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a b s t r a c t

This paper deals with the identifiability of an ARMAX system when the correlation approach is
adopted. In general, identifiability depends on both the parametrization of the model class and on the
informativeness of the data. Here, we focus on the latter aspect and, therefore, a full-order model class is
considered. The main goal is to provide a counterexample to the uniqueness of the asymptotic estimate
when a persistently exciting input is adopted. This shows the somehow counterintuitive fact that the
identifiability of ARMAX systems within the correlation approach is related to the ‘‘color’’ of the input.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Consider the problem of identifying a model for the ARMAX
system

So : Ao(z−1)y(t) = Bo(z−1)u(t) + Co(z−1)w(t),
w(t) ∼ WN(0, λ2

w),

based on a data record {u(1), y(1), . . . , u(N), y(N)} collected from
So. Here, WN(0, λ2

w) denotes a white noise with zero mean and
variance λ2

w . It is also assumed that w(t) is i.i.d. and that it has
bounded moments of order 4 + δ for some δ > 0. Moreover, w(t)
is uncorrelated with u(t).

Identification is performedwithin the class of ARMAX(na,nb,nc)
models

Mϑ =


y(t) =

B(z−1, ϑ)

A(z−1, ϑ)
u(t) +

C(z−1, ϑ)

A(z−1, ϑ)
ξ(t),

ξ(t) ∼ WN(0, λ2), ϑ ∈ Θ


,

where ϑ = [a1 · · · ana b1 · · · bnb c1 · · · cnc ]
′,

A(z−1, ϑ) = 1 + a1z−1
+ · · · + anaz

−na ,

B(z−1, ϑ) = b1z−1
+ · · · + bnbz

−nb ,

C(z−1, ϑ) = 1 + c1z−1
+ · · · + cnc z

−nc ,
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and Θ ⊆ Rn, n = na + nb + nc , is the set of the parameter vectors
such that the roots of znaA(z−1, ϑ) and of zncC(z−1, ϑ) belong to
the interior of the unit circle in the complex domain. We assume
that:

1. So ∈ Mϑ , that is, ∃ ϑo
∈ Θ such that Ao(z−1) = A(z−1, ϑo),

Bo(z−1) = B(z−1, ϑo), and Co(z−1) = C(z−1, ϑo) (full-order
parametrization);

2. there is no common factor to all of A(z−1, ϑo), B(z−1, ϑo), and
C(z−1, ϑo).

As for the fitting criterion, consider the so-called correlation
approach, which aims at finding a model whose associated
prediction error is as white as possible, [1,2]. Precisely, letting

y(t, ϑ) =


1 −

A(z−1, ϑ)

C(z−1, ϑ)


y(t) +

B(z−1, ϑ)

C(z−1, ϑ)
u(t)

be the optimal 1-step linear predictor for themodel corresponding
to ϑ , the parameter estimateϑN is computed as the solution of the
following system of equations:1

1
N

N
t=1

ε(t, ϑ)ζ (t, ϑ) = 0,

where ε(t, ϑ) = y(t) −y(t, ϑ) is the prediction error and ζ (t, ϑ)
is a n-long correlation vector constructed based on data up to time

1 If the solution is not unique, it is assumed that a tie-break rule is introduced.
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t −1. For instance, [1,2], customary choices for ARMAXmodels are

ζ (t, ϑ) = [y(t − 1) · · · y(t − na) u(t − 1) · · · u(t − nb)

ε(t − 1, ϑ) · · · ε(t − nc, ϑ)]′, (1)
ζ (t, ϑ) = [u(t − 1) · · · u(t − na − nb) ε(t − 1, ϑ) · · ·

ε(t − nc, ϑ)]′, (2)
ζ (t, ϑ) = [u(t − 1) · · · u(t − nb) ε(t − 1, ϑ) · · ·

ε(t − na − nc, ϑ)]′. (3)

In the first case, ϑN takes the name of pseudo-linear regression
estimate, [1].

Letting Θ∗ be the set of solutions to the system of equations

E[ε(t, ϑ)ζ (t, ϑ)] = 0, (4)

it can be provenundermild assumptions that the distance betweenϑN and Θ∗ tends to zero as N → ∞, [1,2]. Since ϑo belongs to Θ∗

as it can be easily verified, if Θ∗ is a singleton, then ϑN → ϑo,
i.e. the estimated model tends to the true data-generating system.
If instead Θ∗ contains multiple points, the identifiability of ϑo is
no longer guaranteed, and this may cause severe problems in the
assessment of the quality of the obtainedmodel as shown in [3–6].

In general, the conditions underwhichΘ∗ is a singleton depend
both on the model class parametrization (roughly speaking, Θ∗

may not be a singleton because of over-parametrization—see
[7,2,1,8,9] for results along this line) and on the informativeness
of the data (if u(t) = 0, ∀t , then it is clear that bo1 · · · bonb cannot
be retrieved by any identification algorithm). In the present setup,
however, the informativeness of data is the sole significant aspect,
being the model class globally identifiable at ϑo according to
[1, Definition 4.6].

For PEM (Prediction Error Methods) identification, the problem
of the informativeness of the data has been studied in full detail,
leading to the concepts of informative enough data sequence and
persistent excitation, [1, Definitions 8.1 and 13.2], which give quite
general conditions for Θ∗ to be a singleton. Moreover, in [10],
methods have been developed to design the input so as to reduce
the presence of local minima and improve the convergence of ϑN
to ϑo.

As for the correlation approach, instead, the problem of the
informativeness of data is much more convoluted. If, on the one
hand, the case of Instrumental Variable identification, where one
disregards the identification of C(z−1, ϑo), has been fully analyzed,
leading tomany general conditions guaranteeing the identifiability
of A(z−1, ϑo) and B(z−1, ϑo), [11,1], on the other hand, the case
of ARMAX models here considered is largely unexplored and, to
the best of our knowledge, partial achievements are available only.
The following theorem, taken from [12], is one of the few available
results.

Theorem 1. Let

ζ (t, ϑ) = [u(t − 1) · · · u(t − na − nb) ε(t − 1, ϑ) · · ·

ε(t − nc, ϑ)]′.

In the present setup, if u(t) ∼ WN(0, σ 2) with σ 2 > 0, then
Θ∗

= {ϑo
}.

When the input is not white, one might expect that the same
conclusion of Theorem 1 can be drawn by assuming that the input
is persistently exciting,2 in full analogy with what happens in PEM
identification. This leads to the following conjecture.

2 Note that, thanks to the uncorrelation with w(t), the persistent excitation
property implies that the collected data sequence is also informative enough, see [1,
Theorem 13.1].
Conjecture 1. Let

ζ (t, ϑ) = [u(t − 1) · · · u(t − na − nb) ε(t − 1, ϑ) · · ·

ε(t − nc, ϑ)]′.

In the present setup, if u(t) is persistently exciting, then Θ∗
= {ϑo

}.

In Section 2, we prove that Conjecture 1 is false by giving a
counterexample where Θ∗ is not a singleton even though u(t) is
persistently exciting. Moreover, the counterexample shows that
Θ∗ may not be a singleton also when either the correlation vector
(1) or (3) is used. This shows that the identifiability of an ARMAX
systemwithin the correlation approachmay depend on the ‘‘color’’
of the input, even for standard choices of the correlation vector.
Paper structure. The counterexample is constructed anddiscussed
in Section 2. Some conclusions are eventually drawn in Section 3.

2. A counterexample to Conjecture 1

Consider the ARMAX(0, 1, 3) models with A(z−1, ϑ) = 1,
B(z−1, ϑ) = bz−1, C(z−1, ϑ) = 1 + c1z−1

+ c2z−2
+ c3z−3, and

ϑ = [b c1 c2 c3]′. The data-generating system is

So : y(t) = bou(t − 1) + w(t) + co1w(t − 1)
+ co2w(t − 2) + co3w(t − 3)

where w(t) ∼ WN(0, 1). We let u(t) = e(t) + e(t − 1) =

(1 + z−1)e(t), where e(t) ∼ WN(0, 1) and e(t) is independent
of w(t). Note that u(t) is a persistently exciting input. Finally, we
consider

ζ (t, ϑ) = [u(t − 1) ε(t − 1, ϑ) · · · ε(t − nc, ϑ)]′ (5)

as correlation vector. Being na = 0, (5) simultaneously
encompasses the three cases in (1)–(3).

In the current setting, the system of equations (4) writes as

E[ε(t, ϑ)u(t − 1)] = 0, (6)
E[ε(t, ϑ)ε(t − i, ϑ)] = 0 i = 1, . . . , 3. (7)

The aim of this section is to show that Eqs. (6) and (7) admit
for some ϑo a solution ϑ∗ which is not equal to ϑo. The
counterexample is built indirectly: the parameter vector ϑ∗ is
fixed, and a ϑo not equal to ϑ∗ is sought such that ϑ∗ is a solution
to (6) and (7) when data are generated by the So corresponding to
ϑo. It follows that, for the found So, Eqs. (6) and (7) admit at least
two different solutions, namely, ϑ = ϑo and ϑ = ϑ∗.

Preliminarily, note that, given aϑ , the polynomialC(z−1, ϑ) can
be represented in the form

C(z−1, ϑ) = (1 + αz−1)(1 + βz−1)(1 + γ z−1), (8)

whereα,β , and γ maybe complex. In the following,wewill denote
by ρ the vector [b α β γ ]

′. Note that, given ρ, there is a unique ϑ
such that Eq. (8) holds true, while, given ϑ , vector ρ is uniquely
determined up to a permutation of α, β and γ .

Fix a real-valuedρ∗
=[b∗ α∗ β∗ γ ∗

]
′ such thatα∗

+β∗
+γ ∗

=2,
|α∗

| < 1, |β∗
| < 1, |γ ∗

| < 1 and α∗
≠ β∗

≠ γ ∗, and let ϑ∗ be the
corresponding parameter vector. We aim at finding a ϑo not equal
to ϑ∗ such that (6) and (7) admit this ϑ∗ as a solution.

First, consider Eq. (6). In the current example, the prediction
error in correspondence of ϑ∗ can be written as

ε(t, ϑ∗) =
(bo − b∗)

C(z−1, ϑ∗)
u(t − 1) +

C(z−1, ϑo)

C(z−1, ϑ∗)
w(t),

and, owning to the independence of u(t) and w(t), Eq. (6) writes

E
 (bo − b∗)

C(z−1, ϑ∗)
u(t − 1) · u(t − 1)


= 0. (9)
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The transfer function 1/C(z−1, ϑ∗) admits the following series
expansion

1
C(z−1, ϑ∗)

=
1

(1 + α∗z−1)(1 + β∗z−1)(1 + γ ∗z−1)

= 1 − (α∗
+ β∗

+ γ ∗)z−1
+

∞
k=2

hkz−k

= 1 − 2z−1
+

∞
k=2

hkz−k,

where hk’s are suitable coefficients depending on α∗, β∗, γ ∗. By
substituting the latter expression on the left-hand-side of Eq. (9),
we obtain

E

(bo − b∗)


u(t − 1) − 2u(t − 2)

+

∞
k=3

hk−1u(t − k)


· u(t − 1)


= (bo − b∗)


E[u(t − 1)2] − 2E[u(t − 2)u(t − 1)]

+

∞
k=3

hk−1E[u(t − k)u(t − 1)]

,

which is indeed equal to 0 ∀ bo, because E[u(t − 1)2] = 2,
E[u(t − 2)u(t − 1)] = 1 and


∞

k=3 hk−1E[u(t − k)u(t − 1)] = 0
(recall that u(t) = e(t) + e(t − 1)). Hence, the conclusion is that
Eq. (6) always admits ϑ∗ as a solution whatever ϑo is.

Turn now to the equations in (7). Since u(t) is independent of
w(t), they can be rewritten as

E
 (bo − b∗)

C(z−1, ϑ∗)
u(t − 1) ·

(bo − b∗)

C(z−1, ϑ∗)
u(t − 1 − i)


+ E

C(z−1, ϑo)

C(z−1, ϑ∗)
w(t) ·

C(z−1, ϑo)

C(z−1, ϑ∗)
w(t − i)


= 0,

i = 1, . . . , 3. (10)
Taking into account the representation (8), the equations in (10)
can be seen as a system of equations in the unknown ρo, namely,

(bo − b∗)2


v1
v2
v3


=

f1(αo, βo, γ o)
f2(αo, βo, γ o)
f3(αo, βo, γ o)


, (11)

where we let

vi = E
 1
C(z−1, ϑ∗)

u(t − 1) ·
1

C(z−1, ϑ∗)
u(t − 1 − i)


and

fi(αo, βo, γ o) = −E
C(z−1, ϑo)

C(z−1, ϑ∗)
w(t) ·

C(z−1, ϑo)

C(z−1, ϑ∗)
w(t − i)


.

Clearly, (11) is satisfied by ρo
= ρ∗, which amounts to taking

ϑo
= ϑ∗.
Suppose first that [v1 v2 v3]

′
= 0.

In this case, when (αo, βo, γ o) = (α∗, β∗, γ ∗), (11) is satisfied
nomatter of the value of bo. This means that (11) is satisfied e.g. by
taking ρo

= [bo α∗ β∗ γ ∗
]
′ with bo = b∗

+ 1. Clearly, ρo
≠ ρ∗ and

it corresponds to a ϑo
≠ ϑ∗, because bo = b∗

+ 1 ≠ b∗.
Suppose now that [v1 v2 v3]

′
≠ 0.

The right hand side of (11) is a mapping from R3 to R3

that is continuously differentiable (the coefficients of C(z−1, ϑo)
‘‘smoothly’’ depend on αo, βo, and γ o, [1]). It holds that
∂ f1
∂αo

(α∗, β∗, γ ∗) = E


z−1

1 + α∗z−1
w(t) · w(t − 1)


= 1

∂ f2
∂αo

(α∗, β∗, γ ∗) = E


z−1

1 + α∗z−1
w(t) · w(t − 2)


= −α∗

∂ f3
∂αo

(α∗, β∗, γ ∗) = E


z−1

1 + α∗z−1
w(t) · w(t − 3)


= (α∗)2,
and, similarly,

∂ f1
∂βo

(α∗, β∗, γ ∗) = 1
∂ f1
∂γ o

(α∗, β∗, γ ∗) = 1

∂ f2
∂βo

(α∗, β∗, γ ∗) = −β∗
∂ f2
∂γ o

(α∗, β∗, γ ∗) = −γ ∗

∂ f3
∂βo

(α∗, β∗, γ ∗) = (β∗)2
∂ f1
∂γ o

(α∗, β∗, γ ∗) = (γ ∗)2.

Hence, the Jacobian of [f1(αo, βo, γ o) f2(αo, βo, γ o) f3(αo, βo, γ o)]′

evaluated in (α∗, β∗, γ ∗) is given as follows:

∂ f1
∂αo

∂ f1
∂βo

∂ f1
∂γ o

∂ f2
∂αo

∂ f2
∂βo

∂ f2
∂γ o

∂ f3
∂αo

∂ f3
∂βo

∂ f3
∂γ o


(α∗,β∗,γ ∗)

=

 1 1 1
−α∗

−β∗
−γ ∗

(α∗)2 (β∗)2 (γ ∗)2

 ,

and is nonsingular because it is a Vandermonde matrix with α∗
≠

β∗
≠ γ ∗. Eventually, we have thatf1(α∗, β∗, γ ∗)

f2(α∗, β∗, γ ∗)
f3(α∗, β∗, γ ∗)


=

E[w(t)w(t − 1)]
E[w(t)w(t − 2)]
E[w(t)w(t − 3)]


=

0
0
0


.

The inverse function theorem – see [13, Theorem 9.24] – can be
now invoked to assert that there is an open neighborhood U of
[α∗ β∗ γ ∗

]
′ and an open neighborhood V of [0 0 0]′ such that

the mapping [f1(αo, βo, γ o) f2(αo, βo, γ o) f3(αo, βo, γ o)]′ is one-
to-one between U and V . This implies that ∀ [v1 v2 v3]

′
∈ R3,

∀ ϵ ≥ 0, ϵ small enough, ∃ [αo βo γ o
]
′ such thatf1(αo, βo, γ o)

f2(αo, βo, γ o)
f3(αo, βo, γ o)


= ϵ


v1
v2
v3


.

Hence, by letting bo = b∗
±

√
ϵ, ϵ > 0 small enough, a ρo

=

[bo αo βo γ o
]
′ can be found such that the system of equations

(11) is satisfied and ρo
≠ ρ∗. This ρo corresponds to a ϑo that is

different from ϑ∗ because bo = b∗
±

√
ϵ ≠ b∗.

Summarizing, for the given ϑ∗, a ϑo
≠ ϑ∗ can be found such

that Eqs. (6) and (7) admit ϑ∗ as a solution. Since ϑo is a solution
to (6) and (7) too, this proves that Θ∗ is not a singleton when data
are generated in correspondence of the found ϑo.

Remark 1. It is perhaps worth noticing that the found ϑo is not an
isolated singularity. As a matter of fact, the given counterexample
shows that for the input u(t) = e(t) + e(t − 1), e(t) ∼ WN(0, 1),
there is a whole set of ϑo’s for which Θ∗ is not a singleton. This
set is obtained by considering all possible values of ϵ in the above
construction and by letting ρ∗ vary in all possible ways under the
conditions α∗

+ β∗
+ γ ∗

= 2, |α∗
| < 1, |β∗

| < 1, |γ ∗
| < 1, and

α∗
≠ β∗

≠ γ ∗. Also, the given argument can be easily extended to
the case where u(t) = e(t) + ke(t − 1), e(t) ∼ WN(0, λ2

e ).

3. Conclusions

In this paper, we considered the identification of an ARMAX
system by means of a full-order model class and showed that
identifiability may be not attained despite the use of a persistently
exciting input. The counterexample holds true in spite of the choice
of the correlation vector among some standard options, including
themost common pseudo-linear regression. Though the specificity
of the counterexample does not allow one to draw general
conclusions about the applicability of the correlation approach,
still, we believe, this paper reveals some difficulties of this
identification method that perhaps deserve further investigation.
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To the best of our knowledge, whether a correlation vector exists
guaranteeing identifiability under a persistent excitation condition
remains an open problem. Similarly, the conditions securing
identifiability for the correlation vectors considered in this paper
are not clear. Thehope is that this papermay foster further research
along these directions.
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