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a b s t r a c t

In this paper, a simulation-basedmethod for the analysis and design of abstractedmodels for a stochastic
hybrid system is proposed. The accuracy of a model is evaluated in terms of its capability to reproduce
the system output for all the realizations of the stochastic input except for a set of (small) probability ε
(ε-abstraction). This naturally leads to chance-constrained optimization problems,which are here tackled
by means of a recently developed randomized approach. The main thrust of this paper is that, by testing
how close themodel and system outputs are over a finite numberN of input realizations only, conclusions
can be drawn about the model capability as an ε-abstraction. The key feature of the proposed method is
its high versatility since it does not require specific assumptions on the system to be approximated. The
only requirement is that of being able to run multiple simulations of the system behavior for different
input realizations.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

This paper deals with the problem of approximating a stochas-
tic hybrid system by means of some simpler model, (Abate, 2009;
Julius, Girard, & Pappas, 2006; Julius & Pappas, 2009; Petreczky
& Vidal, 2007). Stochastic hybrid systems (SHS) are characterized
by intertwined continuous, discrete, and stochastic dynamics, and
are suitable for modeling complex, large scale systems. See e.g.
Blom and Lygeros (2006) and Cassandras and Lygeros (2006) for
an overview of applications of SHS to various domains, such as
telecommunication networks, air traffic management, manufac-
turing, biology, finance, to mention a few. The study of SHS is more
challenging than for other classes of systems, and many problems
still lack an effective solution (see, for example, the motivational
paper Lygeros & Prandini, 2010). In particular, this is the case of
analysis and design of simple models approximating an SHS.
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In this paper, we focus on system approximation for verifica-
tion purposes. Verification of properties related to the SHS evo-
lution, like, e.g., safety and reach/avoid properties, is typically
addressed through numerical methods involving state-space grid-
ding, (Abate, Amin, Prandini, Lygeros, & Sastry, 2007; Abate, Ka-
toen, Lygeros, & Prandini, 2010; Summers & Lygeros, 2010), and,
as such, is affected by an exponential growth of the computational
effort with the state-space dimension. The aim of the approxima-
tion, then, is to build a model that mimics the behavior of the orig-
inal system and that can be used in place of the system to scale-up
numerical methods for the verification of the property of interest.
In this respect, the notion of approximate stochastic bi-simulation
as introduced in Julius et al. (2006) and Julius and Pappas (2009) is
well-suited to quantify the model performance.

According to this notion, the behavior of system S is character-
ized in terms of some output signal yS of interest, while model M
is fed with the same stochastic elements affecting the dynamics of
S (stochastic input and initial state) and generates a signal yM that
takes values in the same domain of yS . The quality of M as an ap-
proximate abstraction of S is quantified through the maximal dis-
tance between the system and the model outputs over all possible
input realizations and initial conditions except for a set of them of
probability ε.

The evaluation of the maximal distance, however, is a difficult
task, computationally demanding in general. The approach pro-
posed in Julius and Pappas (2009) is based on the quite general
notion of stochastic bi-simulation function, but is able to provide
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a computational procedure for specific classes of SHS only. More-
over, it results in overconservative bounds as shown in the present
paper.

The key idea developed in this paper is to assess the quality
of the approximation by resorting to randomized techniques,
which are gaining increasing popularity in the systems and control
community. See Calafiore, Dabbene, and Tempo (2011) and Tempo,
Calafiore, and Dabbene (2013) for comprehensive references on
the state of the art of randomized methods in the systems and
control field.

The randomized approach proposed in this paper is in the line
of the so-called scenario approach, (Calafiore & Campi, 2005, 2006;
Campi, Garatti, & Prandini, 2009). It basically prescribes to com-
pute themaximal distance between the system and themodel out-
puts over a finite numberN of realizations of the initial state and of
the stochastic input only. The finiteness of the considered realiza-
tions makes the problem computationally affordable. In addition,
this sample-based approach is supported by a solid theory: it can
be proved that if N is suitably chosen depending on the desired ε,
then the computed distance bounds with high confidence also the
distances between the outputs of S and M associated with all the
other unseen realizations of the initial state and of the stochastic
input except for a set of probability ε. This ideawas firstmentioned
in Campi et al. (2009) as one of the possible applications to systems
and control design of the so-called scenario approach for solving
chance-constrained optimization problems. Papers (Abate & Pran-
dini, 2011; Garatti & Prandini, 2012) put forward this idea, which
is further elaborated here, leading to a significant improvement in
terms of problem formulation, theoretical and algorithmic devel-
opments, and comparative analysis with the existing approaches.
Differently from the approach based on stochastic bi-simulation
functions in Julius and Pappas (2009), the computational method
here provided returns nonconservative results and is of general ap-
plicability. Indeed, the only assumption on S is that one should be
able to run multiple executions of it and to determine the corre-
sponding output realizations. If feasible, one could even run ex-
periments on the real system without the need of determining a
mathematical description and building a simulator for it.

Interestingly, the proposed framework is amenable not only for
the assessment of the approximation quality of a given model, but
also for model design, i.e., for selecting the best model in some
given parameterizedmodel class. Indeed, performance assessment
and model design are formulated together in the paper, being the
former a special case of the latter. The problem of selecting the
model class, instead, is not addressed.

The proposed approach should be combined with computa-
tional verification techniques to allow for the analysis of proba-
bilistic safety and reachability properties of large scale stochastic
systems. Admittedly, being based on simulation and randomiza-
tion, our approach is confined to properties that depend on the sys-
tem behavior over a finite horizon and is guaranteed with a certain
(arbitrarily high though) confidence, while themethod in Julius and
Pappas (2009) has no such limitations.

Paper structure:We start by formulating the problem of approx-
imating a stochastic system S in Section 2,wherewe precisely state
the issue of assessing the performance of a given abstracted model
M for S and that of designing the abstracted model. In Section 3,
we develop our randomized approach for both model design and
performance assessment. Special focus is given in Section 3.1 to the
performance assessment problem, which can be efficiently tackled
via the scenario approach. In Section 3.2 results based on VC the-
ory are also reported pointing out their possible conservativeness.
Section 4 presents a numerical example where the proposed ap-
proach is compared with that in Julius and Pappas (2009). Some
final conclusions are drawn in Section 5.

Notation: Throughout the paper, we use small letters like s to
denote a signal defined over the look-ahead time horizon [0, T ],
and st to denote the value taken by s at time t ∈ [0, T ]. For each
t ∈ [0, T ], st takes value in the space S. S may be e.g. Rn or, when
we are dealing with hybrid systems and st has both a continuous
and a discrete component, Rn

×{1, 2, . . . , q}. S[0,T ] denotes the set
of all signals defined over the time interval [0, T ] and taking values
in S at each time instant t ∈ [0, T ].

2. Problem formulation

System S is described as an operator that maps the initial state
x0 ∈ X and the input signal w ∈ W [0,T ] into the signal yS of inter-
est: yS = f S(x0, w). Here, x0 and w are assumed to be stochastic
with known probability measure P. Signal yS takes values in Y[0,T ].

Model M is defined as yM = f M(x0, w), where yM ∈ Y[0,T ], i.e.,
yM takes values in the same set of yS .

Note that S and M are driven by the same inputs, and the aim
of M is that of approximating the system by producing an output
yM which is close to yS . The fact that the map f M depends on the
initial condition x0 of S does notmean that the state space ofM has
the same size as that of S, but that f M incorporates the mapping
from the initialization of the state of S to the initialization of the
(possibly lower-dimensional) state ofM .

To bemore concrete, we here introduce the class of Jump Linear
Stochastic Systems (JLSS) and present some abstractedmodels that
can be used to approximate JLSS.

Example 1 (JLSS). Let B be a Brownian motion and consider a
stochastic system S with state xSt ∈ Rn that evolves within [0, T ]

according to the following Stochastic Differential Equation (SDE)

dxSt = AxSt dt + FxSt dBt (1)

in-between the jump times 0 < τ1 < · · · < τi < · · · ≤ T of a
Poisson process P with rate ν > 0. At each jump time τi, the state
is reset according to

xτi = (I + R) lim
s→τ−

i

xs, (2)

where I is the identity matrix and R is a reset matrix. If R = 0, then,
no jump occurs in the state, which evolves continuously.

The Brownian motion B is assumed to be independent of
the Poisson process P , while both B and P are assumed to be
independent of the initial state x0 ∈ X := Rn. In this context, the
stochastic input w is given by the pair (B, P), which takes values
in W = R × Z+ at each time t ∈ [0, T ]. The output of interest ySt
takes values in Y = Rp and is given by

ySt = CxSt . (3)

This system is known as Jump Linear Stochastic System (JLSS) since
its evolution between jump times is characterized by an SDE with
drift and diffusion terms that are linear in xSt , and the state resets
at the jump times are linear in xSt as well. A JLSS can be seen as an
SHS with a single operating mode characterized by an SDE. When
a (auto)transition occurs, the continuous state is subject to some
deterministic reset and the continuous dynamics keeps unchanged
after the transition.

We here present some reduced models that can be used to
approximate a JLSS.

All models are JLSS and are characterized by a jump diffusion
process xMt ∈ Rñ that satisfies the SDE

dxMt = ÃxMt dt + F̃ xMt dBt , (4)

and is reset according to

xMτi = (I + R̃) lim
s→τ−

i

xMs (5)
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at the jump times τi > 0of the Poissonprocess P . Themodel output
yMt ∈ Y is given by

yMt = C̃xMt . (6)

Ã, F̃ , R̃, and C̃ are suitably defined matrices, whereas the initial
condition xM0 is a linear function of x0 : xM0 = Lx0.

A first reduced model can be obtained by taking only a subset
of the state variables xSt (ñ < n) and setting Ã, F̃ , R̃, and C̃ equal to
suitable sub-matrices of A, F , R, and C .

Other reduced models can be obtained by maintaining all the
state variables xSt (ñ = n) and suppressing the contribution either
of the Brownian motion B setting F̃ = 0 in (4) or of the Poisson
process P setting R̃ = 0 in (5).

The quality ofM as an approximation of S is evaluated by looking at
the similarity of the output signals yM and yS . To this purpose, we
introduce a quasi-metric D : Y[0,T ]

× Y[0,T ]
→ R+ to assess how

close signal yM is to yS . For example, letting d be anymetric defined
over Y, the metric D(yS, yM) = supt∈[0,T ] d(ySt , y

M
t ), can be used

wheneverwe are interested in having yS and yM close to each other
at each time instant. If, otherwise, we are interested in the distance
between trajectories only, the directional Hausdorff metric can be
used D(yS, yM) = supt∈[0,T ] infτ∈[0,T ] d(ySt , y

M
τ ). As for the metric d,

it highly depends on the space Y and on the problem itself. For
example, if Y = Rp, then it is customary to use the Euclidean
metric d(ySt , y

M
t ) = ∥ySt − yMt ∥. If, instead, Y = Rp

× {1, 2, . . . , q}
so that yt ∈ Y has both a continuous and a discrete component,
say yt = (yct , y

d
t ), then the metric

d(ySt , y
M
t ) =


+∞ if yS,dt ≠ yM,dt
∥yS,ct − yM,ct ∥ otherwise

can be used. The meaning of this metric is that we want first to
check whether S andM are in the same operation mode, and then,
if so, how close the continuous components of the y variables are.

When evaluating the quality of M as an approximation of S,
we can require either that yM is close to yS for every and each
realization of x0 and w or, alternatively, that yM is close to yS for
all realizations of x0 and w except a set of them of pre-specified
probability ε ∈ (0, 1). This latter approach is adopted in Julius and
Pappas (2009) and presents the advantage that if there exist some
‘‘bad’’ but quite unlikely realizations that would over-penalize the
performance of M as an approximation of S, then, they can be
discarded. Accordingly, we define the notion of ε-abstraction of S
as follows.

Definition 1. Model M is said to be an ε-abstraction of S with
accuracy function h : X → R+ if

P

D


yS, yM

2
≤ h(x0)


≥ 1 − ε. (7)

Note that, according to Definition 1, D(yS, yM)2 is upper bounded
by some positive function h(x0) of the initial condition x0. This is
so because in many situations, for fixedw, different initializations
correspond to different similarity levels of yM and yS (in, e.g., linear
stochastic systems, the larger x0, the worse the similarity between
yM and yS in general), and using a uniform bound would be too
conservative.

In (7) the approximation quality of amodel ismeasured through
h(x0) over a set of realizations of probability 1 − ε. Evidently,
the bigger ε, the more h(x0) can be pushed towards small values,
because h(x0) is required to be an upper bound on D(yS, yM)2
over a smaller fraction of realizations of x0 and w. However, the
approximation quality assessment in (7) becomes meaningless if
ε is too close to 1, and the probability ε has to be chosen so as
not to penalize accuracy, while leading to sensible statements on
the properties of S through the analysis of M . This is made more
explicit in Remark 1, showing how the notion of ε-abstraction can
be used in system verification.

Remark 1. Suppose that Y = Rp and the aim is to compute
the probability that yS enters an unsafe set U , but, due to the
complexity of S, this task is not computationally affordable using
e.g. state space gridding methods on S, (Abate et al., 2007, 2010;
Summers & Lygeros, 2010). Suppose that a model M that is an ε-
abstraction of S with accuracy function h(x0) is available. For each
initialization x0, by enlarging U by a width equal to

√
h(x0), a new

set U(x0) is obtained such that, whenever D

yS, yM

2
≤ h(x0), if

yS enters U , then yM enters U(x0). If the abstraction M is simple
enough, then one can actually compute the probability that yM
enters U(x0), and the probability that yS enters U can be upper
bounded as follows:

P

∃t : ySt ∈ U


≤ P


∃t : ySt ∈ U|D


yS, yM

2
≤ h(x0)


·

P

D


yS, yM

2
≤ h(x0)


+ P


D


yS, yM

2
> h(x0)


≤ P


∃t : yMt ∈ U(x0)|D


yS, yM

2
≤ h(x0)


·

P

D


yS, yM

2
≤ h(x0)


+ P


D


yS, yM

2
> h(x0)


≤ P


∃t : yMt ∈ U(x0)


+ ε. (8)

Note that considering an enlarged set U(x0)whose width depends
on the initialization x0 may prevent the bounding in (8) to be
overconservative.

Given Definition 1 of ε-abstraction, we next address the problems
of assessing the accuracy of a given model M as an ε-abstraction
and designing an optimal ε-abstraction. In the case of the
assessment of the abstraction performance, we suppose that both
the operators f S and f M defining S and M are given and the
objective is to assess the accuracy of M as an ε-abstraction of S.
In the design of an optimal abstraction, the operator f M defining
M is no more given and our goal is to choose f M in some given
class so that M is an ε-abstraction of S with the smallest possible
accuracy. Both assessment and design involve determining an
accuracy function h(x0) so that condition (7) is satisfied. Clearly,
the solution of this problem is not unique, and we are interested in
determining the ‘‘smallest possible’’ h(x0) so as to assess the actual
capabilities of the model without introducing conservatism. Since
x0 is stochastic, the expectation of h(x0) can be taken as a sensible
measure of the size of h(x0).2

If we let the accuracy function and the model class be
respectively parameterized by ϑ and λ, then, model design can be
naturally formulated as the following optimization problem:

min
ϑ,λ

E[hϑ (x0)] (9)

subject to : P

D


yS, yMλ

2
≤ hϑ (x0)


≥ 1 − ε,

where yMλ is the output of the parametric model. Model quality
assessment can be viewed as a particular case of problem (9),
where the only optimization variable is ϑ .

2 Note that this is not the only possible choice. One may head for alternative
options, such as minimizing the maximum of h(x0) over each one of the admissible
initial conditions (worst-case approach) or minimizing the value of h(x0) over
all initial conditions except for a set of pre-defined probability (value-at-risk
approach).
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Remark 2. Note that if one is dealing with model quality
assessment and the accuracy function hϑ (x0) is assumed to be
constant, then problem (9) reduces to

min
h∈R

h

subject to : P

D


yS, yM

2
≤ h


≥ 1 − ε,

whichwas previously considered in Abate and Prandini (2011) and
can be seen as a particular case of our setting.

The optimization problem (9) is called chance-constrained problem
since we have to minimize a cost function subject to a constraint
which holds in probability. Unfortunately,P


D


yS, yMλ


≤ hϑ (x0)


≥ 1 − ε is in general a non-convex constraint even when, for
every fixed realization of x0 and w, the constraint D


yS, yMλ


≤

hϑ (x0) is convex with respect to the optimization variables. For
this reason, chance-constrained problems are usually hard to solve
and, indeed, they are NP-hard with few exceptions, (Prèkopa,
1995, 2003). In the next section, suitable algorithms aiming at
finding an approximate solution to (9) at low computational
cost are introduced. For the sake of comparison, we first review
the approach proposed in Julius and Pappas (2009), spotting out
advantages and drawbacks.

2.1. The stochastic bi-simulation function method: a brief review

In Julius and Pappas (2009) a method is proposed for finding a
h(x0) which satisfies the probabilistic constraint (7). This method
is based on the introduction of a so-called stochastic bi-simulation
function and it applies to systems/models which admits a state-
space representation:

xS = φS(x0, w) xM = φM(x0, w)
ySt = ψ S(xSt ) yMt = ψM(xMt )

,

with xS0 = x0 and xM0 = l(x0) for some function l.
A stochastic bi-simulation function of S by M is a function π :

XS
× XM

→ R
+

∪ +∞ such that:

1. π(xSt , x
M
t ) ≥ d(ψ S(xSt ), ψ

M(xMt ))
2, for any value taken by xSt and

xMt ;
2. the stochastic process π(xSt , x

M
t ) is a super-martingale.

The interest in stochastic bi-simulation functions lies on the fact
that, once such kind of function is found, then it is easy to prove
that

P


sup
t≥0

d(ySt , y
M
t )

2

≤
π(x0, l(x0))

ε


≥ 1 − ε, (10)

i.e. M is an ε-abstraction of S according to the supt≥0 d(ySt , y
M
t )

metric with accuracy function π(x0,l(x0))
ε

.
Plainly, a main issue then is that of finding a stochastic bi-

simulation function for given S andM . In Julius and Pappas (2009),
this problem is tackled for two classes of systems/models, namely
the JLSS described in Example 1 and the Linear Stochastic Hybrid
Automata (LSHA). It is e.g. shown that when S andM are both JLSS,
one can consider quadratic bi-simulation functions of the type:

π(xSt , x
M
t ) =


(xSt )

T (xMt )
T Q 

xSt
xMt


.

When d is the Euclidean metric, conditions 1 and 2 then translates
into the following Linear Matrix Inequalities:

Q − CTC < 0 (11)
Q (A + νR)+ (A + νR)TQ + FTQF + νRTQR 4 0,
where we recall that ν is the rate of the Poisson process, whereas
C,A,R, and F are given by

C =

C −C̃


, A =


A 0
0 Ã


, R =


R 0
0 R̃


,

F =


F 0
0 F̃


,

with matrices C, A, R, F and C̃, Ã, R̃, F̃ describing S (see Eqs. (1)–
(3)) and M (see Eqs. (4)–(6)), respectively. Then, setting xM0 =

l(xS0) = LxS0, problem

min
Q<0

E


xT0 xT0L
T Q 

x0
Lx0


(12)

subject to (11)

can be solved to optimize the accuracy function h(x0) =
π(x0,l(x0))

ε
in Eq. (10). Note that, though this was not considered in Julius and
Pappas (2009), problem (12) can be extended to address the design
of M by introducing further optimization variables representing
some parametrization ofM .

Despite its elegance, the bi-simulation approach suffers from
the following drawbacks:

– It is difficult to work out a bi-simulation function in general,
and, in this respect, the cases of JLSS and LSHA are more
exceptions than rules. To the present state of knowledge, the
usability of the bi-simulation approach is limited to very few
classes of systems and models.

– Being generated by a stochastic bi-simulation function is a
loose sufficient condition for h(x0) to be an accuracy function,
and it may happen that P


supt≥0 d(ySt , y

M
t )

2
>

π(x0,l(x0))
ε


is

much smaller than ε. Hence, there are no guarantees about the
optimality of the obtained h(x0) with respect to the condition
(7). Thismay lead to a severe underestimation of the abstraction
capabilities ofM and eventually to conservative results.

3. A newmethod based on randomization

In recent years, a considerable effort has been devoted to the
development of the scenario approach, a randomized algorithm
for the resolution of chance-constrained problems, see e.g.
Alamo, Tempo, and Camacho (2009), Bopardikar, Borri, Hespanha,
Prandini, and Di Benedetto (2013), Calafiore and Campi (2005),
Calafiore and Campi (2006), Campi and Garatti (2008), Campi and
Garatti (2011), Campi et al. (2009) and Garatti and Campi (2013).
The scenario approach allows the user to find approximate yet
guaranteed solutions at relatively low computational effort. Here,
we rely on this method to tackle problem (9).

Algorithmically speaking, the scenario approach builds on a
very intuitive and basic idea: a number, say N , of realizations of x0
andw, say x(i)0 andw(i) for i = 1, 2, . . . ,N , are extracted according
to the underlying probability measure P and optimization is
performed by taking into account this finite number of instances of
x0 andw only.More precisely, lettingα be a user chosen parameter
such that 0 ≤ α < ε, and letting yS,(i) = f S(x(i)0 , w

(i)) and
yM,(i)λ = f Mλ (x

(i)
0 , w

(i)), i = 1, 2, . . . ,N , the randomized algorithm
described in the following Algorithm 1 aims at finding a solution
that violates the constraint D


yS,(i), yM,(i)λ

2
≤ hϑ (x

(i)
0 ) with an

empirical probability equal to α, that is, ⌊αN⌋ times3 out of N .
We choose α < ε because, as it is intuitive, it is very likely that

3
⌊·⌋ denotes integer part.
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the actual probability with which the constraint D

yS, yMλ

2
≤

hϑ (x0) is violated is larger than the empirical one, and, hence, if
α were exceeding ε, then the actual violation probability could
not be guaranteed to be smaller than the desired level ε as
required in (9). Ideally, one should determineN−⌈αN⌉uncertainty
instances out of N that result in the smallest value of the cost.
Given that achieving the best possible overall cost reduction is a
hard combinatorial problem, a sub-optimal solution is adopted in
Algorithm 1.

Algorithm 1 (Randomized Algorithm).

0: Extract N realizations x(i)0 and w(i), i = 1, . . . ,N , of x0 and w;
run the corresponding N executions of S and M and compute
via simulation yS,(i) = f S(x(i)0 , w

(i)), yM,(i)λ = f Mλ (x
(i)
0 , w

(i)), i =

1, 2, . . . ,N;
1: SET

ϑ∗, λ∗
:= argmin

ϑ,λ
E[hϑ (x0)] subject to :

D

yS,(i), yM,(i)λ

2
≤ hϑ (x

(i)
0 ), i ∈ {1, . . . ,N}.

2: SET V := ∅ AND p := 0;
% V is the set of indexes of constraints violated by ϑ∗, λ∗, while
p is the cardinality of V

3: WHILE p < ⌊αN⌋

3.1: SET
{i1, . . . , im} :=


i : D


yS,(i), yM,(i)λ∗

2
= hϑ∗(x(i)0 )


;

% {i1, . . . , im} are the indexes of active constraints
3.2: FOR k = 1, 2, . . . ,m

SETϑ,λ := argmin
ϑ,λ

E[hϑ (x0)]

subject to : D

yS,(i), yM,(i)λ

2
≤ hϑ (x

(i)
0 ),

i ∈ {1, . . . ,N}/({ik} ∪ V ).
IF E[hϑ (x0)] < E[hϑ∗(x0)] THEN
SET ϑ∗

:= ϑ, λ∗
:= λ;

END FOR

3.3: SET V :=


i : D


yS,(i), yM,(i)λ∗

2
> hϑ∗(x(i)0 )


AND p := |V |;

END WHILE
4: RETURN ϑ∗, λ∗.

In the algorithm, the constraints to be violated are progressively
selected by discarding one active constraint at a time, precisely, the
constraint that, when removed, gives the largest immediate cost
improvement (greedy approach). The search is restricted to active
constraints only, because eliminating a nonactive constraint does
not improve the cost value. Though the greedy approach may not
yield the best possible overall cost reduction, a fair sub-optimality
is obtained, while the computational effort is kept at a reasonable
level.

Remark 3 (Removal Rules). If the greedy approach is still too
computationally expensive, variants of Algorithm1 can be adopted
to further reduce the computational effort. For instance, one can
choose one constraint at random among the active ones at each
iteration of the WHILE cycle (random removal), or one can remove
at each step all the active constraints (block removal) until the
number of constraints to be removed is lower than the number of
active ones, in which case the last constraints to be removed can
be chosen at random among the active ones. Though the solution
achieved through these approaches is evenmore sub-optimal than
the greedy one, notably, the guarantee on chance-constrained
feasibility given in the theorems to follow continues to hold.
Each optimization problem that has to be solved in the Algorithm 1
is of standard type, i.e. with a finite number of constraints. In
particular, if the cost function and the constraints are convex, then,
the problem can be tackled via optimization modeling languages
like CVX, (Grant & Boyd, 2011), and YALMIP, (Löfberg, 2004),
equipped with standard solvers. An inspection of the code reveals
that Algorithm 1 comes to termination as long as, each time the
FOR cycle at line 3.2 is called, one active constraint whose removal
improves the cost canbe found. This condition is satisfied in normal
situation and is assumed here for granted.

Although obtained based on a finite number of samples of
x0 and w only, the solution returned by the randomized Algo-
rithm 1 (hereafter, called the randomized solution) comes with
precise guarantees about its feasibility for the original chance-
constrained problem (9). This is the main feature of the scenario
approach, which, hence, can be reliably (as opposed to empirically)
used to tackle chance-constrained problems otherwise deemed in-
tractable.

The following theorem precisely states this feasibility property
and can be derived quite directly from Campi and Garatti (2011,
Theorem 2.1) under the following assumption.

Assumption 1 (Convexity).E[hϑ (x0)] is a convex function ofϑ and,
for every fixed realization of x0 andw, the constraintD


yS, yMλ

2
≤

hϑ (x0) is convex in the optimization variables ϑ, λ.

Before stating the theorem, we define r̃ = r − 1, where r is the
overall dimensionality of the optimization variables ϑ, λ.

Theorem 1. Under Assumption 1, if N is big enough so that
⌊αN⌋ + r̃

⌊αN⌋

 ⌊αN⌋+r̃
i=0


N
i


εi(1 − ε)N−i

≤ β, (13)

then the randomized solution (ϑ∗, λ∗) is such that

P

D


yS, yMλ∗

2
≤ hϑ∗(x0)


≥ 1 − ε

with confidence at least 1 − β .

The theorem says that the randomized solution can be made fea-
sible for (9) with high confidence. It is worth noticing that it is not
possible to guarantee that the randomized solution is always feasi-
ble for (9), since this solution depends on the N extracted samples
x(i)0 , w

(i) and itmaywell happen that these samples are not enough
representative of thewhole distribution of x0 andw. Yet, this latter
case is very unlikely for large N and, indeed, Theorem 1 says that if
N is chosen as indicated, then, the probability of such bad event is
no greater than β .

In Theorem 1, the sample size N is implicitly given. Explicit
bound on the sample size can be obtained by relying on suitable
inequalities for the binomial term in (13), see Alamo, Tempo, and
Luque (2010a,b) and Calafiore (2009). In particular the following
corollary can be derived by using the so-called Chernoff bound,
(Tempo et al., 2013), in a way similar to that adopted in Calafiore
(2009). See Prandini, Garatti, and Vignali (2014) for the proof.

Corollary 1. Under the assumptions of Theorem 1, if

N ≥
(2 + α)ε

(ε − α)2


r̃ ln


2εr̃(2 + α)

(ε − α)2


+ ln

1
β


+

r̃
2
, (14)

then the randomized solution (ϑ∗, λ∗) is such that

P

D


yS, yMλ∗

2
≤ hϑ∗(x0)


≥ 1 − ε

with confidence at least 1 − β .
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The explicit bound in (14) reveals a very important fact, namely,
that N increases logarithmically with β . This means that we can
enforce a very small value for β — like β = 10−10, which
guarantees the achievement of P


D


yS, yM

2
≤ h(x0)


≥ 1 − ε

beyond any reasonable doubt — without affecting the sample size
N too much. The following remark sheds light on the role of α
as a means to tune the level of approximation of the randomized
solution.

Remark 4 (Choice of α). It is worth noticing that the empirical
probability of violationα is a user chosenparameter throughwhich
the level of approximation of the randomized solution can be
tuned. If one chooses α = 0, then, no constraints need to be
removed and the problem reduces to finding a solution to a single
optimization problem. This is computationally attractive, but the
actual violation of the obtained randomized solution is typically
much smaller than the desired ε and the performance of the
model significantly underestimated. As amatter of fact, though the
feasibility of the randomized solution is guaranteed for every α ∈

[0, ε), it is intuitively clear that the closer α to the desired violation
probability ε the better the randomized solution approximates
the actual solution to the chance-constrained problem (9). At the
same time, however, it holds that N → ∞ as α → ε, see
(14). The ultimate choice for α rests with the user, who can select
his/her own best comprise between the accuracy required by the
application at hand and computational tractability.

As is clear the applicability of Theorem 1 rests on the validity
of Assumption 1. It is a fact that Assumption 1 can be easily
satisfied when addressing performance assessment as discussed
in the next Section 3.1. When dealing with model design,
instead, the satisfaction of Assumption 1 depends on the model
parametrization and it may be harder to achieve. Section 3.2 hints
at some possible extensions of Theorem 1 to the non-convex case.

3.1. Performance assessment

In performance assessment, the sole optimization variable is ϑ ,
the parameter of h, being f M given and fixed. In order to apply
Theorem 1, we need to ensure the convexity with respect to ϑ
of both E[hϑ (x0)] and the constraint D


yS, yM

2
≤ hϑ (x0). Since

the convexity E[hϑ (x0)] is achieved when hϑ (x0) is convex in ϑ ,
while the convexity of D


yS, yM

2
≤ hϑ (x0) requires that hϑ (x0) is

concave in ϑ , function hϑ (x0)must be linearly parameterized in ϑ .
Plainly, a possible parametrization is hϑ (x0) =

l
i=1 ϑihi(x0),

where hi(x0), i = 1, 2, . . . , l, are given positive basis functions,4
subject to the linear condition ϑi ≥ 0, ∀i. We suggest, however,
to use an alternative parametrization, namely, the class of positive
quadratic hybrid functions of the continuous part of x0. To be
precise, letting x0 = (xc0, x

d
0) be the decomposition of x0 into

its continuous part xc0, taking value in Rn, and its discrete part
xd0, taking value in the finite alphabet {1, 2, . . . , q}, hϑ (·) is
parameterized as follows

hϑ (x0) =

q
k=1


xc0

′
ΘA

k x
c
0 + 2Θb

k x
c
0 +Θc

k


1

[xd0=k],

where 1[·] is the indicator function and ϑ is the vector of the
entries ofΘA

k ,Θ
b
k ,Θ

c
k , k = 1, . . . , q. This choice seems to fit many

situations of interest where, for each mode xd0, the approximation
capability ofmodelM is better for a certain initial condition xc0 = x̄c0
and decreases as xc0 moves away from x̄c0.

4 E.g., when x0 ∈ Rn , i.e., the state has no discrete components, hi(x0) =

exp(−(x0 − mi)
′Vi(x0 − mi))withmi and Vi given.
Letting

Θk =


ΘA

k Θb
k
′

Θb
k Θc

k


,

then, we have that

xc0
′
ΘA

k x
c
0 + 2Θb

k x
c
0 +Θc

k =

xc0

′ 1

Θk


xc0
1


,

and the condition of positiveness of hϑ (x0) simply translates into a
positive semi-definite condition on the matrices Θk, that is, Θk ≽

0, k = 1, 2, . . . , q, which is a convex constraint onΘk. Moreover,
E [hϑ (x0)] can be expanded as follows (tr denotes trace):

E [hϑ (x0)] =

q
k=1

E

tr


xc0

′ 1

Θk


xc0
1


1[d0=k]



=

q
k=1

tr

ΘkE


xc0x

c
0
′ xc0

xc0
′ 1

 xd0 = k


P(xd0 = k)

,

where the conditional expectation in the last equality can be
computed from the knowledge of P. When x0 ∈ Rn, i.e. the state
has no discrete component, then the parametrization simplifies
to hϑ (x0) =


x0′ 1


Θ


x0
1


, Θ ≽ 0, while E[hϑ (x0)] =

tr

ΘE


x0x0

′ x0
x0

′ 1


.

Note that, since matricesΘk, k = 1, . . . , q, are symmetric and
of size n + 1, it follows from Corollary 1 that the number N of
realizations to be used in Algorithm 1 scales as n2 ln(n).

3.2. Some hints for addressing the non-convex case

Though convexity is advantageous from a computational per-
spective, admittedly, relying on Theorem 1 only may be limita-
tive in our context because it is often the case that the constraint
D


yS, yMλ

2
≤ hϑ (x0) is not convex, especially because of the de-

pendence on λ. We here hint at some results that can be used in
the non-convex case. Though these results are not conclusive, be-
cause of the inherent difficulty of this case, they may be useful for
some problems, and, moreover, they represent a promising start
for future research.

The following theorem can be derived from Alamo et al. (2009,
Theorem 7), see Prandini et al. (2014) for a formal derivation, and
provides guarantees about the chance-constrained feasibility of
the randomized solution under a condition other than convexity.
Before stating the theorem, we define dVC as the VC dimension
associated to the constraint D


yS, yMλ

2
≤ hϑ (x0), see Alamo et al.

(2009, Definition 6).

Theorem 2. Suppose that dVC < +∞. If

N ≥
5ε

(ε − α)2


dVC ln


40ε

(ε − α)2


+ ln

4
β


, (15)

then the randomized solution (ϑ∗, λ∗) is such that

P

D


yS, yMλ∗

2
≤ hϑ∗(x0)


≥ 1 − ε

with confidence at least 1 − β .

The interpretation of Theorem 2 is the same as for Theorem 1, and,
likewise, all the comments we made before still apply.

Note that although the lack of convexity makes the resolution
of optimization problems in Algorithm 1 harder, the guarantees
provided by Theorem 2 apply to any local solution, so that one
has not necessarily to head for the global optimizer when solving
the optimization problems in Algorithm 1. In turn, though the
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assumption that the VC dimension is finite is relatively mild,
the computation of dVC is nontrivial and often only conservative
bounds can be derived. This means that the sample size N in
Theorem 2 is overestimated, with an increase of the computational
complexity that can hamper the applicability of the approach. In
this respect, the computation of tight bounds for dVC is still an open
issue. Results for specific classes of problems are available in Alamo
et al. (2009) and references therein.

4. Jump linear stochastic systems: a numerical example

In this section, we illustrate the results obtained by the pro-
posed randomized method on a numerical example that was first
studied in Julius and Pappas (2009), and we compare them with
those obtained by the stochastic bi-simulation method revised at
the end of Section 2.

Suppose that system S is a JLSS whose state xt ∈ R6 is governed
in-between the jump times of a Poisson process with rate ν = 0.5
by the SDE in Eq. (1) with

A = diag


−1 −10
10 −1


,


−2 −20
20 −1


,


−2 0
0 −2.5


,

F = 0.5 ·


F1 F2
F3 F4


, F1 = I4,

F2 =


1 0 1 0
1 0 1 0

T

, F3 =


1 0 0 0
0 0 1 0


,

F4 =


0 1
1 0


.

Im denoting the identity matrix of size m. At the jump times the
state is reset according to (2) where R = 0.7 · I6. The output of
interest ySt takes values in R2 and is given by ySt = CxSt , where

C =


0.84 −1.03 1.07 −0.88 0.5 0
−0.6 −1.35 −0.26 −0.27 0 −0.5


.

To the purpose of reproducing the output ySt along the time horizon
[0, 10], we consider three different JLSS models as indicated in
Example 1, Eqs. (4)–(6):

– model M1 is obtained by considering only the first four
state variables in xSt and deriving the matrices Ã, F̃ , R̃, C̃ by
removing from A, F , R, C those rows/columns that relates to the
contribution of the last two state variables in xSt .

– model M2 is obtained by removing the contribution of the
Brownian motion, i.e. by letting Ã = A, F̃ = 0, R̃ = R, C̃ = C .

– model M3 is obtained by removing the contribution of the
Poisson process, i.e. by letting Ã = A, F̃ = F , R̃ = 0, C̃ = C .

As for modelsM2 andM3, the initial state x0 of system S is mapped
into that of the approximating models through the identity map,
whereas the initial state of model M1 is given by the first four
entries of vector x0. The performance of eachmodelMi, i = 1, 2, 3,
as an abstraction of S is assessed through the following chance-
constrained optimization problem

min
Θ≽0

tr

ΘE


x0x0′ x0
x0′ 1


subject to :

P


sup
t∈[0,T ]

∥ySt − yMi
t ∥

2
≤


x0′ 1


Θ


x0
1


≥ 1 − ϵ. (16)

Problem (16) is approximately solved bymeans of Algorithm 1 and
its further variants with the random and block constraint removal
rules implemented (see Remark 3). We set ε = 0.25, β = 10−10,
and progressively increase α from 0.10 to 0.20. Correspondingly,
according to Theorem 1, N grows from 1697 to 27874 (note that
Table 1
Performance of the randomized method and of the stochastic bi-simulation
function (SSF) method, when x0 is a Gaussian random variable with zero mean and
identity covariance.

α = 0.10 α = 0.15 α = 0.20 SSF

M1
J = 4.86 J = 3.515 J = 2.88 J = 10.13
ε̂ = 0.127 ε̂ = 0.160 ε̂ = 0.200 ε̂ = 0.040

M2
J = 15.26 J = 10.97 J = 8.42 J = 19.77
ε̂ = 0.121 ε̂ = 0.165 ε̂ = 0.206 ε̂ = 0.107

M3
J = 16.99 J = 10.43 J = 7.22 J = 15.63
ε̂ = 0.118 ε̂ = 0.158 ε̂ = 0.203 ε̂ = 0.132

r = 28 sinceΘ is a 7× 7 symmetric matrix). We adopt the greedy
removal for α = 0.10, random removal for α = 0.15 and block
removal for α = 0.20. For the sake of comparison the stochastic
bi-simulation functionmethod is also used. Results obtainedwhen
the state x0 is Gaussian with zero mean and identity covariance
(x0 ∼ N (0, I6)) are shown in Table 1. In this table, J denotes
E[hϑ∗(x0)], i.e. the average upper bound on (supt∈[0,T ] ∥ySt −yMi

t ∥)2

in correspondence of the found solution (see (16) and (10) for the
expression of hϑ (x0) in the randomized approach and in the bi-
simulation function method). Instead, ε̂ is a Monte Carlo estimate
of the actual violation probability. As expected ε̂ is below the
threshold ε = 0.25 in all cases.

The table shows that the average accuracy J provided by
the stochastic bi-simulation function method is typically worse
than that obtained by the randomized method. Consistently with
this result, in the stochastic bi-simulation function method ε̂ is
significantly lower than the desired value ε, especially in the case
of model M1. As for the randomized method, irrespectively of the
greedy, randomor block implementation, ε̂ is close to the empirical
violation α. If α is increased, then J improves and ε̂ grows. This is a
strength of the proposed approach, where, by means of the choice
of α, the user can modulate the actual violation probability so as
to better match the desired ε value. The stochastic bi-simulation
function method, instead, does not offer this opportunity and
generally provides conservative values for the average accuracy J .

Focusing now on M1, suppose that we want to optimize its
initialization so as to better reproduce the system output. More
precisely, we want to optimize the ñ × n matrix L mapping the
initial state x0 of S into the initial state xM1

0 of M1 : xM1
0 = Lx0.

Given that the JLSS is characterized by linear drift and diffusion
terms and by a linear reset map, it is easily seen that the resulting

function f M1
λ (x0, w) is linear inλ = L, so thatD


yS, yM1

λ

2
is convex

in λ. Hence, Algorithm 1 and Theorem 1 can be applied to optimize
the performance of M1 with respect to λ (and ϑ). To this purpose,
we need to specify how to determine yM1

λ = f M1
λ (x0, w) as an

explicit function of λ = L for each pair of initial condition x0 and
input realizationw. To this purpose one can simulate ñ executions
of Eqs. (4) and (5), each with the same inputw and for the ñ initial
conditions xM1

0 = e1, . . . , x
M1
0 = eñ, where ei is the vector with

all elements equal to 0 except for the ith element equal to 1. Then,
yM1
λ can be obtained as a linear combination of these executions

according to Lx0. More precisely, letting ξi,t be the execution of (4)
and (5) associated with the initial condition ei at time t , and letting
Ξt = [ξ1,t ξ2,t · · · ξñ,t ] be the matrix with ξi,t as columns, then we
have that yM1

λ,t = C̃ΞtLx0,∀t ∈ [0, T ].
We next report the results obtained when the initial state of

S is deterministic and given by x0 = [1 1 1 1 1 1]′, and T = 0.2.
In this case, the accuracy function can be replaced by a scalar h.
The randomized method with random constraint removal is run
with the following set of parameters: ε = 0.25, β = 10−10 and
α = 0.10. As in the performance assessment case, the obtained
solution (h⋆, L⋆) is such that the actual violation probability ε̂ is
close to the empirical violation α.
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Fig. 1. Histograms showing the performance of the randomized solution to (9)
when α = 0.10.

Fig. 1 represents two histograms: the gray histogram refers to
the values of h obtained by computing 100 times the randomized
solution to (9) when both xM1

0 = Lx0 and h are optimized, whereas
the black histogram refers to the case when only h is optimized
and xM1

0 is set equal to the first four components of x0: xM1
0 =

[1 1 1 1]′. The optimization of the initial condition is shown to be
quite effective in improving the accuracy of the abstracted model,
despite of the randomness affecting the solution.

In order to improve the solution one should adopt a larger value
for α, say α = 0.22, thus getting the actual violation probability
close to the desired ε = 0.25 value. This may, however, cause
an excessive computational effort. To cope with this issue, one
can adopt a two-step procedure similar to that discussed in Caré,
Garatti, and Campi (2014, 2011), where first α = 0.10 is used
to optimize both xM1

0 and h, and then, for α = 0.22, only h is
optimized setting xM1

0 equal to the value xM1,⋆
0 obtained when α =

0.10. The guarantees provided by Theorem 1 on the re-optimized
h still hold for model M1 initialized with xM1,⋆

0 . The value for h
obtained through this 2-step procedure is better than that obtained
by setting xM1

0 equal to the first 4 components of x0, i.e., x
M1
0 =

[1 1 1 1]′, and optimizing h with α = 0.22. This is shown in Fig. 2,
where the histograms of h obtained by running 100 times the
2-step procedure (gray histogram) and by optimizing only h with
xM1
0 = [1 1 1 1]′ (black histogram) are depicted. This shows that the
optimization of xM1

0 leads to an improved accuracy h, even when
performed according to the suggested 2-step heuristics. Note that
the histograms in Fig. 1 reveal a larger variability compared to
those in Fig. 2. This is due to the fact that the latter results are
associated to a value of α that is closer to the desired ε value for
the violation probability.

5. Conclusions

In this paper, we proposed a simulation-based method for the
analysis and design of an approximate abstraction of an SHS. This
approach rests on recent results on the randomized solution to
chance-constrained programs, and turns out to be much less con-
servative than other approaches in the literature. The counterpart
for the improved performance is that guarantees on the quality of
the solution hold with a certain confidence, which, however, can
be set arbitrarily close to 1, though at the expense of a larger com-
putational effort.

A key advantage of the proposed method is that it does not re-
quire specific assumptions on the system S to be approximated. In
the case of performance assessment, a computational convenient
convex formulation is also suggested. Since someof the approaches
in the literature to the design of simpler abstractedmodels of a hy-
brid system do not provide an evaluation of the model accuracy,
see e.g. Mazzi, Sangiovanni Vincentelli, Balluchi, and Bicchi (2008),
the proposed reformulation can then be used to complement them
with such an evaluation, (Papadopoulos & Prandini, 2014).

Ourmethod can also be employed in principle to design optimal
abstracted models, in that it allows to choose the best model in
some given parameterizedmodel class. The quite challenging issue
of choosing the best model class, however, remains open.
Fig. 2. Histograms showing the performance of the randomized solution to (9)
when α = 0.22.
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