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M
any problems in systems and control, such as controller synthesis and state 
estimation, are often formulated as optimization problems. In many cases, 
the cost function incorporates variables that are used to model uncertainty, 
in addition to optimization variables, and this article employs uncertainty 
described as probabilistic variables. In a probabilistic setup, a cost value 

can only be guaranteed with a certain probability. Like pulling down one end of a rope 
wrapped around a pulley lifts the other end, decreasing the probability improves the cost 
value. This article analyzes this trade-off and describes quantitative tools to drive the 
user’s choice toward a suitable compromise.
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This article is in two parts. The first part describes gen-
eral principles. A broad point of view is taken on approaches 
that can be used to deal with uncertainty. The second part 
is concerned with algorithms. Specifically, an algorithm 
called variable robustness control (VRC) is presented. VRC 
is applicable to all problems where the cost function is 
convex in the optimization variables, which covers many 
situations of practical interest. VRC provides a set of alter-
native designs, and the user can choose among various 
options guided by a cost-violation plot that the algorithm 
also constructs. Figure 1 is an example of a cost-violation 
plot. Each value of the variable k  on the horizontal axis is 
associated with a distinct design. For each k , the solid 
curve returns a probabilistically guaranteed limit on the 
cost value achieved by the corresponding design, and the 
dashed curve bounds the probability that the limit is 
exceeded. In other words, the dashed curve quantifies the 
probability that the incurred cost value is actually larger 
than the value given by the first curve. The final decision 
concerning which design to implement rests with the user, 
who makes a choice that takes into account the problem at 
hand and his/her attitude to the risk. The cost-violation 
plot provides a quantitative support to guide the user to 
make this decision.

The VRC algorithm builds on an established framework 
for robust optimization based on randomized techniques.

Principles
Uncertainty can arise in various ways. Structural uncer-
tainty refers to an imprecise knowledge of the system 
dynamics, whereas input uncertainty is associated with 
unknown exogenous signals, that is, disturbances, that 
steer the plant away from its nominal behavior (see Figure 
2). This article takes a general approach that covers both 
types of uncertainty. The aim is to provide the user with 
tools that can be used in a broad range of situations.

Throughout this article, an uncertain element is indi-
cated with the symbol d , while D  is the range set for d . If, 
for example, the pole p  of a stable continuous-time system 
is uncertain, then pd =  and D  is the open left-half complex 
plane. If instead uncertainty consists of a disturbance 

step( )d A t tt 0= -  whose amplitude and step time are 
unknown, then ( , )A t0d =  and .R2D =

Define Rd!i  as the vector of design variables; for 
instance, i  can contain the parameters of a controller or of 
a state estimator. The cost function to be minimized is writ-
ten as ( , ), i d . The simultaneous presence of i  and d  reflects 
that only partial knowledge of the final optimization result 
is available through i  because the final result also depends 
on the uncertainty d . This setup leads to consider an opti-
mization problem with uncertainty,

	 OPU : ( , ), .min
Rd
, !i d d D

!i
	 (1)

As stated in (1), however, the problem is not completely 
formalized because (1) does not describe how to account for 
the uncertain element d  when optimization is performed. 
Addressing this issue requires being more specific about 
the role of uncertainty, and various approaches arise 
depending on the adopted formulation.

The Worst-Case Approach
The notion of uncertainty is inescapably linked to the 
notion of a set, since there cannot be uncertainty without a 
set of possible uncertainty outcomes. Without any further 
structure given to the uncertainty other than the uncer-
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Figure 1  Cost-violation plot. In control design in the presence of 
uncertainty, there is a trade-off between the cost value and the 
probability with which the cost value is attained. The cost-violation 
plot is the output generated by the algorithm described in this 
article. The parameter k indicates the number of scenarios that 
have been removed, and no longer taken into consideration as 
constraints, at a certain iteration of the algorithm. A distinct control 
design is associated with each k. The solid curve represents a 
probabilistically guaranteed limit on the cost value, and the dashed 
curve bounds the probability that this limit is exceeded, that is, the 
dashed curve quantifies the probability that the incurred cost 
value is actually larger than the value given by the first curve.

yt

dt

ut v

Figure 2  An uncertain system. Uncertainty in a system can arise in 
various ways, through imprecise knowledge of its parameters or struc-
ture, or due to the presence of unknown exogenous signals (that is, 
disturbances). The figure represents a system with an uncertain struc-
tural parameter v and affected by the disturbance .dt
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tainty ranging in a set D , one way to pose the optimization 
problem is through a worst-case approach

	 OP WC : ( , ) .min max
Rd

, i d-
! !i d D
8 B � (2)

In control, the worst-case philosophy was initially adopted 
out of concerns for stability [1], where H3  control was used 
as the robust alternative to linear-quadratic-Gaussian 
(LQG) control, which was shown to be potentially very sen-
sitive to small parametric uncertainties [2]. The worst-case 
approach has become mainstream in robust control, and 
has been applied to a variety of control problems. Many 
books are available that describe the worst-case approach 
in control (e.g., [3]–[5]).

Many methods have been developed for the construc-
tion of uncertainty sets. Some of these methods are purely 
deterministic and are based on the derivation of upper 
bounds on the set of parameters that are consistent with 
data, whereas other methods allow the user to express pref-
erences in terms of a coherent risk measure [6] (see [7] and 
[8] for related contributions).

The Average Approach
When a more structured and probabilistic point of view in 
the description of uncertainty is adopted, the average 
approach can be used. In a probabilistic description, D  is 
endowed with a probability measure Pr, which has various 
interpretations depending on the problem at hand. Some-
times Pr describes the chance that various outcomes of the 
uncertainty element d  occur; other times Pr is a descriptor 
of the relative importance given to the various uncertainty 
outcomes. Pr can be used to weigh the ds, to obtain an aver-
age cost optimization problem,

	 OP A : ( , ) ( , )d .min min PrE
R Rd d

, ,i d i d- =
! !i i

D
D

6 @ # 	 (3)

This framework is often adopted when uncertainty is 
associated with disturbance signals [9]–[11], although the 
average approach can also be used for structural uncer-
tainty [12], [13]. A typical example of the use of the average 

approach is quadratic stochastic control, where the average 
cost in discrete time is

	 ( , ) ,E E x Qx u Rut
T

t t
T

t
t

T

0
, i d = +D D

=

6 =@ G" ,/ 	 (4)

where xt  is the system state, ut  is the input, and the expec-
tation is taken with respect to the realizations of the distur-
bance acting on the system. The d  corresponds to a noise 
realization, and D  is the set of all possible noise realiza-
tions, whereas the probability Pr indicates the type of noise 
that is considered. For example, if the noise is white and 
Gaussian, then Pr is the product probability measure of T 
independent Gaussian random variables. A celebrated 
approach to deal with control problems in this framework 
is dynamic programming (for example, see [11]). However, 
dynamic programming fails to provide viable methods to 
deal with constraints, an important feature in many control 
problems [14]–[17], and [18] presents an alternative based 
on results from robust optimization.

The average approach is less conservative than the 
worst-case approach; nevertheless its conservatism can be 
enhanced by the introduction of an exponential cost. For 
example, in stochastic control with the definition 

: ,J x Qx u Rut
T

t t
T

tt
T

0= +
=
" ,/  [ ( )]expE JD  can be used instead 

of considering the quadratic cost [ ] .E JD  Due to the expo-
nential function, this approach incorporates higher order 
statistics [19], and the penalty in the occurrence of values of 
J larger than [ ]E JD  outweighs the alleviation in the penalty 
caused by the occurrence of values less than [ ],E JD  corre-
sponding to a pessimistic viewpoint. A connection between 
this average-exponential approach and the worst-case 
approach has been established for linear systems [20], [21] 
and nonlinear systems [22], [23].

Worst-Case Versus Average Approach
When the uncertainty level is moderate enough that the 
solution to problem (2) secures an adequate performance 
for all uncertainty outcomes, the worst-case approach is a 
suitable design methodology. For other problems the 
uncertainty is much larger, and the worst-case approach 
becomes too conservative. This situation may occur for 
structural uncertainty and is almost invariably true when 
uncertainty consists of external disturbance signals. In 
these cases, the average approach can be a suitable alterna-
tive. The average approach, however, has a drawback in 
that it does not allow the user to modulate the robustness 
level.

The Modulating Robustness Approach
Averaging is not the only way to make use of probability. An 
alternative approach consists of using probability to quan-
tify the chance that a certain performance specification is 
attained. This approach has been used in analysis problems 
in the context of flight control [24] and has been further 
developed in various directions [25]–[28]. One way to evalu-

Prob = f

Pr

D

Df

Figure 3  A set where the performance is not guaranteed. D  is the 
uncertainty set and Pr is the probability with which the various 
uncertainty outcomes occur. Shown in red is the set where the per-
formance is not guaranteed, and f  is the probability of this set.
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ate the probability that a certain performance is attained is 
through randomization, and explicit bounds on the number 
of samples needed to quantify the chance are available [29], 
[30]. Sequential methods can be used to solve feasibility 
problems with probability specifications [31]–[36].

This article presents a similar approach to that taken in 
the above references and uses the probability to quantify 
the chance that a certain performance is attained, but it also 
considers optimization problems where the level of robust-
ness is modulated.

Precisely, referring to Figure 3, the aim is to minimize 
the max cost with max taken over a reduced set 1D Df  
having probability ,Pr 1 eD = -f" ,  namely,

	 OP WC : ( , ) .min max
,Rd

, i d-
! !

f
i dD Df f

8 B 	 (5)

Defining the optimal solution of (5) as i)f  and the opti-
mal value ,)f , these terms are related by ( , ),max, , i d=) )

!d f ff D  
that is, ,)f  is guaranteed against all uncertainty outcomes 
in Df  which is a set having probability .1 f-

The reason for leaving out an f -probability set is to 
reduce the optimal value as ,)f  compared with that obtained 
with the worst-case approach. The level of robustness 
depends on f , and, for a given f , the set Df  in (5) must be 
selected so that the reduction of the value is maximized. 
This observation justifies the presence of Df  as an optimi-
zation variable in the min quantifier. The minimization 
with respect to Df , however, is a very difficult task to 
achieve in general.

In the approach outlined above, the parameter f  can 
also be varied and used as a tuning knob. The larger the 
value for f , the better the performance, but higher is the 
risk of performance violation. The level of robustness is 
adjustable, and so this approach is called a modulating 
robustness approach.

A Clarifying Remark
To modulate robustness, a straightforward approach con-
sists of resizing the uncertainty set. For example, if D  is the 
unitary H3  ball, then the ball of radius t , [ , ],0 1!t  can be 
considered, and, if D  is the box [ , ]1 1 q-  containing q uncer-
tain variables, then the box [ , ] qt t-  is the resized version 
of D . In this approach, the worst-case solution for various 
values of t  can be assessed, and someone may think that a 
satisfactory compromise between performance and robust-
ness can be obtained by selecting a suitable value of t . It is 
a fact, however, that this approach generally fails to provide 
satisfactory results. What is typically found is a size-cost 
plot as shown in Figure 4. To improve the optimal worst-
case value, t  has to be decreased to, for example, 0.7 or less, 
which can correspond to a dramatic drop in terms of 
robustness. For example, in a box in ten dimensions with 
uniform probability, .0 7t =  shrinks the probability from 
one down to 0.710 = 0.028 <  3%, that is, 97% of the probabi-
listic volume of the original uncertainty set would be left 
out.

What is interesting is that the same optimal value as for 
.0 7t =  is attained in many problems by leaving out a much 

smaller, more accurately selected, portion of .D  This por-
tion is hardly ever the outer shell of ,D  which is what the 
resizing approach discards, and in fact the set Df  has to be 
determined based on a careful inspection of the optimiza-
tion problem so as to decide which region of D  produces 
the largest improvement of the optimal value if left out. 
Figure 5 illustrates the situation. In [37], the region to be left 
out has been described as having an elongated shape to 
visualize that, typically, this region has a small volume, 
despite having a significant linear extension, and the term 
“icicle geometry” has been used to signify this fact.

Finding a suitable region to leave out is a formidable task 
in general. The VRC algorithm presented in the “Algorithms” 

0 0.7 t 1

,

Figure 4  Size-cost plot. The plot represents the improvement in the 
optimal worst-case value ,  when the uncertainty set is resized by 

.1<t  In the figure, a 30% improvement in the optimal worst-case 
value is achieved by reducing t  to the value 0.7, which, however, 
corresponds to an unacceptable loss of robustness.

D

Figure 5  The icicle geometry. In typical optimization problems, the 
cost value can be improved by leaving out a portion of the uncer-
tainty set D  that has small volume, despite the portion having a 
significant linear extension. This fact is illustrated in the figure, 
where the red region is the portion to be left out. This phenomenon 
is known as “icicle geometry,” which finds its explanation in the fact 
that normally D  is a set in a high-dimensional space. For example, 
if D  is the box , ,0 1 106 @  and the region to be left out is , ,0 2

1 106 @  this 
region stretches from one corner of D  to its center, although this 
region only has volume / . %.1 2 0 1<10
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Approaches to Uncertain Optimization: A Visualization in the Optimization Domain

Consider a cost function ( , ), i d  where Rd!i  is a vector 

of optimization variables, and d  is an uncertain param-

eter whose presence expresses the fact that the final result of 

the optimization procedure is also affected by uncertain ele-

ments that do not depend on the user’s choices. For one given 

, ( , ),d i d  is a function of the optimization variable i  only, and 

a graphical visualization of one such function is provided in 

Figure S1. As d  is varied, functions ( , ), i d  form a cloud (see 

again Figure S1) called the “performance cloud.” The various 

paradigms to uncertain optimization can be described by refer-

ring to this cloud.

The worst-case paradigm consists of solving the optimiza-

tion problem

	 , .min max
Rd

, i d
d dTi d

^ h8 B �

Referring to Figure S2, the top border of the performance cloud 

represents the worst-case cost function ( , )max , i d!d D  and 

WCi
)  is its minimizer. This paradigm is pessimistic and thereby 

conservative.

The average approach requires introducing a probability mea-

sure Pr over .D  Given Pr, the average cost optimization problem is

( , )d .min Pr
Rd
, i d

!i
D

#

Referring again to Figure S2, this approach corresponds to 

cutting the performance cloud along the vertical direction origi-

nated from every given i  value, and averaging over the ds to 

determine ( , )d .Pr, i d
D
#  As i  changes, ( , )dPr, i d

D
#  gives the 

average cost function, whose minimizer averagei)  is called the 

average minimizer.

Finally, the modulating robustness approach consists of 

solving the problem

( , ) ,min max
,Rd

, i d
! !i dD Df f

8 B

a problem similar to the worst-case approach in which, however, 

the max  requirement is relaxed in a probabilistic sense. Pre-

cisely, a max  cost is minimized with max taken over a reduced 

set 1D Df  having probability { } .Pr 1 fD = -f  Leaving out the 

set D D- f  improves the performance with respect to the worst-

case approach, and the Df  that gives the best improvement is 

chosen. As f  is varied, various solutions are obtained.

In Figure S3, the curves marked with 1%, 2%, …, called the 

chance-constrained cost functions, represent, i  by i , the best 

possible cost value that can be achieved by leaving out a 1%, 

2%, … of the cost functions. Corresponding to each given ,i  

the best cost value is obtained by moving down from the top 

border of the cloud until 1%, 2%, … of the cost functions are 

left above. By minimizing the curve marked with, say, 1%, the 

minimizer %1i
)  is obtained, which carries a risk of 1% that the 

corresponding optimal value will not be achieved.

,(i, d)

,

i

Figure S1  The performance cloud. The blue curve represents 
the cost function ( , ), i d  for a given outcome of uncertainty .d  
As d  is varied, the functions ( , ), i d  form the performance cloud.

ED[,(i, d)]

,

i*wc i*average

Max ,(i, d)
d

Figure S2  Worst-case and average cost functions. The worst-case 
cost function is the top border of the performance cloud, whereas 
the average cost function is the curve in the barycentric position.

,

i*1% i

1%
2%
3%
4%
h

Figure S3  Chance-constrained cost functions. The curves 
marked with 1%, 2%, … are called the chance-constrained cost 
function and represent, i  by ,i  the best possible cost value that 
can be achieved by leaving out 1%, 2%, … of the cost functions.
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section provides a viable route to finding approximate solu-
tions to the modulating robustness approach.

Some Bibliographical Notes
The above approach of minimizing a cost function over an 
uncertainty set of reduced probability 1 f-  has a long 
history in optimization theory, where the approach is 
known as “chance-constrained” optimization. This 
approach dates back at least to the 1950s [38], and count-
less contributions have appeared in the literature; see 
[39]–[44] for more information on the history of this 
method in optimization.

In systems and control, this approach is newer and has 
been considered in fewer papers [45]–[57]. We believe that 
this different degree of emphasis is due to two distinct rea-
sons. One reason is tradition. When dealing with stochastic 
disturbances, the approach commonly adopted in the con-
trol literature is the average cost method [9], [10]. For struc-
tural uncertainty, the origin of robust control was a concern 

for stability, for which a probabilistic compromise was not 
considered acceptable. Following this origin, robustness 
and worst-case analysis have traveled hand in hand in the 
robust control community for more than 30 years, e.g., see 
[3]–[5]. The second reason for relatively low emphasis on 
chance-constrained optimization in the control literature is 
that the approach (5) still lacks suitable algorithmic meth-
ods to find solutions. The VRC algorithm in the “Algo-
rithms” section describes how to fill this gap.

“Approaches to Uncertain Optimization: A Visualiza-
tion in the Optimization Domain” provides more compari-
sons among the various approaches to uncertain 
optimization described in this section.

Algorithms
Here the VRC algorithm for the implementation of the modu-
lating robustness approach is presented. The main idea behind 
VRC is to replace the infinite set D  with a finite approximant 
obtained by a randomization process over D , and to further 
remove samples belonging to this approximant so as to 
improve the optimal value. The algorithm and its theoretical 
properties are derived under the assumption of convexity (see 
”Convexity”).

Assumption 1 (Convexity)
For every d , the function ( , ), i d  is convex with respect to .i

In contrast, the dependence of ( , ), i d  on d  is totally arbi-
trary. The fact that ( , ), i d  is convex in i  is a restrictive 
assumption, which is nevertheless satisfied in many prob-
lems. Moreover, many problems that are not convex in their 
natural formulation are amenable to convex reformulation, 
for example, by means of linear matrix inequalities (LMIs); 
see “Linear Matrix Inequalities” for details on LMIs and 
relevant references.

An additional assumption is introduced to streamline 
the presentation.

Assumption 2
The solution to every min-max problem

	 ( , ) ,min max
FRd
, i d

! !i d
8 B 	 (6)

where max is taken over a finite set { , , , } ,F p1 2 f 3d d d D=  
exists and is unique.

The VRC algorithm builds on the scenario approach of 
[43] and [58]–[60]. This article considers removal of con-
straints to trade robustness for performance, following an 
approach whose foundations have been settled in [57].

The Variable Robustness Control Algorithm
Let , , , N1 2 fd d d  be N uncertainty outcomes, hereafter called 
scenarios, extracted independently of each other from D  
according to the probability measure Pr. References [61]–[63] 
provide algorithms to perform random extractions for vari-
ous Pr and D , and [64] gives a general overview of random-
ized methods. This set of scenarios is used as a surrogate or 

Convexity

A function ( ), ,f Rd!i i  is convex if

	 ( ( ) ) ( ) ( ) ( )f f f1 1#ai a i a i a i+ - + -l m l m

holds for all , ,i il m  and [ , ] .0 1!a  Graphically, convexity 

of f means that the line segment between every two points 

on the graph of f lies above the graph of f (see Figure S4).

Convexity is beneficial in optimization because every 

local minimizer of a convex function is also a global mini-

mizer, and convex functions can therefore be minimized 

more easily than generic functions, for example, by 

means of interior point methods.

il

f(i)

af(il) + (1 - a) f(im)

im i

Figure S4  A convex function. The line segment between 
every two points on the graph of a convex function f lies above 
the graph of f. IE

EE
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a descriptor of D  and is useful in the development of practical 
algorithms because it only contains finitely many elements. 
As it will be shown, the VRC procedure, which only depends 
on , , , ,N1 2 fd d d  is backed by precise robustness results 
related to the whole set D , a fact stated in Theorem 1 below.

First a procedure is presented for computing ki
)  and k,

) , 
that is, the optimal design parameters and optimal values 
obtained after the removal of an increasing number k of 
scenarios. This procedure is instrumental to the derivation 
of the complete VRC algorithm, which is subsequently pre-
sented.

Procedure for Computing ki
)  and k,)

Replacing D  with , , , N1 2 fd d d  in the worst-case approach 
(2) yields

	 ( , ) .min max
, ,i N

i
1Rd

, i d
f!i =

8 B � (7)

The solution 0i
)  of this problem is the starting point of 

the procedure.
The procedure executes a progressive elimination of 

scenarios according to a greedy logic and finds the optimal 
solutions , , , ,k1 2 f fi i i) ) )  obtained after the elimination of 
these scenarios. The variable ki

)  is called the design at level k. 
To be specific, let Gk be the set of scenarios that have sur-
vived after the elimination of k scenarios, and let ki

)  be the 
solution to the optimization problem,

	 ( , ) ,min max
i G

i
Rd k

, i d
! !i
8 B 	 (8)

and : ( , )maxk i G k ik, , i d=) )
!  be the corresponding optimal 

value. To update Gk, it has to be decided which scenario has 
to be removed next. To this aim, the procedure scans, one 
by one, the scenarios in Gk and selects the scenario that, if 

Linear Matrix Inequalities

A linear matrix inequality (LMI), [S1], [S2], is an expres-

sion   of the form

	 ,F F F F 0d d0 1 1 2 2 g di i i+ + + + 	 (S1)

where , , , ,i d1i fi =  are real variables, , , , , ,F i d0 1i f=  

are n n#  symmetric matrices, and A 0d  means that A is 

a negative-semidefinite matrix, that is, z Az 0T #  for all vec-

tors .z Rn!  The set of i  where (S1) is satisfied is a convex 

set, that is, an LMI specifies a convex constraint on

[ ] .d
T

1 2gi i i i=

LMIs are useful tools to describe constraints arising in 

systems and control applications [S2]– [S7], while the use 

of LMIs is also fostered by the existence of software for 

the numerical solution of optimization problems with LMI 

constraints such as CVX [S8], [S9], or YALMIP [S10].
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1: �set , , ..., ;G N1 20 = " ,  

solve the program

( , ) ;min max
i G

i
Rd 0

, i d
! !i
8 B  

let 0i
)  be the optimal solution and ( , )max i G i0 00, , i d=) )

!  be 

the optimal value;

set ,Z G0=  ,0i i= )V  and 0, ,= )T ;

2: FOR : TOk k1=

2.1: set : ( , ) ;A j Z j, ,! i d= =" ,V T       % �(A contains the 

active scenarios)

2.2: FOR j A!

solve the program

( , ) ;min max
i Z j

i
Rd

, i d
! !i -
8 B

let 
j
iV  be the optimal solution and 

j
, =T

( , )max i Z j
j

i, i d! -
V  be the optimal value; 

IF <
j
, ,T T  THEN set 

j
i i=V V  and 

j
, ,=T T

END FOR

2.3: set { , , , }: ( , ) ;Z i N1 2 if , ,! #i d= " ,V T

2.4: IF | |Z N k> -  THEN GOTO 2.1 % (�| |Z = cardinality of 

set Z)

ELSE set , ;andG Zk k k, ,i i= = =) )V T
END FOR

TABLE 1 Procedure for computing ki)  and k,)  for k = 0, 1, 
…, k-.
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removed, gives the largest improvement in the optimal 
value. Eliminating this scenario from Gk gives Gk 1+ .

The pseudocode in Table 1 implements the above 
scheme.

Since max is taken in points 1 and 2.2 with respect to a 
finite number of scenarios, these problems can be solved by 
means of standard optimization programs, such as the 
openly distributed CVX [65], [66] or YALMIP [67]. The FOR 
cycle in 2.2 removes, one by one, scenarios in search of the 
scenario whose elimination gives the largest improvement 
in the optimal value. The search is restricted to the jd  such 
that ( , ) ,j, ,i d =U T  that is, the active scenarios, since the elimi-
nation of nonactive scenarios cannot possibly improve the 
optimal value. Upon exiting the FOR cycle in 2.2, the mini-
mizer is stored in iU  and the corresponding optimal value 
is ,T . The procedure, however, does not yet update Gk 
because of a detail that requires a bit of explanation. The 
fact is that iU  is only a potential solution at level k since 
removing one scenario jd  can generate a pair ( , ),iU T  such 
that ( , )i, ,#i dU T  for some previously removed scenario id . If 
so, this id  is reinstated and the procedure eliminates 
another scenario before outputting the design ki

)  at level k, 
and point 2.4 executes a test to decide whether or not this 
situation has occurred. The outer FOR in point 2 cycles over 
the k values, and point 1 is an initialization.

An inspection of the pseudocode reveals that the condi-
tion for the procedure to come to termination is that, every 
time the FOR cycle in 2.2 is run, an active scenario is found 
whose elimination improves the optimal value. This fact is 
generally true, and termination with probability one is 
assumed to hold throughout the sequel.

The procedure for computing ki
)  and k,

)  implements the 
idea of discarding scenarios to improve the optimal value. 
Scenario discarding is implemented according to a greedy 
logic that makes the procedure computationally feasible.

The procedure operates over a finite set of scenarios 
, , , ,N1 2 fd d d  and the sole conclusion that can be drawn at 

the present stage is that k,
)  bounds the cost ( , )k, i d)  for all 

.Gk!d  The scenarios , , , N1 2 fd d d  are the visible uncer-
tainty outcomes, that is, those scenarios that the procedure 
uses. A question arises as to whether the optimal value k,

)  
is also a limit to the cost value achieved in correspondence 
of the other ds, that is, those scenarios that have not been 
seen. This is a generalization question, and it is concerned 
with inferring the “invisible” from the “visible,” that is, the 
unseen ds from the seen scenarios. This question is 
addressed in a precise manner in Theorem 1 after formal-
izing the VRC algorithm.

The Variable Robustness Control Algorithm
The following definition formalizes the concept of cost vio-
lation probability.

Definition 1 (Cost Violation Probability)

Given an instance of the design variable ir  and a cost ,r , the 
cost violation probability of ( , ),ir r  is defined as

	 ( , ) : { : ( , ) },PrV >, , ,!i d i dD=r r r r 	 (9)

that is, ( , )V ,ir r  is the probability with which the cost value 
obtained with ir  is larger than ,r .

( , )V ,ir r  quantifies the level of robustness of ,r  relative to 
the whole uncertain set D  when the design variable is .ir  
The VRC algorithm outputs ki

)  and k,
) , and also returns kf , 

which is an evaluation of ( , )V k k,i
) ) . Thus, VRC complements 

the design with probabilistic performance guarantees, by 
means of which a plot such as the plot shown in Figure 1 is 
constructed. When using VRC, the user inspects the 
numerical values k,

)  against the probabilities kf  to select a 
design ki

)  that meets a suitable compromise.
The algorithm has three inputs: fr , %a , and b . The 

input fr  is an upper bound for 0f , which is the cost viola-
tion probability for k = 0. The input %a  is the proportion 
of the total number N of scenarios that are discarded upon 
exiting the algorithm. The input b  is a confidence param-
eter that requires a bit of additional explanation. Due to 
randomization, ki

)  and k,
)  are random elements that 

depend on , , , N1 2 fd d d  and so is the result that ( , ) .V k k k, #i f) )  
Hence, the probability that ( , )V k k,i

) )  is larger than kf  can be 
made small but this event cannot be totally excluded. The 
input b  allows the user to exercise the option to reduce the 
probability that ( , )V >k k k,i f) )  below a desired level b . From 
a practical point of view, the parameter b  has a minor 
importance because selecting a value for b  so small that b  
becomes negligible, for example ,10 7b = -  affects only 
marginally the computational burden of the algorithm. 
This issue is discussed in detail in the section “Further 
Comments on N and .kf ” That section also shows that the 
evaluation kf  is tight. The pseudocode of the VRC algo-
rithm is given in Table 2.

The computation of the value of N in point 1 of the algo-
rithm can be performed by means of the betainc function of 
Matlab. For the benefit of practitioners, a complete code is 
provided in “Matlab Code to Compute N.” “Matlab Code to 
Compute kf ” provides a Matlab code for computing the kf  
in point 4.

The fact that kf  bounds ( , )V k k,i
) )  is established in the 

next theorem.

Theorem 1
The relation ( , )V k k k, #i f) )  holds true simultaneously for all 

, , ,k k0 1 f=  with probability of at least .1 b-

The theorem holds for any probability Pr. Its proof rests 
on establishing the result that the probability that 

( , )V >k k k,i f) )  is bounded by the left-hand side of (11) in 
Table 2. This quantity is set equal to /( )k 1b +  in (11), so that 

( , )V k k k, #i f) )  holds for all , , ,k k0 1 f=  with probability of 
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Matlab Code to Compute N

F unction inputs: eps ;f= r    alph %;a=   bet   ;b=     d 
= number of design variables d.

Note: in the function, N is computed by bisection; N1 

is the initial lower bound, while N2 is the initial upper 

bound and corresponds to formula (12).

function findN

function N = findN(eps,alph,bet,d)
N1 = d;
�N2 = �floor(2/eps*(d+log(1/bet)+1) 

+ 4/eps*log(2/eps*(d+log 
   (1/bet)+1))) + 1;

while N2-N1>1
N = floor((N1+N2)/2);
�if betainc(1–eps,N-d,d+1)  
   > bet/(alph*N+1)
N1=N;
else
N2=N;
end

end
N = N2;

at least /( ) .k1 1 1
k

k

0 b b- + = -
=
/  The technical proof of 

this result and all other results in this article are given in 
the section “Proofs.”

Further Comments on N and kf

Sample Complexity N
The size N of the scenario set is a significant factor in deter-
mining the computational complexity of the VRC algorithm. 
In fact, the number of times point 3 in the VRC algorithm is 
run is proportional to N, and, moreover, N impacts the com-
putational complexity of the programs to be solved each 
time point 3 is run.  As shown in the section “Proofs,” the N 
given in point 1 of the VRC algorithm is bounded as

	 ,ln ln lnN d d2 1 1 4 2 1 1 1#
f b f f b
+ + + + + +

r r r
c ccm mm; E � (12)

which is valid for all values of parameter %.a  Equation (12) 
exhibits an approximately linear dependence on /1 fr  and a 
logarithmic dependence on / .1 b  Thus, b  can be made 
very small, such as ,10 7b = -  with no significant increase in 
the computational complexity.

The design problem to which VRC is applied enters (12) 
only through ,d  the size of .i  The dependence on d  is 
linear. The value of N  does not depend at all on the uncer-
tainty set .D  This result is in contrast with approximation 

schemes based on a gridding of ,D  where the number of 
grid points increases exponentially fast with the dimension 
of the space to which D  belongs. Thus, the VRC algorithm 
may offer a viable approach in problems where using a 
gridding scheme is impractical.

Cost Violation Parameter kf

The cost violation parameter kf  given by point 4 of the VRC 
algorithm can be bounded as

	
( )

,N
k

N
d h h d k h2

k

2

#f +
+ + + +

� (13)

where

	 ( ) ,ln ln lnh k d d
d k1 1 1$

b
= + + + + +; E � (14)

where the inequality is proven in the section “Proofs.”
Inequality (13) reveals some interesting features of .kf  

The first term in the bound is / ,k N  which is the empirical 
violation of the solution at level .k  Due to stochastic fluc-
tuation, we cannot expect that the real violation is bounded 
by /k N  with high confidence ,1 b-  and the second term 
accounts for the gap. For k  proportional to ,N  say ,k Nc=  
as N  increases the second term goes to zero approximately 
as ( / ),O N1  so that kf  approaches c  as N  grows. Figure 

Input: , %,f a br

Output: , ,k k k,i f) )

1: �compute the smallest integer N d$  (recall that d is the size 

of i ) such that

	 ( ) % ;i
N

N1 1i

d
i N i

0 $
#f f
a

b
-

+
=

-r rc m/ � (10)

  let : % ,k N$a=6 @  which is the integer part of % ;N$a  

2: �sample N independent scenarios , , , N1 2 fd d d  from D  

according to the probability measure Pr;

3: �run the “Procedure for computing ki
)  and k,

)  for , , ,k k0 1 f= ”:

RETURN ki
)  and k,

)  for , , , ;k k0 1 f=

4: for , , , ,k k0 1 f=  solve for kf  the equation

	 ;k
d k

i
N

k
1

1i

d k

i
k

k
N i

0

f f
b+ - =
+=

+
-c c ^m m h/ � (11)

RETURN kf  for , , , .k k0 1 f=

TABLE 2 VRC algorithm.

IE
EE



APRIL 2013 «  IEEE CONTROL SYSTEMS MAGAZINE  11

6 plots the relationship between kf  and N  for . ,k N0 2=  
,d 2=  ,10 7b = -  and . .k N0 2=

A Simplified and Easier to Implement Version of the 
Variable Robustness Control Algorithm
This section presents a simplified version of 
the VRC algorithm that requires less inter-
vention by the user, while losing little in 
terms of performance.

A first simplification is obtained by pro-
viding explicit values for N  and .kf  An 
inspection of the original VRC algorithm 
reveals that the result in Theorem 1 contin-
ues to hold if VRC is modified in the follow-
ing two ways. In point 1 of the VRC 
algorithm, any N d$  that satisfies inequal-
ity (10), not necessarily the smallest ,N  can 
be selected. In point 4 of the VRC algorithm, 
every value larger than that given by the 
solution of (11) can be attributed to .kf  
Choosing N  not to be the smallest and kf  
larger than that given by (11) implies that a 
price is paid, both in terms of an increased 
computational complexity, because N  is 
larger than required, and in terms of proba-
bilistic guarantees, because kf  becomes 
looser. The simplified VRC algorithm uses 
the choices of N  and kf  given by the right-
hand side of (12) and (13).

To further streamline the usage of the algorithm, b  is  
omitted from the set of inputs assigned by the user. This 
choice is motivated by the fact that b  has a minor impact on 
the computational complexity of the algorithm and so can 
be set to a fixed low value. The simplified algorithm takes  

,10 7b = -  which is small enough to be negligible for most 
practical purposes.

The algorithm in Table 3 implements the above simplifi-
cations. The inputs fr  and %a  and all outputs have the 
same meaning as in the original VRC algorithm.

A Simulation Example
Consider the autoregressive moving average (ARMA) 
system

	 ,y ay bu c w c wt t t t t1 1 2 1= + + ++ - � (15)

where ut  and yt  are the input and output, and wt  is white noise 
with zero mean and unit variance ( , ) .WN 0 1  The parameters 

, , ,a b c1  and c2  are real, with imprecisely known values that 
satisfy the stability condition | |a 1<  and controllability con-
dition .b 0!

The noise wt  is measured and the objective is to design 
a feedforward compensator with structure 

	 u w wt t t1 2 1i i= + - � (16)

that minimizes the asymptotic variance of yt  (see Figure 7).

Matlab Code to Compute kf

F unction inputs: k = number of removed scenarios k; N = 

number of scenarios; kmax ;k=  bet ;b=  d = number of 

design variables d.

function findepsk

�function epsk = findepsk(k,N,kmax,bet,d)
eps1 = 0;
eps2 = 1;
coeff = 1/(d*beta(k+1,d));
while eps2–eps1 > 1e-10

epsk = (eps1+eps2)/2;
�if coeff*betainc(1–epsk,N-k-d,d+k+1) 
   > bet/(kmax+1)
eps1 = epsk;
else
eps2 = epsk;
end

end
epsk = eps2;

1,000
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0.9

1
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N
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fl

Figure 6  Violation versus the number of scenarios. The probability that the cost value 
found through the variable robustness control algorithm is exceeded is bounded by 

,kf which is plotted as a function of N for . , , ,k N d0 2 2 10 7b= = = -  and . .k N0 2=

The plot shows that kf  approaches the empirical violation k/N as ∞.N "
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If the system parameters , , ,a b c1  and c2  were known, an 
optimal compensator can be easily found. Indeed, substi-
tuting u w wt t t1 2 1i i= + -  into (15) gives

	 ( ) ( ) ,y ay c b w c b wt t t t1 1 1 2 2 1i i= + + + ++ - � (17)

from which the expression for the asymptotic variance of 
yt  is computed as

	 [ ]
( ) ( ) ( ) ( )

.E y
a

c b c b a c b c b
1

2
t
2

2
1 1

2
2 2

2
1 1 2 2i i i i

=
-

+ + + + + +

� (18)

Hence, the values of 1i  and 2i  minimizing [ ]E yt2  are

	 , ,b
c

b
c

1
1

2
2i i=- =- �  (19)

resulting in [ ] .E y 0t
2 =

On the other hand, the system parameter values are not 
always available in practical situations. More realistically, 
the parameters are only partially known, with values taken 
from a given uncertainty set .D  In this context, the choice of 
the compensator parameters 1i  and 2i  has to be made 
while taking into account the various dynamical behaviors 
possible for the system.

As an example, suppose that d  has two components 1v  
and 2v  both ranging in [ , ],1 1-  that is, ( , )1 2d v v=  and 

[ , ] ,1 1 2D = -  and that the system parameters are 
expressed as

	
.

. . ( . . ),a
3 0 3

3 5 0 2 0 32 0 6
1
2

1
2

1
v

v
v=

+

-
+ � (20)

	 ,b 1 10
1 2

2v v
= + � (21)

	
. ( )
. ( ) ( ) ( )

,c
0 02
0 01

1 2
1 1

1
1 2

2 2
1 2

2 2
1 2

v v

v v v v
=

+ +

- + +
-

- -c m � (22)

	
. ( )

. .c
0 025 2

0 05
2

1 2
2v v

=
+ + -

� (23)

Input: , %f ar

Output: , ,k k k,i f) )

1: compute

	 . . ,lnN d d2 17 2 4 2 17 2 1
f f f

= + + + +
r r r
^ ^`h hj8 B �

	 % ;k N$a=6 @       % teger partin$ =^ h6 @ �

2: �sample N  independent scenarios , , , N1 2 fd d d  from D  

according to the probability measure Pr;

3: �run the “Procedure for computing ki
)  and k,

)  for , , ,k k0 1 f= ”;

RETURN ki
)  and k,

)  for , , , ;k k0 1 f=

4: for , , , ,k k0 1 f=  compute

( )
,N

k
N

d h h d k h2
k

2

f = +
+ + + +

where

. ;ln lnh k d d
d k1 16 2 1= + + + + +-^ h ; E

RETURN kf  for , , , .k k0 1 f=

TABLE 3 VRC—Easy to implement algorithm.

yt

Wt

ut ARMA
System

Compensator

Figure 7  Feedforward compensation scheme. The disturbance 
source wt  is measured and processed by the compensation unit 
that generates the control action ut  with the objective of minimizing 
the effect of wt  on .yt
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Figure 8  The behavior of the nominal compensator and that of 
the compensator designed with the variable robustness control 
algorithm for .k 60=  Plot (a) shows the behavior of the nominal 
compensator when it is connected to the nominal system, whereas 
plot (b) is the output when the nominal compensator is connected 
to a perturbed system. A comparison of (a) and (b) shows the dete-
rioration of performance in the nominal compensator due to 
changed operating conditions. Plot (c) shows the behavior of the 
compensator designed with the variable robustness control algo-
rithm for k 60=  when connected to the nominal system. Connect-
ing the same compensator to a perturbed system produces the 
output in plot (d) with no appreciable deterioration in the perfor-
mance.
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The nominal values for 1v  and 2v  are 0nom
1v =  and 

,0nom
2v =  which corresponds to . ,a 0 4nom =-  ,b 1nom =  

. ,c 0 25nom
1 =-  and . .c 0 0124nom

2 =  From (19), the resulting 
nominal compensator has parameters .0 25nom

1i =  and 
. .0 0124nom

2i =-  Figure 8(a)–(b) shows the output that is 
obtained when this compensator is connected to the nomi-
nal system and to a perturbed system picked at random in 
the uncertainty domain. The deterioration in performance 
for the perturbed system does not come as a surprise 
because the nominal compensator is conceived with no 
concern for uncertainty.

Now set . %,0 5f =r  % %,3a =  ,10 7b = -  and run the VRC 
algorithm where ( , ) [ ],E yt2, i d =  and Pr is uniform over 
[ , ] .1 1 2-  The resulting N  is 5427 and the obtained cost-
violation plot is in Figure 1. For each value of ,k  the output 
variance k,

)  and the probability kf  that this output variance 
can be exceeded are shown.

Based on an inspection of the curves, a reasonable selec-
tion for k  is 60, where the cost is relatively flat and the prob-
ability of violation is low (this choice is subjective and 
others may opt for a different choice). With this choice, 

. %2 560f =  and . ,1 4260, =
)  with an improvement of 76% 

over the initial optimal value of 6.00 obtained for .k 0=  The 
compensator parameters are .0 24,1 60i =-)  and . .0 59,2 60i =-)  
According to Theorem 1, with probability ,1 1 10 7b- = - -  
which is nearly probability 1, the compensator 

. .u w w0 24 0 59t t t 1=- - -  guarantees that [ ] .E y 1 42t
2 #  for all 

plants in the uncertainty set D  except for a fraction of 
plants no more than . %.2 560f =  Figure 9 shows the region 
in the D  domain where the output variance is larger than 
1.42. The volume of the region is 1.2% of the total volume of 
the uncertainty domain [ , ] ,1 1 2-  which is below the 
threshold of 2.5%.

-1

D

v1

v2

1

1

-1

Figure 9  The set where the performance is not guaranteed in the 
compensator example. The variable robustness control algorithm 
does not guarantee the performance over the whole uncertainty 
domain ,D  and the red triangle at the top right corner corresponds 
to plants that do not meet the compensation performance.
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Figure 10  Output variance for the (a) nominal compensator, (b) 
compensator designed with the variable robustness control (VRC) 
algorithm for ,k 0=  and (c) compensator designed with VRC for 

.k 60=  In (a), the values of E yt
26 @ for 1v  close to one are above six 

and have been cut off to allow a better visualization. The nominal 
compensator is designed without any concern for uncertainty, and 
the output variance is, for many plants, larger than the output vari-
ance shown in (c). The compensator designed with VRC for k 0=  
[see (b)] enforces a high degree of robustness and the whole graph 
is below the value six, so that no cutting of the graph has been nec-
essary. Still, for many plants the output variance in (b) is larger than 
in case (c). Allowing for some probability of violation as in (c) 
improves the overall output variance profile.
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In summary, the VRC algorithm has determined a 
region of small volume whose elimination guarantees a 
large improvement in the optimal value. This result is 
achieved by letting the problem speak through the uncer-
tainty samples that have been extracted, whereas an a 
priori choice of Df  obtained by a resizing of the D  domain 
as discussed in the section “A Clarifying Remark” pro-
duces little benefit. In this problem, for example, resizing 

[ , ]1 1 2D = -  to [ . , . ] ,0 9874 0 9874 2-  which leaves out 2.5% of 
the total volume, yields a compensator with a optimal 
value of 5.64. Likewise, leaving out 0.5, 1, 1.5, and 2% of the 
total volume gives an optimal value of 6.00, 3.03, 1.98, 1.65 
with VRC versus 6.20, 6.16, 5.89, 5.81 with the resizing 
method. 

Figure 10 depicts the value of [ ]E yt2  achieved for the 
various systems in D  by the nominal compensator and by 
the compensators obtained by the VRC algorithm for k 0=  
and .k 60=  In Figure 10(c), the flat zone close to the corner 
(1, 1) corresponds to the region where the cost value is not 
guaranteed, and in that zone [ ]E yt2  is above the cutting 
value 1.42 shown in the figure.

Injecting a disturbance in the nominal and in the per-
turbed systems with the compensator obtained for ,k 60=  
the outputs shown in Figure 8(c)-(d) are obtained. The 
improved performance of the VRC approach is clear from 
the plots.

Proofs

Proof of Theorem 1
To shorten the notation, let : ( , , ) .N1 fd d d=  Note that ,k k,i

) )  are 
stochastic elements depending on ,d  although to simplify the 
notation such a dependence is not explicitly indicated.

Define { : there exists 0, 1, ,B kkNd d fd D= " , such 
that V , },k

*
k
*

k, 2i f^ h  that is, B is the set of multiextractions d  
from ND  leading for some k to a violation bigger than .kf  In 
these notations, the theorem statement writes { } .Pr BN # b

Let

	 { : ( , ) }B V >k
N

k k k,!d i fD= ) ) 	

be the event where the cost violation probability for a given 
k is bigger than ,kf  then ,B B

k

k

k0
=

=
'  which leads to the 

bound

	 { } { } .Pr PrB BN N

k

k

k
0

#
=

/ � (24)

The theorem is proved by first computing { }Pr BN
k  for 

, , , ,k k0 1 f=  and then by summing over k. Precisely, the 
inequality

	 { }Pr B
d k
k

N
i 1N

k
i

d k

k
i

k
N i

0
# f f

+
-

=

+
-c c ^m m h/ � (25)

is established, and then the result follows by substitution in 
(24), that is,

	

{ }

,

Pr B
d k
k

N
i

k

1

1

N

i

d k

k
i

k
N i

k

k

k

k

00

0

# f f

b
b

+
-

=
+
=

=

+
-

=

=
r

r

r

c c ^m m h= G//

/
	

where the last equation follows from (11). Thus, to complete 
the proof, we have to establish the fundamental relation (25).

Fix a value for k. Given a subset { , , }I i ik1 f=  of k indexes 
from { , , }N1 f  (if k 0=  let ,I 4=  the empty set), denote by 

*
Ii  the solution to the min-max problem where the scenari-

os with index in I have been removed, that is,

	 : , ,arg min max*

, ,
I

i N I
i

1Rd
,i i d=

d d fi -
^ h

" ,
� (26)

and let I,
)  be the corresponding cost value, that is,

	 : , .max*

, ,

*
I

i N I
I i

1
, , i d=

d f -
^ h

" ,
	

Moreover, let

	 { : ( , ) , for all } .i I>I
N N

I i I, ,! !d i dD D= ) ) 	

Thus, a d  is in I
ND  if the cost value I,

)  is violated in corre-
spondence of all the scenarios in I that have been removed 
in the construction (26) of .Ii

)  Since the pair ,k k,i
) )  generated 

by the VRC algorithm are such that the cost value k,
)  is vi-

olated in correspondence of exactly k scenarios, it is clear 
that ( , ) ( , )k k I I, ,i i=) ) ) )  for some I such that .I

N!d D  Thus,
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up to a zero probability set, where I  is the collection of all 
possible choices of k indexes from { , , } .N1 f

The bound that is sought for { }Pr BN
k  can now be ob-

tained by first bounding { : ( , ) },Pr V >N
I
N

I I k,!d i fD ) )  and 
then summing over .I I!

Fix an { , , }I i ik1 f=  and write

	 { : , }  Pr V >* *N
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I I kd ,d i fD ^ h
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for all , } ( ),
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>
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N
I i I

I I V

1k

d

, ,

,

i d
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=

=

f
^

^

h

h

"#
� (28)

where FV  is the cumulative distribution function of the 
random variable ( , ),V I I,i

) )  and { ( , ) }Pr V vN
I
N

I I,iD =) )  is the 
conditional probability of the event I

ND  under the condition 
that ( , )V vI I,i =) )  (see [68, chap. Il. sec. 7, (17)]). To evaluate 
the integrand in (28), remember that ( , )V vI I,i =) )  means 
that { : ( , ) } ;Pr v>I I, ,d i d =) )  then, owing to the indepen-
dence of the scenarios, the integrand equals .vk  Substitut-
ing in (28) yields
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	 : , .Pr V v dF v* *

( , ]

N
I
N

I I k
k

V
1k

d , 2d i fD =
f

^ ^h h" , # � (29)

To proceed, appeal to a result on FV  from [59], namely,

	 ( ) ( ) : ( ) .F v F v
N k
i v v1 1V V

i

d
i N k i
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= -
-
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- -c m/ � (30)

This result follows from Theorem 1 in [59] by noting that 
the min-max problem ( , )min max { , , }i N I i1Rd , i df! !i -  can be 
rewritten as

	 min h
,hR Rd d!i

	

	 subject to: ( , ) , { , , } ,h i N I1i, f# !i d - 	

that is, an optimization problem with d 1+  variables and 
N k-  constraints. In addition, in [59] it is shown that the 
inequality in (30) is tight, that is, (30) holds with equality for 
a whole class of problems that are called fully supported in 
[59, Def. 3]. Now, the integrand vk  in (29) is an increasing 
function of v, so that ( ) ( )F v F vV V$

-  implies that

	 ( ) ( ) .v dF v v dF v
( , ] ( , ]

k
V

k
V

1 1k k
#

-
f f
# # � (31)

This inequality can be verified by the following calcula-
tion, where the first equation follows from [68, Chap. ll, Sec. 
6, Thrm. 11],
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Now, using (29) and (31),
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Since the density of  FV
-   is  ( )N k d

d

N k- - -` j  
( ) ,v v1d N k d 1- - - -  this last integral is computed as
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which, by integration by parts, finally gives

	

: ,

.

Pr V

N
i 1

* *N
I
N

I I k

N
d k

N k
d

i

d k

k
i

k
N i

0

d , 2

#

d i f

f f

D

-
+

-

=

+
-

^

c ^
c

c

h

m h
m

m

" ,

/ � (32)

To conclude the proof, observe that I  in (27) contains 

k

N` j elements, and thus, using (32),
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which is (25).

Proof of (12)
The value

: ,ln ln lnM d d2 1 1 4 2 1 1 1
f b f f b

= + + + + + +
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that is,
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Taking the exponential of both sides gives
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which, by applying the Chernoff’s bound for the binomial 
tail [69], [70] gives

	 % .
M
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Thus, M satisfies (10); since the N selected in point 1 of 
the VRC algorithm is the smallest integer satisfying (10), we 
have .N M#

Proof of (13)
If ( )/ ,k d N<kf +  then (13) is trivially true. If instead 

( )/ ,k d Nk $f +  then the Chernoff bound for the binomial 
tail [69], [70] applies, which gives
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Moreover, it holds that
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so that the left-hand side of (11) is bounded by 
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This inequality can be rewritten as
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which, when written explicitly for ,kf  gives
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Callouts:

The cost-violation plot provides a 

quantitative support to guide the user to 

make this decision.

Averaging is not the only use one can 

make of probability, and an alternative 

approach consists of using probability 

to quantify the chance that a certain 

performance specification is attained.

The level of robustness is adjustable, 

and so this approach is called a 

modulating robustness approach.

The VRC algorithm has determined 

a region of small volume whose 

elimination guarantees a large 

improvement in the optimal value.
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