is similarly established by a limit reasoning.

Let ∆ǫ−ν be the subset of ∆ formed by those constraints which are violated by x∗
ǫ−ν . Call R(δ) the number

of constraints among the N sampled ones that fall in ∆ǫ−ν . The objective value obtained by eliminating the

R(δ) constraints in ∆ǫ−ν , say J(δ), cannot be worse than J∗
ǫ−ν : J(δ) ≤ J∗

ǫ−ν . Thus, if J∗
N,k opt(δ) > J∗

ǫ−ν ,

18



then R(δ) > k for, otherwise, J∗
N,k opt(δ) ≤ J(δ) ≤ J∗

ǫ−ν . Therefore,

P
N{Bii} = P

N{J∗
N,k opt(δ) > J∗

ǫ−ν}

≤ P
N{R(δ) > k}

= [probability that more than k among N samples fall in ∆ǫ−ν ]

=

N
∑

i=k+1

(

N

i

)

(P{∆ǫ−ν})
i(1 − P{∆ǫ−ν})

N−i

≤

N
∑

i=k+1

(

N

i

)

(ǫ − ν)i(1 − ǫ + ν)N−i,

where the last inequality follows from observing that P{∆ǫ−ν} ≤ ǫ − ν.

Wrapping up the above results, we finally have

P
N{Bi ∪ Bii} ≤ P

N{Bi} + P
N{Bii}

≤

(

k + d − 1

k

) k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i +
N

∑

i=k+1

(

N

i

)

(ǫ − ν)i(1 − ǫ + ν)N−i

≤ β,

where the last inequality is given by (17). �

6.1 Existence of N and k

In Theorem 6.1, ν measures the performance mismatch between x∗
N,k opt and the solution of CCPǫ. For any

small ν, N and k satisfying condition (17) always exist, a result shown in this section. As expected, N and

k increase as ν approaches zero.

To start with, consider (17) and split β evenly between the two terms in the left-hand-side of this equation,

that is impose that both terms are less than β/2. A condition for the first term to be less than β/2 has been

already established in equation (8) (substitute β/2 for β in that equation). We here work on the second

term.

Similarly to (17), we use a Chernoff bound for the Binomial tail, this time the right tail Chernoff bound (see

e.g. Section 2.3.1 in [46]) stating that

N
∑

i=k+1

(

N

i

)

(ǫ − ν)i(1 − ǫ + ν)N−i ≤ e−
((ǫ−ν)N−k−1)2

3(ǫ−ν)N , for (k + 1)/2 ≤ (ǫ − ν)N ≤ k + 1.

Further, imposing that e−
((ǫ−ν)N−k−1)2

3(ǫ−ν)N is less than β/2 and solving for k yields

k ≥ (ǫ − ν)N − 1 +

√

3(ǫ − ν)N ln
2

β
. (18)
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In (8), the term linear in N has slope ǫ, while the other terms are sub-linear. Instead, in (18) the slope is

(ǫ − ν). Since ǫ > (ǫ − ν), for N large enough there is a gap between the bounds expressed by (8) and (18),

and, consequently, an N and a k can be found that simultaneously satisfy (8) and (18).

7 Conclusions

In this paper, we have presented results linking a chance-constrained optimization problem to its sample

counterpart, and have further developed a general paradigm to solve chance-constrained problems in practice.

The introduced method is grounded on a solid and deep theory, but its practical use is very simple and consists

of sampling and discarding of the uncertainty. The potential applications domain is truly vast and includes

problems in control, system identification and learning, signal processing, and finance.

A Appendix: illustration of the theoretical results via a simple

example

The following simple 1-dimensional example illustrates the theoretical nature of the results contained in this

paper.

Let us consider the chance-constrained problem:

minx∈[0,1] x

s.t. P{δ : x ≥ δ} ≥ 1 − ǫ,

where δ ∈ ∆ = [0, 1] and P is uniform over ∆.

In this simple setting, the CCPǫ optimum is achieved by removing the set [1 − ǫ, 1] from ∆, leading to the

optimal solution x∗
ǫ = 1 − ǫ = J∗

ǫ . Throughout we take ǫ = 0.2.

Turn now to consider the sample-based optimization program where k constraints are removed. Given a

multi-sample (δ(1), . . . , δ(N)), x∗
N,k is obtained by removing the k largest δ(i)’s and by letting x∗

N,k = the

(k + 1)th largest δ(i) value. Also, P{δ : x∗
N,k < δ} = 1 − x∗

N,k and J∗
N,k = x∗

N,k, and all these quantities

are random variables as they depend on the multi-sample (δ(1), . . . , δ(N)). To ease the notation, let in the

following V (x∗
N,k) = P{δ : x∗

N,k < δ}.

A.1 The need for constraints removal

Figure 7 depicts the probability density function of V (x∗
N,k) when N = 15 and k = 0, that is, no constraints

are removed. One sees that V (x∗
N,k) ≤ ǫ = 0.2 with high probability. On the other hand, the density
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Figure 7: The probability density function of V (x∗
N,k) for N = 15 and k = 0; grey area represents the

probability that V (x∗
N,k) > ǫ.

concentrates near the zero value. This means that the violation of x∗
N,k will be much less than that for x∗

ǫ

with high probability, entailing that the objective value of x∗
N,k will be poor as compared to the chance-

constrained solution.

Selecting N = 552 and k = 93 leads instead to the probability density function in Figure 8. Constraints

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

ǫ = 0.2

Figure 8: The probability density function of V (x∗
N,k) for N = 552 and k = 93; grey area represents the

probability that V (x∗
N,k) > ǫ.

discarding generated solutions for which V (x∗
N,k) > ǫ has the same probability as for N = 15 and k = 0,

but the violation approaches the desired violation level ǫ = 0.2 of the chance-constrained problem with high
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probability. This is the beneficial effect of constraints removal.

A.2 Optimality results

In this subsection we illustrates the results in the optimality Theorem 6.1.

Observe first that, in this 1-dimensional example, the considered removal algorithm coincides with the

optimal removal algorithm Aopt, i.e. x∗
N,k = x∗

N,k opt.

Again referring to N = 552 and k = 93, Figure 9 further displays the region Bi where V (∗N,k opt) > ǫ along

with region Bii where J∗
N,k opt = 1 − V (x∗

N,k opt) > 1 − (ǫ − ν) = J∗
ǫ−ν for ν = 0.05. Here, P

N{Bi ∪ Bii} =

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

ǫ = 0.2

ǫ − ν = 0.15

Bi
Bii

Figure 9: The probability density function of V (x∗
N,k opt) for N = 552 and k = 93; Bi is the region where

V (x∗
N,k opt) > ǫ, while Bii where J∗

N,k opt > J∗
ǫ−ν .

0.1352.

Thus, N = 552 and k = 93 suffice to simultaneously guarantee that V (x∗
N,k opt) ≤ 0.2 and J∗

N,k opt ≤ J∗
0.15

with probability 0.8648. Interestingly enough, applying Theorem 6.1 provides in general upper-bounds for N

and k; however, in the present 1-dimensional case, substituting ǫ = 0.2, ν = 0.05, and β = 1−0.8648 = 0.1352

in (17) just returns N = 552 and k = 93.
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