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Abstract

Constrained control for stochastic linear systems is generally a difficult task due to the possible
infeasibility of state constraints. In this paper, we focus on a finite control horizon and propose a design
methodology where the constrained control problem is formulated as a chance-constrained optimization
problem depending on some parameter. This parameter can be tuned so as to decide the appropriate trade-
off between control cost minimization and state constraints satisfaction. An approximate solution is
computed via a randomized algorithm. Precise guarantees about its feasibility for the original chance-
constrained problem are provided. A numerical example shows the efficacy of the proposed methodology.
& 2016 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
1. Introduction

In this paper, we address finite-horizon control for a stochastic linear system whose state
xtARn evolves according to the equation

xtþ1 ¼ Axt þ But þ Bwwt;

where utARm and wtARnw represent the control input and a stochastic disturbance, respectively.
Matrices A, B, Bw have appropriate dimensions, and Bw is assumed to be full rank. The
disturbance wt has a possibly unbounded support and its actual value can be reconstructed from
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the state measurements through

wt ¼ B†
wðxtþ1�Axt�ButÞ; ð1Þ

where B†
w denotes the pseudo-inverse of Bw.

Our goal is designing a state-feedback control policy so as to minimize some finite-horizon
cost, while satisfying certain constraints on the control input and on the state. The proposed
control policy can be applied over a receding horizon so as to obtain a Model Predictive Control
(MPC) scheme, [1,2]. However, here we shall focus on the finite-horizon problem only, for
which stability is actually not a concern.
A convenient parametrization of the control input ut, which makes both the control and state

variables affine in the design parameters γtARm and θt;jARm�nw , is given by

ut ¼ γt þ
Xt�1

j ¼ 0

θt;jφðwjÞ; ð2Þ

where φ : R-R is a given scalar function and the notation φðwjÞ stands for φð�Þ applied to each
component of the nw-dimensional vector wj.

1 Policy (2) is indeed a state-feedback control policy
since the disturbance is recovered from the state according to Eq. (1). Notably, if the scalar
function φð�Þ is the identity map (i.e., φðaÞ ¼ a, 8aAR) and Bw ¼ In, then, we obtain a policy
that is equivalent to a feedback policy affine in the state [3]. If φð�Þ is given by the saturation
function

φðaÞ ¼
�φ; ao�φ

a; jajrφ

φ; a4φ;

8><
>: ð3Þ

(or alternatively by a sigmoidal function), then, the resulting policy is a nonlinear function of the
state and provides a bounded input even if the disturbance is unbounded [4,5].
The state xt and the control input ut are both random variables since they depend on the

stochastic disturbance wt. The system performance is then expressed in terms of an average cost
function. More specifically, we adopt the average quadratic cost

J ¼ E
XM
t ¼ 1

xTt Qtxt þ
XM�1

t ¼ 0

uTt Rtut

" #
; ð4Þ

where QtARn�n and RtARm�m are symmetric positive semidefinite matrices. We consider input
and state constraints of the following form:

sup
tA f0;…;M�1g

Jut J1ru;

sup
tA f1;…;Mg

JCxt J1ry: ð5Þ

Note that the value taken by the input and state variables along the reference finite-horizon ½0;M�
is uncertain, since it depends on the noise process wt affecting the system evolution. To account
for this when formulating the constraints, one can either enforce the constraints (5) to hold for
1Note that one can also consider the more general setup where nw distinct φ functions are used, one for each component
of wj. This allows for a better exploitation of the disturbance characteristics and, moreover, all the subsequent derivations
can be straightforwardly extended to this setting as well. In the sequel, however, we will stick to the setup where the same
φ is applied to all the components of wj to avoid notational clutter.
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every and each disturbance realization (hard constraints), even for those realizations that are
quite unlikely to occur, or require them to hold only on a set of disturbance realizations of
probability at least 1�ε, with εA ð0; 1Þ set by the user (soft constraints).

As for the control input, hard constraints are typically motivated by the presence of saturation
limits of the actuators. However, they do not take into account the statistical properties of the
noise and may lead to conservative solutions, which motivates the introduction of soft constraints
on the input. Note that, whilst both hard and soft constraints on the input are always feasible (a
feasible solution is obtained by setting all the design parameters equal to zero), hard constraints
on the state are not feasible when the noise distribution has unbounded support, because wt enters
additively the state equation and this contribution cannot be canceled through any control action.
Hence, if the noise is not bounded, one can only head for soft state constraints, leading to the
following two formulations for the input and state constraints:

� hard and soft

sup
tA f0;…;M�1g

Jut J1ru; 8ðw0;w1;…;wM�1Þ

P sup
tA f1;…;Mg

JCxt J1ry

( )
Z1�ε;

8>>><
>>>:

� soft and soft

P sup
tA f0;…;M�1g

Jut J1ru4 sup
tA f1;…;Mg

JCxt J1ry

( )
Z1�ε:

When formulating the constraints, the value of y in the state constraints is quite critical,
because of the following two reasons:

� the feasibility of the soft constraint on the state is not always guaranteed since y may be not
compatible with the disturbance characteristics, the system dynamics and initialization, and
the saturation limits imposed to the control input;

� even when the soft constraint is feasible, the performance of the obtained solution can be too
much adversely affected by the presence of the state constraints if y takes a
conservative value.

As a remedy to prevent the critical issues above, rather than seeing y as a fixed value, one
should try to modulate it so as to guarantee feasibility, while achieving the appropriate
compromise between state constraint enforcement and performance.

In this paper we pursue this approach and, to address the feasibility issue, y is replaced by a
decision variable, say h, so that it can be automatically set to a value compatible with the system
dynamics and initialization, input constraints, and noise characteristics. Appropriate chance-
constrained optimization problems depending on some parameter to be tuned are then
introduced. In these optimization problems both state constraints and performance are accounted
for, and the value for the parameter determines the trade-off between the objective of minimizing
the control cost J in Eq. (4) (performance) and that of minimizing h (state constraint
enforcement). By tuning this parameter, one can explore the different possible compromises
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between the two objectives—while preserving feasibility—, and choose the solution that is more
satisfactory in terms of values achieved for J and h.
From an algorithmic viewpoint, a randomized approach that is computationally tractable is

proposed to provide an approximate solution to the resulting chance-constrained optimization
problems. The proposed solution relies on the so-called scenario approach, [6–10], and requires
using realizations of the disturbance wt, which can be either available as time series data or
artificially generated. In the latter case, the probability distribution of wt has to be known. A
detailed analysis of the suitability of the method is also given.
A preliminary version of this work was presented as a conference contribution in [11]. The

present paper significantly extends [11] in that detailed proofs of the results and a more
comprehensive example are given.

Remark 1 (Possible extensions). To avoid cumbersome notations, all the results in this paper
are given for the constraints in Eq. (5). Nonetheless, the presented results are still valid in the
more general setting of multiple affine constraints on u and x,

sup
tA f0;…;M�1g

JLkut þ gk J1ruk; k¼ 1;…; pu;

sup
tA f1;…;Mg

JCkxt þ dk J1ryk; k¼ 1;…; px;

through which one can e.g. pose distinct limits on the various input/state components. Also, as
for the probabilistic constraints, extensions to the case when norms other than J � J1 are adopted
can be easily worked out, the only requirement being that the norm argument is affine in the
optimization variables. Furthermore, the proposed approach can also be adapted to the case when
the disturbance is directly measurable and a feed-forward disturbance compensator is adopted.
1.1. Brief literature overview

We can distinguish two classes of approaches for stochastic constrained control depending on
the relaxation method adopted to cope with probabilistic constraints, which can either be based
on randomization or on some analytic approximation, possibly accounting for constraints
indirectly via a penalization term in the cost function.
Our approach belongs to the first class, as those proposed in [12–14]. The closest approach to

the present work is that in [14], where a penalty is added to the cost so as to avoid infeasibility,
the key difference being that in [14] the disturbance is assumed to be bounded and hard
constraints only are considered. Indeed, using penalty to ensure feasibility is a quite standard
engineering practice in MPC [15]. In all methods, limiting assumptions on the noise being
bounded, or on the presence of input constraints only are made so that they are not applicable to
our framework.
The approaches in [16–25] belong to the second class and address problems where both input

and state constraints are present and the disturbance has unbounded support, as is the case in our
paper. In particular, in [16,19,21], state constraints are accounted for by introducing a
penalization term in the cost. In [17,20,22,24,25], an analytic convex relaxation of chance
constraints is adopted, while in [18,23] the support of the disturbance is reduced to a compact set
by suitably cutting the tails of the disturbance distribution and then providing a result that holds
with a certain (high) probability. In all these analytic approaches that do not resort to
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randomization, the disturbance is assumed to be a sequence of independent and identically
distributed (i.i.d.) random variables. The approaches [16–18,20,22,24] also require the
disturbance to be Gaussian.

In most of the cited approaches, a receding horizon implementation of the finite horizon
solution to the stochastic constrained optimization is adopted, leading to stochastic MPC
solutions. This brings into the picture further relevant issues like recursive feasibility and stability
(see e.g. the recent surveys [26,27] on stochastic MPC) that, however, go beyond the scope of
this paper. Also, stability may be even impossible to achieve in our setting where the control
input is bounded and the disturbance is unbounded as discussed in [28] with reference to mean
square stability.

Interestingly, constraint tightening can be instrumental to enforce recursive feasibility and
stability in stochastic MPC, as shown in [29] though with reference to the case of an i.i.d.
disturbance sequence with bounded and convex support. The analysis is performed assuming that
suitably designed probabilistic constraints are satisfied. Either randomized or analytic methods
can then be used for the algorithmic solution of the involved chance-constrained optimization
problem.
1.2. Structure of the paper

Section 2 introduces compact notations to simplify the reading. Two approaches to trade J
with respect to h are presented in Section 3, while Section 4 introduces suitable relaxations to the
resulting chance-constrained optimization problems leading to computationally tractable
problems. Section 5 focuses on the tuning of the parameter affecting the compromise between
performance and state constraint enforcement in both approaches. A thorough discussion on the
properties of the achieved approximate solutions and on the relation between the two approaches
is also provided. The related proofs are presented in Section 6. A numerical example is presented
in Section 7, while some concluding remarks are drawn in Section 8.
2. Notations

In this section we introduce compact notations to simplify the equations and ease the paper
understanding.

Let

x¼

x1
x2

⋮
xM

2
6664

3
7775 u¼

u0
u1

⋮
uM�1

2
6664

3
7775 w¼

w0

w1

⋮
wM�1

2
6664

3
7775

be the vectors collecting state, input, and disturbance samples along the reference time-horizon.
Then, it is easy to show that

x¼ Fx0 þGuþHw

u¼ Γ þ ΘφðwÞ; ð6Þ
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where matrices F, G and H are given by

F¼

A

A2

⋮
AM

2
6664

3
7775 G¼

B 0n�m ⋯ 0n�m

AB B ⋱ ⋮
⋮ ⋱ ⋱ 0n�m

AM�1B ⋯ AB B

2
6664

3
7775

H¼

Bw 0n�nw ⋯ 0n�nw

ABw Bw ⋱ ⋮
⋮ ⋱ ⋱ 0n�nw

AM�1Bw ⋯ ABw Bw

2
6664

3
7775;

whereas Γ and Θ are given by

Γ ¼

γ0
γ1
⋮

γM�1

2
66664

3
77775Θ¼

0m�nw 0m�nw ⋯ 0m�nw

θ1;0 0m�nw ⋱ ⋮
⋮ ⋱ ⋱ 0m�nw

θM�1;0 ⋯ θM�1;M�2 0m�nw

2
66664

3
77775

From Eq. (6) it is clear that both the state and control input depend linearly on the parameters Γ
and Θ. For ease of notation, we do not make this dependence explicit and use u and x in place of
uðΓ;ΘÞ and xðΓ;ΘÞ.
If we set

Q¼
Q1 ⋯ 0n�n

⋮ ⋱ ⋮
0n�n ⋯ QM

2
64

3
75 R¼

R0 ⋯ 0m�m

⋮ ⋱ ⋮
0m�m ⋯ RM�1

2
64

3
75;

mw ¼E½w�, mφ ¼E½φðwÞ� and

V¼
Vφφ Vφw

VT
φw Vww

" #
;

where Vww and Vφφ are the covariance matrices of w and φðwÞ and Vφw is the cross covariance
matrix of φðwÞ and w; then, the control cost (4) can be expressed as the following convex
function of ðΓ;ΘÞ:

J Γ;Θð Þ ¼ E xTQxþ uTRu
� �

¼ ðFx0 þGΓ þGΘmφ þHmwÞTQ Fx0 þGΓ þGΘmφ þHmw
� �

þtr Q
1
2GΘVφφΘ

TGTQ
1
2

� �
þ tr Q

1
2HVwwHTQ

1
2

� �
þ 2tr Q

1
2GΘVφwHTQ

1
2

� �
þ Γ þ Θmφ

� �T
R Γ þ Θmφ

� �þ tr R
1
2ΘVφφΘ

TR
1
2

� �
¼ ðFx0 þGΓ þGΘmφ þHmwÞTQ Fx0 þGΓ þGΘmφ þHmw

� �
þtr Q

1
2 GΘ H½ �V GΘ H½ �TQ1

2

� �
þ Γ þ Θmφ

� �T
R Γ þ Θmφ

� �
þtr R

1
2ΘVφφΘ

TR
1
2

� �
ð7Þ
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As for the constraints (5), if we set

C¼

C 0 … 0

0 C ⋮
⋮ ⋱ 0

0 … 0 C

2
6664

3
7775 ð8Þ

then, they can be expressed in compact form as follows:

JuJ1ru
JCxJ1rh;

where y has been replaced with the optimization variable h.
Thanks to the linear dependence of u and x on Γ and Θ, these constraints turn out to be convex

with respect to the optimization variables, h;Γ;Θ.

3. Trading performance for state constraint feasibility

In this section, two parametric optimization problems that account for the modulation of
performance in favor of the enforcement of state constraints are introduced. As anticipated in the
introduction, in both problems the bound h on the norm of the state is regarded as an
optimization variable so that feasibility is always recovered.

3.1. Additional penalization term in the control cost

In this first method, a penalization term is added to the average quadratic cost J in Eq. (4) in
order to penalize too high values for h:

J 0 ¼ J þ μh:

The coefficient μZ0 is the relative weight between J and h and determines the trade-off between
the objective of having a small J and that of having a small h. Depending on the kind of
constraint adopted for the control input, two chance-constrained problems can be formulated:

min
Γ;Θ;h

JðΓ;ΘÞ þ μh

subject to :
JuJ1ru; 8w
P JCxJ1rhf gZ1�ε

(
ð9Þ

min
Γ;Θ;h

JðΓ;ΘÞ þ μh

subject to : P JuJ1ru4 JCxJ1rhf gZ1�ε ð10Þ

3.2. Two-step approach based on a pre-defined admissible deterioration of the control cost

In this second approach, the two objectives of minimizing the control cost as well as the bound
h on the state are handled by solving two optimization problems in cascade. In the first one, the
smallest admissible control cost is found by minimizing it subject to the control input constraints
only, whereas in the second one, h is minimized subject to the constraints on both state and
control input and a further constraint on the maximum admissible degradation of the control cost



L. Deori et al. / Journal of the Franklin Institute 354 (2017) 501–529508
with respect to the value J⋆ computed in the first problem: JrJ⋆ þ α, with αZ0. Again, the
coefficient α determines the trade-off between performance and state constraint enforcement.
When hard constraints are imposed on the control input, the first optimization problem is given

by

min
Γ;Θ

JðΓ;ΘÞ
subject to : JuJ1ru 8w; ð11aÞ

while, letting J⋆ be the optimal cost obtained by solving (11a), the second optimization problem
is:

min
Γ;Θ;h

h

subject to :

JuJ1ru 8w
P JCxJ1rhf gZ1�ε

JðΓ;ΘÞrJ⋆ þ α

:

8><
>: ð11bÞ

If the control input is subject to a probabilistic constraint as well, then, the first optimization
problem writes

min
Γ;Θ

JðΓ;ΘÞ
subject to : P JuJ1ruf gZ1�ε; ð12aÞ

while, letting J⋆ denote the optimal cost obtained by solving (12a), the second optimization
problem is:

min
Γ;Θ;h

h

subject to :
P JuJ1ru4 JCxJ1rhf gZ1�ε

JðΓ;ΘÞrJ⋆ þ α
:

(
ð12bÞ

Remark 2. As is clear, also a two-step approach where the role of J and h is inverted (namely in
the first step the smallest possible value for h subject to input and state constraints is found while
in the second step the control cost is minimized subject to an additional constraint on the
maximum admissible degradation for h) can be considered. However, it gives no real advantage
over the two presented approaches and, as it will be explained later in Remark 4, this approach
suffers from some drawbacks in its approximate resolution. Henceforth, it will not be taken into
account.

Remark 3. In both the two approaches, μ and α are tuning parameters through which one can
tradeoff between contrasting objectives. In the two-step approach, α has a precise meaning,
namely, it is the maximum allowed degradation of the cost J with respect to J⋆ and this
interpretation helps the user to select the most proper value of α for the problem at hand. There is
not, instead, a similar interpretation for μ, being its effect on J and h much more indirect. As
such, a proper tuning of μ may be more difficult to achieve, and usually it requires trials and
errors. On the other hand, the approach with the additional penalization term in the cost has some
advantages as far as its approximate resolution is concerned, as will be shown in the next section.
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4. Approximate solution to the optimization problems

The resolution of problems (9)–(12) posed in Sections 3.1 and 3.2 demands for algorithmic
methods to tackle the robust and probabilistic constraints.

As for the robust constraint JuJ1ru, 8w, being the support of w unbounded, function φð�Þ
has to be chosen as a saturation function as in Eq. (3) because otherwise, if e.g. φð�Þ is the
identity map, the robust constraint would always lead to solutions with Θ¼ 0, i.e., to a control
policy without the feedback term. Assuming that jφð�Þjrφ and following [4,5], the robust
constraint can be then replaced by the following finite set of convex constraints

jΓij þ JΘi J1φru; i¼ 1;…;mM; ð13Þ
where Γi denotes the i-th element of vector Γ and Θi the i-th row of Θ. The idea behind (13) is
that u cannot be worse than when the components of φðwÞ have all absolute value equal to φ and
signs such that the elements of each row ΘiφðwÞ þ Γi positively sum up. Plainly, any feasible
point for (13) is also feasible for the original robust constraint, and, moreover, they are equivalent
as long as jφðwÞj ¼ φ for some w. The number of constraints in Eq. (13) is finite and usually
small, and Eq. (13) can be dealt with by means of standard solvers.

The probabilistic constraints

P JCxJ1rhf gZ1�ε and P JuJ1ru4 JCxJ1rhf gZ1�ε;

instead, are much harder to solve because they may be even non-convex, though JuJ1ru and
JCxJ1rh are convex for any fixed realization of w. An exact resolution of the problems (9)–
(12) is therefore not possible, except for few special cases, and some level of approximation must
be accepted.

In the remainder of this section, suitable relaxations of the probabilistic constraints
P JCxðwÞJ1rh
� 	

Z1�ε and P JuJ1ru4 JCxJ1rhf gZ1�ε are introduced and
discussed so as to reformulate problems (9)–(12) in a way that is amenable of resolution by
means of standard convex optimization techniques.
4.1. Algorithms

Probabilistic constraints are tackled by resorting to the scenario approach, a recently
developed randomized method to approximately solve chance-constrained problems [6–10].

The idea behind the scenario approach is very simple. A set of N realizations, i.e. scenarios, of
the disturbance w, say wð1Þ;wð2Þ;…;wðNÞ, is generated according to the underlying probability
distribution of w. Then, the probabilistic constraints are replaced with a finite number N of
constraints of the type JCxJ1rh and/or JuJ1ru, those obtained in correspondence of the
generated instances of the disturbance. More precisely, writing explicitly the dependence of x
and u on w, the constraint

P JCxðwÞJ1rh
� 	

Z1�ε

is replaced by

JCxðwðiÞÞJ1rh; i¼ 1;…;N;

while

P JuJ1ru4 JCxJ1rhf gZ1�ε
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is replaced by

JuðwðiÞÞJ1ru

JCxðwðiÞÞJ1rh
i¼ 1;…;N:

(

Summarizing, depending on the chosen type of constraint (robust or in probability) for the
input, and on the chosen method to take into account the presence of the optimization variable h,
the possible reformulations of Eqs. (9)–(12) are the following:

� Additional penalization term and hard constraint on input:

min
Γ;Θ;h

JðΓ;ΘÞ þ μh

subject to :
jΓij þ JΘi J1φru; i¼ 1;…;mM

JCxðwðiÞÞJ1rh; i¼ 1;…;N

(
ð14Þ

� Additional penalization term and soft constraint on input:

min
Γ;Θ;h

JðΓ;ΘÞ þ μh

subject to :
JuðwðiÞÞJ1ru

JCxðwðiÞÞJ1rh
i¼ 1;…;N

(
ð15Þ

� Two-step approach and hard constraint on input:

min
Γ;Θ

JðΓ;ΘÞ
subject to jΓij þ JΘi J1φru; i¼ 1;…;mM ð16aÞ

Let J⋆ be the optimal cost value of Eq. (16a).

min
Γ;Θ;h

h

subject to :

jΓij þ JΘi J1φru; i¼ 1;…;mM;

JCxðwðiÞÞJ1rh; i¼ 1;…;N

JðΓ;ΘÞrJ⋆ þ α

8><
>: ð16bÞ

� Two-step approach and soft constraint on input:

min
Γ;Θ

JðΓ;ΘÞ
subject to : JuðwðiÞÞJ1ru i¼ 1;…;N ð17aÞ

Let J⋆ be the optimal cost value of Eq. (17a).

min
Γ;Θ;h

h

subject to :

(
JuðwðiÞÞJ1ru

JCxðwðiÞÞJ1rh
i¼ 1;…;N

JðΓ;ΘÞrJ⋆ þ α

8>>><
>>>:

ð17bÞ

Note that all the relaxed optimization problems above are always feasible (just take
Γ ¼ 0;Θ¼ 0 and h¼maxi JCxðwðiÞÞJ1). To this purpose, note that in the two-step approach
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with soft constraints on input the same realizations wð1Þ;wð2Þ;…wðNÞ must be used both in
Eq. (17a) and in Eq. (17b), because, otherwise, the feasibility of the optimization problem (17b),
whose constraints depend on the solution of Eq. (17a), may be compromised.

The resolution of Eq. (14)–(17) amounts to solving convex programs with a finite number of
constraints and requires no machinery other than standard convex optimization solvers like those
used by CVX [30] and YALMIP [31].

Despite the apparent naivety of the scenario approach, the obtained solutions come with
precise guarantees about their feasibility with respect to the original probabilistic constraints as
long as N is suitably chosen. This is discussed in the next section.
4.2. Chance-constrained feasibility of the obtained approximate solutions

The problems (14)–(17) are obtained as relaxations of the original problems (9)–(12). The sub-
optimality of the obtained solutions is the price we must pay to enhance computational
tractability. However, a main issue is whether the solutions to problems (14), (15), (16), and (17)
are feasible for the original constraints on u and x in problems (9), (10), (11), and (12),
respectively.

As already discussed, the reformulation introduced for the robust constraint, see Eq. (13), is
such that feasibility with respect to the original hard constraint is preserved. It is a fact that a
similar result holds for the relaxation of the constraints in probability introduced by the scenario
approach, though this is much less evident than the previous case. The following theorem taken
from [8] provides the fundamental result in this respect.

Theorem 1. Let f ðξÞ : Rd-R be a convex function and gðξ; δÞ : Rd � Δ-R be a parametric
family of convex functions (i.e. gðξ; δÞ is convex in ξ for any fixed value of δAΔ). Moreover, let Ξ
be any given convex subset of Rd. For a given positive integer N, consider the optimization
problem

min
ξAΞDRd

f ðξÞ

subject to : gðξ; δðiÞÞ r0; i¼ 1;…;N;

where δð1Þ; δð2Þ;…; δðNÞ are samples independently extracted according to a given probability P

over Δ, and let ξ� be the solution. If multiple solutions arise, then ξ� denotes the one which
minimizes Jξ��ξ J , where ξ is a user-chosen reference point.

For any εA ð0; 1Þ and βA ð0; 1Þ, if

NZ
d þ 1þ lnð1=βÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd þ 1Þlnð1=βÞ

p
ε

; ð18Þ

then ξ� is feasible for the constraint in probability

P gðξ; δÞ r0
� 	

Z1�ε;

with confidence greater than or equal to 1�β. □

Theorem 1 was proven in [8], although in [8] an implicit expression for N is provided. The
explicit expression (18) was derived in [32,33]. Theorem 1 is amenable of extensions, like e.g.
when some scenario constraints are removed [34], or when the scenario constraints are not
convex [35,36]. These extensions, however, are not considered here.
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Note that the feasibility of ξ� for the probabilistic constraint can be guaranteed with high
confidence 1�β only. This is intrinsically so because ξ� is random as it depends on the extracted
δð1Þ; δð2Þ;…; δðNÞ. However, N depends on β logarithmically so that small values of β, like
β¼ 10�5 or β¼ 10�7, can be forced in without affecting N too much. With such small values
for β, the result in Theorem 1 on the feasibility of ξ� for the constraint in probability holds in
practice with probability 1.
By letting ξ¼ ðΓ;Θ; hÞ, δ¼w,

f ðξÞ ¼
JðΓ;ΘÞ þ μh for ð14Þ; ð15Þ
h for ð16bÞ ;

(

gðξ; δðiÞÞ ¼ JCxðwðiÞÞJ1�h for ð14Þ; ð16bÞ
maxfJuðwðiÞÞJ1�u; JCxðwðiÞÞJ1�hg for ð15Þ ;

(

and Ξ be the intersection of the other constraints that do not depend on wðiÞ, a direct application
of Theorem 1 to Eqs. (14), (15), and (16b) shows that, if N satisfies Eq. (18), then the solutions of
Problems (14), (15), (16) are feasible with high confidence 1�β for the constraints on u and x in
Eqs. (9), (10), (11), respectively.
As for Problem (17), Theorem 1 does not apply in this case. As a matter of fact, J⋆ in Eq.

(17b) should be more properly written as J⋆ðwð1Þ;wð2Þ;…;wðNÞÞ, being obtained as the optimal
value of Eq. (17a), a program where constraints depend on wð1Þ;wð2Þ;…;wðNÞ. This means that
Ξ ¼ Ξðwð1Þ;wð2Þ;…;wðNÞÞ, a setup which is not covered by Theorem 1. Although we
experimentally verified that, for N large enough, the solution of Problem (17) is usually feasible
for the constraint in probability

P JuJ1ru4 JCxJ1rhf gZ1�ε

(see e.g. the numerical example in Section 7), we were not able to prove that feasibility holds
with high confidence 1�β for N satisfying (18). Recently, in [37] it was shown that feasibility of
the scenario solution to the two-step approach holds with confidence 1�β if N is chosen so as to
satisfy

N

2ðd þ 1Þ

� �
ð1�εÞN�2ðdþ1Þrβ

which leads to the following more conservative bound for N:

NZ⌈ 2
ε
ln

1
β

� �
þ 4 d þ 1ð Þ þ 4ðd þ 1Þ

ε
ln

2
ε

� �⌉: ð19Þ

Remark 4. Note that the application of the scenario approach to the two-stage problem
described in Remark 2 leads to a scenario based two-stage problem whose solution is not
guaranteed to be feasible for the original probabilistic constraint when N is chosen according to
Eq. (18), either when the constraints on the input are hard or when they are soft. As a matter of
fact in both cases there is a probabilistic constraint on the output in the first stage, resulting in
Ξ ¼ Ξðwð1Þ;wð2Þ;…;wðNÞÞ.
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5. Choice of μ and α and trade-off between J and h

The parameters μ and α in Problems (14)–(17) play the role of tuning parameters through
which the user can modulate the trade-off between the objective of minimizing the control cost J
and that of having a small h to strengthen the state constraint satisfaction in the system operation.

To this purpose, the two extreme cases, where all effort is put in the minimization of the sole J
or, viceversa, of the sole h, are given by the following two problems:

min
Γ;Θ;h

JðΓ;ΘÞ

subject to : FðΓ;Θ; h;wð1Þ;…;wðNÞÞ r0; ð20Þ
and

min
Γ;Θ;h

h

subject to : FðΓ;Θ; h;wð1Þ;…;wðNÞÞ r0; ð21Þ
where, the notation FðΓ;Θ; h;wð1Þ;…;wðNÞÞ r0 is used as a shorthand to refer to

jΓij þ JΘi J1φru; i¼ 1;…;mM

JCxðwðiÞÞJ1rh; i¼ 1;…;N;
or

JuðwðiÞÞJ1ru; i¼ 1;…;N

JCxðwðiÞÞJ1rh; i¼ 1;…;N;

((
ð22Þ

depending on the chosen approach (hard or soft) to treat input constraints. Problem (20)
corresponds to Eq. (14) or (15) with μ¼ 0. In problem (20) only the performance cost J is
optimized, while h can be taken arbitrarily large. Problem (21) corresponds instead to Eq. (16b)
or (17b) when the constraint on control cost degradation is neglected. Contrary to the previous
case, in problem (21) only h is minimized.

The properties below aim at showing that μ and α are indeed sensible tuning parameters, since
by progressively increasing them over a suitable range one can explore all possible trade-off
combinations between Eqs. (20) and (21). Note that these properties refer to the scenario
problems (14)–(17), and hold true irrespectively of the connection of Eqs. (14)–(17) with the
original chance-constrained problems (9)–(12).

For a given μ, problem

min
Γ;Θ;h

JðΓ;ΘÞ þ μh

subject to : FðΓ;Θ; h;wð1Þ;…;wðNÞÞ r0; ð23Þ
which can represent either (14) or (15), may have multiple minimizers. For fixed μ, we let

Jμ ¼ JðΓμ;ΘμÞ : ðΓμ;Θμ; hμÞ is a minimizer of ð23Þ� 	
hμ ¼ hμ : ðΓμ;Θμ; hμÞ is a minimizer of ð23Þ� 	

; ð24Þ
that is, Jμ is the set of all values of the cost J achieved in correspondence of the minimizers of
Eq. (23), while hμ is the set of all values of h achieved in correspondence of the minimizers of
Eq. (23). As μ is let vary, Jμ and hμ are multi-valued functions of μ. Similarly, for a given α and
letting J⋆ be the optimal cost of Eq. (20), consider problem

min
Γ;Θ;h

h

subject to :
FðΓ;Θ; h;wð1Þ;…;wðNÞÞ r0;

JðΓ;ΘÞrJ⋆ þ α

(
ð25Þ



Fig. 1. A possible behavior of Jμ (solid line) and hμ (dashed line).
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which can represent either Eq. (16) or (17). Again the problem may show multiple minimizers.
We define

Jα ¼ fJðΓα;ΘαÞ : ðΓα;Θα; hαÞ is a minimizer of Eq: ð25Þg
hα ¼ fhα : ðΓα;Θα; hαÞis a minimizer of Eq: ð25Þg: ð26Þ

Note that in this case hα is a singleton for any α. The following properties hold.

Property 1 (Continuity and monotonicity I). For every μA ð0;þ1Þ, Jμ and hμ are closed
intervals. For μ1oμ2 it holds that max Jμ1 rmin Jμ2 and that min hμ1 Zmax hμ2 . Moreover,

lim
μ1-μ�

2

max Jμ1 ¼min Jμ2 ; lim
μ2-μþ1

min Jμ2 ¼max Jμ1 ;

lim
μ1-μ�

2

min hμ1 ¼max hμ2 ; lim
μ2-μþ1

max hμ2 ¼min hμ1 : □

Note that according to Property 1 the graphs of Jμ and hμ are composed by isolated vertical
segments connected by single-valued increasing/decreasing curves. For a pictorial view see the
illustrative plots in Fig. 1.

Property 2 (Continuity and monotonicity II). Let α1 be equal to JðΓ1;Θ1Þ�J⋆, where ðΓ1,
Θ1, h1Þ denotes any minimizer of problem (21) chosen among those with the smallest value for
J. Then, Jα and hα are both single-valued continuous functions for αA ½0; α1�. Moreover, Jα is
monotonically increasing, while hα is monotonically decreasing as a function of α. □

Property 3 (Initial value). Let ðΓ0;Θ0; h0Þ be any minimizer of problem (20) chosen among
those with the smallest value for h. When μ-0½α-0�, min Jμ½Jα� tends to JðΓ0;Θ0Þ ¼ J⋆, while
max hμ½hα� tends to h0. □
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Property 4 (Final value). Let α1 and ðΓ1;Θ1; h1Þ be as in Property 2. When
μ-1½α-α1�, max Jμ½Jα� tends to JðΓ1;Θ1Þ, while min hμ½hα� tends to h1. □

Property 5 (Equivalence). Let α1 be as in Property 2. For any μA ð0;þ1Þ and for any
minimizer ðΓμ;Θμ; hμÞ of problem (23), there is an αA ð0; α1� such that Jα ¼ JðΓμ;ΘμÞ and
hα ¼ hμ. Conversely, for any αA ð0; α1Þ there is a μA ð0;þ1Þ and a minimizer ðΓμ;Θμ; hμÞ of
problem (23) such that JðΓμ;ΘμÞ ¼ Jα and hμ ¼ hα. □

The proof of Properties 1–5 is postponed to the next Section 6.

5.1. Practical relevance of Properties 1–5

In this section, we briefly discuss the importance of Properties 1–5 above.
Apart from Property 5, which establishes a substantial equivalence between the additional

penalization term approach and the two-step approach, the other properties show that all possible
trade-offs between the two extremes represented by problem (20)—where cost J is minimized
without accounting for state restrictions—and problem (21)—where instead the state norm
magnitude h is minimized with no concerns about the control cost—can be achieved by
increasing μ [α] from 0 to 1 [from 0 to α1], the dependence of both the control cost J and the
bound on the state norm h on the tuning parameters μ and α being monotone and continuous
(continuous in a generalized sense in the μ case). This means that μ and α can be indeed regarded
as tuning knobs by which, as they are increased, one can give up some control performance to
strengthen the restriction on the state norm.

Heuristically, one can proceed by solving the chosen program (14) or (15) [(16) or (17)] for a
grid of values of μ [of α], say μ1; μ2;…; μk [say α1; α2;…; αk], each time using the same
realizations wð1Þ;wð2Þ;…;wðNÞ of the noise. This way, various solution pairs ðJμi ;hμiÞ½ðJαi ; hαiÞ�,
i¼ 1; 2;…; k, are obtained, each showing a different trade-off between the control performance
and the guarantee on the state norm. By comparing all these pairs2, the user can eventually decide
which solution to buy by selecting the most suitable trade-off for the problem at hand (e.g., the
user can decide whether it is better to have a smaller control cost at the price of a bigger state
response or viceversa whether is preferable to have a more constrained response and a
worse cost).

As is clear, one delicate point is the choice of the grid μ1; μ2;…; μk½α1; α2;…; αk�, which must
allow the exploration of a number of significant trade-offs. In this respect, we reckon two
advantages of the two-step approach (parameter α) over the additional penalization term
approach (parameter μ) as explained in the following.

1. Parameter α has a precise interpretation as the maximum allowed degradation of the cost,
see Remark 3. As such, it is better suited to achieve predefined trade-offs between J and h.
For example, if J⋆ ¼ 1, by taking a grid of values α1 ¼ 1=k; α2 ¼ 2=k;…; αk ¼ k=k ¼ 1,
one knows in advance that s/he is going to explore all the trade-offs between J and h where
2Note that, when Theorem 1 applies, for each grid-point, the obtained approximate solution is guaranteed to be feasible
for the original optimization problem except for a set of bad extractions whose probability is at most β. When considering
and comparing all the approximate solutions obtained for the k grid points, the guarantee holds jointly except for a set
whose probability can be upper bounded by k � β.
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the cost is first increased to Jα1 ¼ 1þ 1=k to improve the value of hα1 , then to Jα2 ¼ 1þ
2=k to further decrease hα2 , and so forth and so on.
In view of the equivalence between the two approaches, the same trade-offs between J and
h can be obtained by means of the additional penalization term approach, but in this case
no relation between the choice of the parameter μ and the variation of J and h is available.
If, for example, μ1, μ2, …, μk are chosen equi-spaced as the α's above, it may be that the
obtained values for Jμ1 ; Jμ2 ;…; Jμk and hμ1 ;hμ2 ;…;hμk are all closed together, meaning that
the possible trade-offs between J and h are not explored at all.
In conclusion, there is not an easy recipe to properly select the grid μ1; μ2;…; μk , while this
is the case for α1; α2;…; αk .

2. The additional penalization term approach has a second issue. In view of Property 2, it may
be that, in order to explore suitable trade-offs between J and h, the user is required to grid
also the vertical segments in the graphs of Jμ and hμ. This means that one has to distinguish
among different minimizers for the same values of μ, which is not trivial at all. This issue,
instead, does not arise in the two-step approach, because thanks to the continuity of Jα and
hα (Property 1) all the minimizers for a given α returns the same trade-off between J and h.

The sole drawback of the two-step approach is that, when probabilistic constraints on the
input are also considered, the available a-priori guarantee on the feasibility of the scenario
solution is weaker than that available in the other cases (compare Eq. (19) with Eq. (18)). In
this case, one may find preferable to resort to the additional penalization term approach,
although, objectively, the drawback seems to be minor.

6. Proof of Properties 1–5

For ease of exposition, in this section we prove a number of propositions, from which
Properties 1–5 can be recovered as a byproduct. In particular: Property 1 follows from
Propositions 1 and 7; Property 2 follows from Propositions 3 and 9; Property 3 follows from
Propositions 1, 4, 7, and 9; Property 4 follows from Propositions 5 and 9; Property 5 follows
from Propositions 6 and 10. Note that the propositions have general validity in that they do not
depend on the fact that constraint FðΓ;Θ; h;wð1Þ;…;wðNÞÞ r0 is as in Eq. (22). Derivations are
in line with the convex analysis results in [38], though tailored to the present context.

Proposition 1. Let μ1oμ2 and let ðΓμ1 ;Θμ1 ; hμ1 Þ be any solution to problem (23) when μ¼ μ1
and let ðΓμ2 ;Θμ2 ; hμ2 Þ be any solution when μ¼ μ2. It holds that JðΓμ1 ;Θμ1 ÞrJðΓμ2 ;Θμ2Þ and
that hμ1 Zhμ2 . □

Proof 1. Note that any solution to Eq. (23) when μ¼ μ1 is feasible for the problem with μ¼ μ2
and vice versa, since the constraint FðΓ;Θ; h;wð1Þ;…;wðNÞÞ r0 is the same for the two
problems. Hence,

JðΓμ1 ;Θμ1 Þ þ μ1hμ1 rJðΓμ2 ;Θμ2 Þ þ μ1hμ2 ð27aÞ

½optimality of ðΓμ1 ;Θμ1 ; hμ1 Þ�
JðΓμ2 ;Θμ2 Þ þ μ1hμ2oJðΓμ2 ;Θμ2 Þ þ μ2hμ2 ð27bÞ
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½μ1oμ2�
JðΓμ2 ;Θμ2 Þ þ μ2hμ2 rJðΓμ1 ;Θμ1Þ þ μ2hμ1 ð27cÞ

½optimality of ðΓμ2 ;Θμ2 ; hμ2 Þ�:

From Eqs. (27a) and (27c) it follows that

μ1ðhμ1 �hμ2 ÞrJðΓμ2 ;Θμ2Þ�JðΓμ1 ;Θμ1Þrμ2ðhμ1 �hμ2 Þ: ð28Þ
If hμ1ohμ2 from μ1ðhμ1 �hμ2 Þrμ2ðhμ1 �hμ2Þ it would be μ2rμ1 which is in contradiction to the
initial hypothesis μ1oμ2. Hence, hμ1 Zhμ2 and, from Eq. (28), we obtain
JðΓμ1 ;Θμ1ÞrJðΓμ2 ;Θμ2 Þ too. □

Proposition 2. Let ðΓμ;Θμ; hμÞ be any solution to Eq. (23). Then, JðΓμ;ΘμÞ þ μhμ is a
continuous strictly increasing function of μ. □

Proof 2. For a fixed μ even though problem (23) admits multiple solutions, the value of the
optimal objective JðΓμ;ΘμÞ þ μhμ is the same irrespective of the chosen solution, and, hence,
JðΓμ;ΘμÞ þ μhμ is indeed a single-valued function of μ.

Let μ1oμ2 and ðΓμ1 ;Θμ1 ; hμ1 Þ and ðΓμ2 ;Θμ2 ; hμ2 Þ as in the proof of Proposition 1. Inequalities
(27a) and (27b) together show that JðΓμ;ΘμÞ þ μhμ is strictly increasing. Moreover, they yield

lim
μ1-μ�

2

JðΓμ1 ;Θμ1Þ þ μ1hμ1 rJðΓμ2 ;Θμ2 Þ þ μ2hμ2 : ð29Þ

From Eq. (27c) we have:

JðΓμ1 ;Θμ1Þ þ μ1hμ1 ZJðΓμ2 ;Θμ2Þ þ μ2hμ2 þ ðμ1�μ2Þhμ1
ZJðΓμ2 ;Θμ2Þ þ μ2hμ2 þ ðμ1�μ2Þh;

where h is a suitable upper bound to hμ whose existence is guaranteed by the decreasing property
of hμ in Proposition 1, and by the fact that there exists at least one solution to problem (23) when
μ¼ 0. Hence,

lim
μ1-μ�

2

JðΓμ1 ;Θμ1Þ þ μ1hμ1 Z lim
μ1-μ�

2

JðΓμ2 ;Θμ2 Þ þ μ2hμ2 þ ðμ1�μ2Þh
¼ JðΓμ2 ;Θμ2 Þ þ μ2hμ2 ;

which, together with Eq. (29), yields left continuity. Right continuity can be proved
likewise. □

For given μ and α, we define

Jα ¼ sup Jα J μ ¼ sup Jμ hμ ¼ sup hμ
J
α
¼ inf Jα J

μ
¼ inf Jμ h

μ
¼ inf hμ;

where Jα, Jμ, and hμ are as in Eqs. (24) and (26). Note instead that, hα is a singleton for any
given α, hα being the optimal objective for problem (25).

Proposition 3. Both J α and J
α
are increasing functions of α, while hα is a decreasing function

of α. □
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Proof 3. Let α1oα2. Every solution ðΓα1 ;Θα1 ; hα1 Þ to problem (25) with α¼ α1 is also feasible
for the problem (25) with α¼ α2 because JðΓα1 ;Θα1 ÞrJ⋆ þ α1oJ⋆ þ α2. Letting
ðΓα2 ;Θα2 ; hα2 Þ be any solution to problem (25) with α¼ α2, given the optimality of hα2 , we
have that hα2 rhα1 , i.e. hα is decreasing.
If JðΓα2 ;Θα2 Þ4J⋆ þ α1 for all the solutions to problem (25) with α¼ α2, then J α24J α1 and

J
α2
4J

α1
because JðΓα1 ;Θα1 ÞrJ⋆ þ α1 for all the solutions to problem (25) with α¼ α1. If,

instead, JðΓα2 ;Θα2ÞrJ⋆ þ α1 for some solution ðΓα2 ;Θα2 ; hα2 Þ to problem (25) with α¼ α2,
then ðΓα2 ;Θα2 ; hα2Þ is feasible for problem (25) with α¼ α1, and, since hα2 rhα1 , it is also
optimal, i.e. hα2 ¼ hα1 . This in turn implies that all the solutions to problem (25) with α¼ α1 are
also solutions to problem (25) with α¼ α2. Thus, summarizing, if JðΓα2 ;Θα2ÞrJ⋆ þ α1 for
some solution, then Jα1DJα2 , and, thus, Jα2 ZJ α1 . Moreover, since the solutions for α¼ α1
correspond to the solutions for α¼ α2 with the lower values for J, it holds that J

α2
¼ J

α1
. □

Proposition 4 (Initial value). Let ðΓ0;Θ0; h0Þ be a generic solution to problem (20) and let
h
0
¼ inf h0. Any solution ðΓα;Θα; hαÞ to problem (25) is such that JðΓα;ΘαÞ ¼ JðΓ0;Θ0Þ ¼ J⋆

and hα ¼ h0 when α¼ 0. □

Remark 5. Note that the solutions to problem (23) with μ¼ 0 coincide with the solutions to
problem (20). In general, though Jμ is a singleton when μ¼ 0, this is not so for hμ when μ¼ 0.
Proposition 4 shows instead that both Jα and hα are singleton when α¼ 0. □

Proof 4. When α¼ 0, JðΓα;ΘαÞ must be equal to J⋆ because the constraint JðΓ;ΘÞrJ⋆ is
forced and J⋆ is the minimal value for J given the constraint FðΓ;Θ; h;wð1Þ;…;wðNÞÞ r0. Since
any solution to Eq. (20) is feasible for Eq. (25) with α¼ 0, and vice versa, then hα ¼ h

0
follows.

This also shoes that h0 is actually a minimum. □

Proposition 5 (Final value). Let ðΓ1;Θ1; h1Þ denote a generic solution to problem (21), and
let J1 ¼ supfJðΓ1;Θ1Þg and J1 ¼ inffJðΓ1;Θ1Þg where sup and inf are taken with respect
to the solutions to problem (21). Then:

(a) both h
μ
and hμ tend to h1 and both J

μ
and J μ tend to J1 as μ-1.

(b) for every αZJ1�J⋆, it holds that hα ¼ h1 and that J
α
¼ J1.Moreover, J α tends to J1 as

α-1. □

Remark 6. Note that h1 is uniquely defined being the optimal value of (21). □

Proof 5. Points (a) and (b) are proved in order.

(a) Note that J1oþ1 since Eq. (21) admits at least a solution. Every solution to problem (21)
is also feasible for problem (23) and vice versa, since the two problems have the same
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constraints. Because of the minimality of h1 it holds that hμZh
μ
Zh1 and, hence,

lim
μ-1

hμZ lim
μ-1

h
μ
Zh1 ð30Þ

(the limit exists since hμ and h
μ
are decreasing and bounded from below). Because of its

optimality, it holds for every solution ðΓμ;Θμ; hμÞ to Eq. (23) that:

JðΓμ;ΘμÞ þ μhμrJ1 þ μh1; ð31Þ
which yields

hμr
J1�JðΓμ;ΘμÞ

μ
þ h1r J1

μ
þ h1:

Hence

lim
μ-1

h
μ
r lim

μ-1
hμr lim

μ-1
J1
μ

þ h1 ¼ h1;

which, together with Eq. (30), yields

lim
μ-1

h
μ
¼ lim

μ-1
hμ ¼ h1:

From Eq. (31), it also follows that:

JðΓμ;ΘμÞrJ1 þ μðh1�hμÞrJ1;

where the last inequality holds since hμZh1. Hence limμ-1J
μ
r limμ-1J μrJ1, where

limits exist because J
μ
and J μ are increasing and bounded from above. Suppose for the sake

of contradiction that

lim
μ-1

J
μ
¼ ~JoJ1:

Letting ~α ¼ ~J�J⋆ and ðΓ ~α ;Θ ~α ; h ~α Þ be a solution to problem (25) when α¼ ~α, it holds then
that h ~α ¼ h1. Indeed, for every μA ½0;þ1Þ and for every solution ðΓμ;Θμ; hμÞ to Eq. (23), it
holds that JðΓμ;ΘμÞr ~J and hence ðΓμ;Θμ; hμÞ is feasible for problem (25) with α¼ ~α.
Hence, h ~αrhμ, 8μ, which in turn implies that h ~αrh1 ¼ limμ-þ1hμ. Since h1rh ~α

(indeed hαZh1 8α because the set of feasible points for problem (25) is contained into the
set of feasible points for Eq. (21)), we have that h ~α ¼ h1. The solutions to problem (25) with
α¼ ~α are thus feasible and optimal for problem (21). Yet, J ~αr ~JoJ1, which contradicts
the definition of J1. Hence necessarily

lim
μ-1

J
μ
¼ J1;

which also implies limμ-1J μ ¼ J1.
(b) The last reasoning in point (a) shows that for α¼ J1�J⋆ ¼ α1 any solution to problem

(25) is such that hα ¼ h1 and hence is a solution to problem (21) as well. Moreover
JðΓα;ΘαÞ ¼ J1, since JðΓα;ΘαÞoJ1 would violate the definition of J1, while
JðΓα;ΘαÞ4J1 would violate the condition JðΓα;ΘαÞrJ⋆ þ α. This shows that J1 is
actually a minimum.
For any fixed αZJ1�J⋆, all the solutions ðΓ1;Θ1; h1Þ to Eq. (21) such that
JðΓ1;Θ1ÞrJ⋆ þ α (at least one exists because of the definition of minimum) become
feasible for problem (25) and they are optimal because h1rhα, as shown in point (a).
Hence hα ¼ h1, and this in turn implies that all the solutions to problem (25) coincide with
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the solutions to Eq. (21) such that JðΓ1;Θ1ÞrJ⋆ þ α. Thus, J
α
¼ J1. Since the solutions

to Eq. (21) such that JðΓ1;Θ1ÞrJ⋆ þ α tends to cover the whole set of solutions to
Eq. (21) as α-þ1, we also have that J α-J1.

This concludes the proof. □

Proposition 6 (Equivalence I). For every μA ð0;þ1Þ and for every solution ðΓμ;Θμ; hμÞ to
Eq. (23) there is an αA ð0; J1�J⋆� such that any solution ðΓα;Θα; hαÞ to Eq. (25) satisfies
JðΓα;ΘαÞ ¼ JðΓμ;ΘμÞ and hα ¼ hμ. □

Proof 6. Take α¼ JðΓμ;ΘμÞ�J⋆ and let ðΓα;Θα; hαÞ be any solution to the corresponding
problem (25). Clearly,

JðΓα;ΘαÞrJ⋆ þ α¼ JðΓμ;ΘμÞ:
On the other hand, the solution ðΓμ;Θμ; hμÞ satisfies the constraint

FðΓ;Θ; h;wð1Þ;…;wðNÞÞ r0

and JðΓμ;ΘμÞrJ⋆ þ α, so that the solution ðΓμ;Θμ; hμÞ is feasible for problem (25). Hence,

hαrhμ

because of the minimality of hα. If JðΓα;ΘαÞoJðΓμ;ΘμÞ or hαohμ, then we would obtain
JðΓα;ΘαÞ þ μhαoJðΓμ;ΘμÞ þ μhμ, which is not possible because ðΓα;Θα; hαÞ is feasible for
Eq. (23) and JðΓμ;ΘμÞ þ μhμ is optimal. Hence, JðΓα;ΘαÞ ¼ JðΓμ;ΘμÞ and hα ¼ hμ. □

Remark 7. From the proof of Proposition 6 we see that the values taken by JðΓμ;ΘμÞ for
μA ð0;þ1Þ corresponds to the values taken by of JðΓα;ΘαÞ when α¼ JðΓμ;ΘμÞ�J⋆.
Moreover, for these α's, Jα is a singleton. By virtue of the increasing properties of J

α
and J α (see

Proposition 3 and its proof), if for some αA ð0; J1�J⋆�, Jα is a proper interval, then
intermediate values are not included in any Jμ, μA ð0;þ1Þ, i.e. the multi-valued function Jμ is,
in a sense, discontinuous. □

The following proposition characterizes the conditions under which Jμ shows a sort of
continuity.

Proposition 7. If JðΓ;ΘÞ is convex and continuous and if the constraint FðΓ;Θ; h;wð1Þ;…;
wðNÞÞ r0 is convex and compact, then, for every μA ð0;þ1Þ, Jμ and hμ are closed intervals
and for every μA ½0;þ1Þ it holds that

lim
μ0-μþ

J μ0 ¼ lim
μ0-μþ

J
μ0 ¼ J μ lim

μ0-μþ
h
μ0 ¼ lim

μ0-μþ
hμ0 ¼ h

μ
ð32Þ

lim
μ0-μ�

J
μ0 ¼ lim

μ0-μ�
J μ0 ¼ J

μ
lim

μ0-μ�
hμ0 ¼ lim

μ0-μ�
h
μ0 ¼ hμ □ ð33Þ

Remark 8. Note that, when constraint

FðΓ;Θ; h;wð1Þ;…;wðNÞÞ r0
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takes the expression in Eq. (22), then convexity and compactness are indeed obtained. As a matter
of fact, convexity and closedness are clearly satisfied, while the constraint on the control input in
Eq. (22) guarantees that Γ and Θ take value in a bounded set, and, thanks to Propositions 2 and 4,
hrh0.

Proof 7. For any given μA ½0;þ1Þ, consider the sequence μn ¼ μþ 1
n, nAN, which tends to μ

from the right and let ðΓμn ;Θμn ; hμn Þ be any solution of problem (23) when μ¼ μn. Without any
loss of generality we can assume that ðΓμn ;Θμn ; hμnÞ is convergent, because if it were not, one
could always extract a convergent subsequence (since the constraint set is compact) and work
with the subsequence in place of the original sequence. Hence, we let

ðΓ⋆;Θ⋆; h⋆Þ ¼ lim
n-1

ðΓμn ;Θμn ; hμnÞ:

Thanks to the continuity of J, it also holds that limn-1 JðΓμn ;ΘμnÞ ¼ JðΓ⋆;Θ⋆Þ.
It is a fact that ðΓ⋆;Θ⋆; h⋆Þ is a solution of problem (23). Indeed,

JðΓ⋆;Θ⋆Þ þ μh⋆ ¼ lim
n-1

JðΓμn ;Θμn Þ þ μnhμn
� �¼ JðΓμ;ΘμÞ þ μhμ;

where ðΓμ;Θμ; hμÞ is any solution to problem (23) and the last equality follows from the
continuity of JðΓμ;ΘμÞ þ μhμ as a function of μ (see Proposition 2). Furthermore, we have that

JðΓ⋆;Θ⋆Þ ¼ J μ; h⋆ ¼ h
μ
;

i.e. ðΓ⋆;Θ⋆; h⋆Þ is the solution of problem (23) where the extremal values J μ and h
μ
are

achieved. As a matter of fact, if this was not the case, then there would be a solution ðΓμ;Θμ; hμÞ
such that JðΓ⋆;Θ⋆ÞoJðΓμ;ΘμÞ and/or h⋆4hμ, in contradiction with the fact that
JðΓμn ;ΘμnÞ-JðΓ⋆;Θ⋆Þ and JðΓμn ;Θμn ÞZJðΓμ;ΘμÞ and with the fact that hμn-h⋆ and
hμn rhμ (see Proposition 1). Hence, limn-1JðΓμn ;Θμn Þ ¼ J μ and limn-1hμn ¼ h

μ
, and, since

J μrJ
μn
rJ μn rJðΓμn� 1

;Θμn� 1
Þ and h

μ
Zhμn Zh

μn
Zhμn� 1

, Eq. (32) remains proven.
Similarly, for μ40, one can consider the sequence μm ¼ μ� 1

m, mAN, and the corresponding
sequence of solutions ðΓμm ;Θμm ; hμm Þ, which without loss of generality can be assumed to be
convergent. Letting

ðΓ⋆;Θ⋆; h⋆Þ ¼ lim
m-1

ðΓμm ;Θμm ; hμm Þ;

it can be proved likewise as before that JðΓμm ;Θμm Þ-JðΓ⋆;Θ⋆Þ, that ðΓ⋆;Θ⋆; h⋆Þ is a solution
to problem (23), and that JðΓ⋆;Θ⋆Þ ¼ J

μ
and h⋆ ¼ hμ. Hence, limm-1JðΓμm ;Θμm Þ ¼ J

μ
and

limm-1hμm ¼ hμ, and again Eq. (33) remains proven because JðΓμm� 1
;Θμm� 1

Þ rJ
μm
rJ μm rJ μ

and hμm� 1
Zhμm Zh

μm
Zh

μ
.

To prove the remaining part of the proposition, let ðΓλ;Θλ; hλÞ ¼ λðΓ⋆;Θ⋆; h⋆Þ
þð1�λÞðΓ⋆;Θ⋆; h⋆Þ, λA ½0; 1�. Given the convexity of the constraint set, ðΓλ;Θλ; hλÞ is feasible
for problem (23) and, moreover, it is also a solution. As a matter of fact,

JðΓλ;ΘλÞ þ μhλ
¼ JðλΓ⋆ þ ð1�λÞΓ⋆; λΘ

⋆ þ ð1�λÞΘ⋆Þ þ μ½λh⋆ þ ð1�λÞh⋆�
r ½J is convex�
rλJðΓ⋆;Θ⋆Þ þ ð1�λÞJðΓ⋆;Θ⋆Þ þ λμh⋆ þ ð1�λÞμh⋆
¼ λ½JðΓ⋆;Θ⋆Þ þ μh⋆� þ ð1�λÞ½JðΓ⋆;Θ⋆Þ þ μh⋆�
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¼ ½since JðΓ⋆;Θ⋆Þ þ μh⋆ ¼ JðΓ⋆;Θ⋆Þ þ μh⋆ ¼ JðΓμ;ΘμÞ þ μhμ�
¼ JðΓμ;ΘμÞ þ μhμ; ð34Þ

and being JðΓμ;ΘμÞ þ μhμ optimal, it must be that JðΓλ;ΘλÞ þ μhλ ¼ JðΓμ;ΘμÞ þ μhμ. This also
implies that, since hλ ¼ λh⋆ þ ð1�λÞh⋆ by definition, JðΓλ;ΘλÞ ¼ λJðΓ⋆;Θ⋆Þ
þð1�λÞJðΓ⋆;Θ⋆Þ, which is to say that JðΓλ;ΘλÞ takes on all the values between J

μ
and J μ

and hλ takes on all the values between h
μ
and hμ as λ is let vary in ½0; 1�. That is, Jμ and hμ are

closed intervals. □

Note that if JðΓ;ΘÞ is continuous and strictly convex, then Proposition 7 holds true without
assuming that FðΓ;Θ; h;wð1Þ;…;wðNÞÞ r0 is compact. Indeed, thanks to Proposition 5, the
optimal Γμ;Θμ has to lie in the level set fðΓ;ΘÞ : JðΓ;ΘÞrJ1g, which is a compact set thanks
to the strict convexity of J, while hμrh

0
as already noticed. When J is as in Eq. (7), strict

convexity can be secured, e.g., by assuming that matrices R and Vφφ ¼ E ðφðwÞ½
�E½φðwÞ�ÞðφðwÞ�E½φðwÞÞT � are positive definite. See Appendix A for a proof.
Under the assumption that J is strictly convex the following stronger proposition holds.

Proposition 8. If JðΓ;ΘÞ is continuous and strictly convex and

FðΓ;Θ; h;wð1Þ;…;wðNÞÞ r0

is a convex constraint then Jμ and hμ are continuous single-valued functions over ð0;þ1Þ. □

Proof 8. As remarked above, under the present assumptions, the same argument used to prove
Proposition 7 applies. However, because of strict convexity, if ðΓ⋆;Θ⋆; h⋆Þa ðΓ⋆;Θ⋆; h⋆Þ, then
Eq. (34) would write

JðΓλ;ΘλÞ þ μhλoJðΓμ;ΘμÞ þ μhμ;

which contradicts the minimality of JðΓμ;ΘμÞ þ μhμ. Hence necessarily

ðΓ⋆;Θ⋆; h⋆Þ ¼ ðΓ⋆;Θ⋆; h⋆Þ;
showing that Jμ and hμ are continuous and single-valued. □

Proposition 9. Let J1 as in Proposition 5. Under the assumptions of Proposition 7 and for
αA ½0; J1�J⋆�; Jα and hα are continuous single-valued functions. □

Proof 9. hα is single-valued by definition. Jα has been already shown to be single-valued for
α¼ 0 and for α¼ J1�J⋆ in Propositions 4 and 5, respectively, while for αAð0; J1�J⋆Þ the
property follows in view of Proposition 6 (Remark 7) and Proposition 7. Proposition 6 also
yields that for αA ½0; J1�J⋆� the image of Jα is ½J⋆; J1� while the image of hα is ½h1; h

0
�,

where h
0
is as in Proposition 4. Continuity follows from the monotonicity of Jα and hα stated in

Proposition 3. □

Eventually, we have also the following proposition, which, together with Proposition 6, shows
a substantial equivalence between problems (25) and (23).



Fig. 2. Scheme of the mechanical system.
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Proposition 10 (Equivalence II). Under the assumption of Proposition 7, for every
αA ð0; J1�J⋆Þ there is a μA ð0;þ1Þ and a solution ðΓμ;Θμ; hμÞ to problem (23) such that
JðΓμ;ΘμÞ ¼ Jα and hμ ¼ hα. □

Proof 10. For any given αA ð0; J1�J⋆Þ, JαA ðJ⋆; J1Þ, hαA ðh0; h1Þ. By Proposition 7, we
have that

(μ; ( ðΓμ;Θμ; hμÞ : JðΓμ;ΘμÞ ¼ Jα:

The solution ðΓμ;Θμ; hμÞ to problem (23) is feasible for problem (25) and, hence, hαrhμ. On the
other hand, hαohμ would give for some solution ðΓα;Θα; hαÞ

JðΓα;ΘαÞ þ μhα ¼ Jα þ μhα ¼ JðΓμ;ΘμÞ þ μhαoJðΓμ;ΘμÞ þ μhμ; ð35Þ
which is an absurd because any solution to problem (25) is feasible for problem (23) and the
right-hand side of Eq. (35) is the optimal value for problem (23). Hence, hμ ¼ hα. □
7. Numerical example

The approaches described in Sections 3.1 and 3.2 are here applied to a numerical example
inspired by [24].

We consider the mechanical system reported in Fig. 2, which is composed of four masses and
four springs. The state of the system is given by the mass displacements from the equilibrium
position when all inputs are zero and their derivatives: x¼ ½d1; d2; d3; d4; _d1 ; _d2 ; _d3 ; _d4 �T . The
control input is u¼ ½u1; u2; u3�T where u1, u2 and u3 are forces acting on the masses as in Fig. 2.

We set all masses and stiffness constants equal to 1, i.e., m1 ¼m2 ¼m3 ¼m4 ¼ 1 and
k1 ¼ k2 ¼ k3 ¼ k4 ¼ 1, and consider the discrete time model of the system

xtþ1 ¼ Axt þ But þ wt;

obtained by time discretization under the assumption that the control action is piecewise constant
over the intervals ½t; t þ 1Þ and where the state of the system is supposed to be affected by a white
Gaussian noise w with zero mean and covariance matrix I8�8.

Our goal is to design a state feedback control policy that is able to counteract the disturbance
w, maintaining the third and the fourth masses close to their equilibrium positions and keeping
the springs within their linear operating domain. The latter requirement is explicitly accounted
for by imposing a constraint on the spring deformations.

To the purpose of regulating the third and the fourth masses around their equilibrium
positions, we consider the average control cost (4) with a prediction horizon of length M¼5 and
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constant weight matrices

Q¼
I2�210�3 02�2 04�4

02�2 I2�2

04�4 04�4

2
64

3
75 R¼ 10�6I3�3:

Let

C¼

1 0 0 0

�1 1 0 0 04�4

0 �1 1 0

0 0 �1 1

2
6664

3
7775

so that

Cxi ¼

d1;i

d2;i�d1;i
d3;i�d2;i
d4;i�d3;i

2
66664

3
77775

provides the springs deformation at time i. Then, the state constraints, introduced to limit the
springs deformation, can be expressed as

JCxJ1rh;

where C is defined as in (8). Eventually, we suppose that the control input is subject to the
saturation limit

uk k1ru;

where u ¼ 4.
We shall now illustrate the performance of the approaches in Sections 3.1 and 3.2. The control

policy is parameterized according to Eq. (2) where φð�Þ is the saturation function in Eq. (3) with
φ set equal to 2. The initial state is zero, i.e., the system starts at the equilibrium point. We shall
focus on the case when constraints on both the control input and the state are expressed in
probability with an admissible violation ε¼ 0:1. In the scenario solution to the resulting chance-
constrained optimization problems, we set β¼ 10�5. Correspondingly, the number of
disturbance realizations to extract is N¼3455. All scenario problems were solved by running
YALMIP over SeDuMi [31].
Table 1 reports the optimal values of J and h obtained by the approach in Section 3.1 where

the penalized control cost J 0 ¼ J þ μh is adopted for five different values of μ. The last column of
Table 1 also reports the estimate ε̂ of the actual probability of constraint violation calculated
through the Monte Carlo method over 5000 runs of the controlled system. It is worth noticing
that the estimate ε̂ is always smaller than ε¼ 0:1, as it is guaranteed by the scenario theory with
confidence 1�5 � 10�5.
From Table 1, it is apparent that parameter μ affects the trade-off between the two objectives,

i.e., control cost and state constraints: for small values of μ, the state constraints are ineffective in
practice, whereas for large μ's, h decreases at the price of a significant increase of J. Results
reported in Table 2 refer to the two-step approach in Section 3.2. The same comments as for
Table 1 apply. In particular, the actual constraint violation ε̂ is small and lower than ε¼ 0:1. This
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is a quite interesting fact, since there are no a-priori guarantees on the feasibility of the scenario
solution in this case for N satisfying (18) as discussed in Section 4.2.

Note that, since we are imposing a probabilistic bound on the control input u, there may be
disturbance realizations such that the bound on u is violated. If this is the case in the simulations
of the controlled systems, the components of u whose absolute value exceeds u are saturated to
7u (clipping of the control input). It is then interesting to assess the performance of the clipped
version of the obtained controllers. To this purpose, the average control cost (4) when clipping
holds, say Ĵ , is estimated via Monte Carlo simulations over 5000 runs and is reported in Table 3.
As it appears, the values of Ĵ are quite close to the corresponding values of J in Tables 1 and 2.
This is not surprising given that the violation of the constraint on the input has small probability
to occur, which makes the impact of clipping on performance negligible. This is not the case for
the optimal LQG control policy where constraints on both state and input are ignored. Clipped
LQG control has a cost Ĵ ¼ 36:09, with a significant degradation with respect to the optimal
LQG cost J¼13.81.
Table 2
Results of the two-step approach.

α=J⋆ J h ε̂

0 20.41 12.60 0.0366
0.05 21.43 7.86 0.0460
0.1 22.45 6.99 0.0500
0.2 24.49 6.35 0.0536
0.5 30.62 5.64 0.0654

Table 3
Average control cost for the clipped controllers.

μ J Ĵ α=J⋆ J Ĵ

0 20.41 20.66 0 20.41 20.66
0.1 20.50 20.75 0.05 21.43 21.71
1 21.69 21.98 0.1 22.45 22.74
10 28.02 28.40 0.2 24.49 24.84
100 36.78 37.18 0.5 30.62 31.84

Table 1
Results of the approach with additional penalization term in the control cost.

μ J h ε̂

0 20.41 12.60 0.0366
0.1 20.50 10.40 0.0394
1 21.69 7.58 0.0452
10 28.02 5.84 0.0546
100 36.78 5.40 0.0724
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As for the constraint on the state, Figs. 3 and 4 depict the probability distribution function of
JCxJ1 for the designed clipped controllers in correspondence of the different values of μ and α,
respectively, together with the probability distribution of JCxJ1 for the clipped LQG control.
These figures reveal that all designed clipped controllers outperform the clipped LQG policy

in terms of state constraint guarantees. Moreover, Figs. 3 and 4 together with Table 3 show that
as μ and α vary, a trade-off between performance and state constraint guarantees similar to that
revealed by Tables 1 and 2 is achieved when clipping is active.
Fig. 3. Probability distribution function of JCxJ1 for the clipped controllers corresponding to the different values of μ
and for the clipped LQG controller.

Fig. 4. Probability distribution function of JCxJ1 for the clipped controllers corresponding to the different values of α
and for the clipped LQG controller.
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8. Conclusion

In this paper, we proposed a control design methodology to address finite-horizon control for a
stochastic linear system subject to a possible unbounded disturbance. The presence of
constraints, and in particular of the constraints in probability on the state variables, makes the
problem difficult to solve. In order to guarantee state constraint feasibility while optimizing the
control performance, we define appropriate parametric chance-constrained optimization
problems where different trade-off levels between the minimization of the control cost and the
satisfaction of the state constraint can be explored by tuning some parameter. A numerical
example shows the efficacy of the approach. Notably, sampling of the constraints in probability
allows to obtain a computationally affordable solution while retaining chance-constraints
feasibility.

The proposed approach to stochastic constrained control is amenable for a receding-horizon
implementation. However, long-run properties of the obtained solution are not considered here
and deserve further study.

Appendix A. Strict convexity of the cost function
Proposition 11. If matrices R and

Vφφ ¼E ðφðwÞ�E½φðwÞ�ÞðφðwÞ�E½φðwÞ�ÞT� �
are positive definite, then the cost function (4) is strictly convex. □

Proof 11. JðΓ;ΘÞ being the sum of two quadratic functions (see Eq. (7)) it is enough to show
that one of them is strictly convex. We consider

E uTRu
� �¼ Γ þ Θmφ

� �T
R Γ þ Θmφ

� �þ tr R
1
2ΘVφφΘ

TR
1
2

� �
: ðA:1Þ

Strict convexity is equivalent to the property:

E½uTRu� ¼ 0⟺Γ ¼ 0 Θ¼ 0:

Since E½uTRu� is the sum of two non-negative terms, it is null if and only if both terms are null.
Since R is positive definite the first term is null if and only if

Γ þ Θmφ ¼ 0: ðA:2Þ
The second term in Eq. (A.1) can be rewritten as

tr R
1
2ΘVφφΘ

TR
1
2

� �
¼

XMm

i ¼ 1

R
1
2Θ

� �
i
Vφφ R

1
2Θ

� �T

i

where R
1
2Θ

� �
i
denotes the i-th row of R

1
2Θ. Since Vφφ is positive definite then

trðR1
2ΘVφφΘ

TR
1
2Þ ¼ 0⟺ R

1
2Θ

� �
i
¼ 0 8 i¼ 1;…;Mm⟺R

1
2Θ¼ 0:

Since R is positive definite this implies that Θ¼ 0 and from Eq. (A.2) it follows that Γ ¼ 0
as well. □
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