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Distributed Constrained Optimization and
Consensus in Uncertain Networks via

Proximal Minimization
Kostas Margellos , Alessandro Falsone , Simone Garatti , and Maria Prandini

Abstract—We provide a unifying framework for dis-
tributed convex optimization over time-varying networks, in
the presence of constraints and uncertainty, features that
are typically treated separately in the literature. We adopt a
proximal minimization perspective and show that this set-
up allows us to bypass the difficulties of existing algorithms
while simplifying the underlying mathematical analysis. We
develop an iterative algorithm and show the convergence of
the resulting scheme to some optimizer of the centralized
problem. To deal with the case where the agents’ constraint
sets are affected by a possibly common uncertainty vector,
we follow a scenario-based methodology and offer prob-
abilistic guarantees regarding the feasibility properties of
the resulting solution. To this end, we provide a distributed
implementation of the scenario approach, allowing agents
to use a different set of uncertainty scenarios in their lo-
cal optimization programs. The efficacy of our algorithm is
demonstrated by means of a numerical example related to
a regression problem subject to regularization.

Index Terms—Consensus, distributed optimization, prox-
imal minimization, scenario approach, uncertain systems.

I. INTRODUCTION

O PTIMIZATION in multiagent networks has attracted sig-
nificant attention in the control and signal processing lit-

erature, due to its applicability in different domains like power
systems [2], [3], wireless networks [4], [5], robotics [6], etc.
Typically, agents solve a local decision-making problem, com-
municate their decisions with other agents, and repeat the pro-
cess on the basis of the new information received. The main
objective of this cooperative set-up is for agents to agree on
a common decision that optimizes a certain performance cri-
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terion for the overall multiagent system while satisfying local
constraints. This distributed optimization scheme leads to com-
putational and communication savings compared to centralized
paradigms, while allowing agents to keep privacy by exchanging
partial information only.

A. Contributions of this Work

In this paper, we deal with distributed convex optimization
problems over time-varying networks, under a possibly different
constraint set per agent, and in the presence of uncertainty. Fo-
cusing first on the deterministic case, we construct an iterative,
proximal minimization-based algorithm. Proximal minimiza-
tion, where a penalty term (proxy) is introduced in the objective
function of each agent’s local decision problem, serves as an
alternative to (sub)gradient methods. This is interesting per se,
since it constitutes the multiagent counterpart of connections
between proximal algorithms and gradient methods that have
been established in the literature for single-agent problems (see
[7]). Moreover, as observed in [8] with reference to incremental
algorithms, the proximal minimization approach leads to numer-
ically more stable algorithms compared to their gradient-based
counterparts. A rigorous and detailed analysis is provided, show-
ing that the proposed iterative scheme converges to an optimizer
of the centralized problem counterpart. This is achieved without
imposing differentiability assumptions or requiring excessive
memory capabilities as other methods in the literature.

We move then to the case where constraints depend on an un-
certain parameter and should be robustly satisfied for all values
that this parameter may take. This poses additional challenges
when devising a distributed solution methodology. Here, we
exploit results on scenario-based optimization [9]–[14]. In par-
ticular, we assume that each agent is provided with its own set of
uncertainty realizations (scenarios) and enforces the constraints
corresponding to these scenarios only. We then show that our
distributed algorithm is applicable and that the converged so-
lution is feasible in a probabilistic sense for the constraints of
the centralized problem, i.e., it satisfies with high probability
all agents’ constraints when an unseen uncertainty instance is
realized. To achieve this, we rely on the novel contribution of
[15], which leads to a sharper result compared to the one that
would be obtained by a direct application of the basic scenario
theory [10]. Our approach can be thought of as the data-driven
counterpart of robust or worst-case optimization paradigms, en-
abling us to provide a priori guarantees on the probability of
constraint satisfaction without imposing any assumptions on
the underlying distribution of the uncertainty and its moments,
and/or the geometry of the uncertainty sets (e.g., [16, Chapters
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6, 7]); however, providing the overall feasibility statement with a
certain confidence. The proposed distributed implementation of
the scenario approach, which is instead typically performed in a
centralized fashion, allows for a reduction of the communication
burden and the satisfaction of privacy requirements regarding
the available knowledge on the uncertain parameter.

B. Related Work

Most literature builds on the seminal work of [7], [17], and
[18] (see also [19], [20], and references therein for a more
recent problem exposition), where a wide range of decentralized
optimization problems is considered, using techniques based
on gradient descent, dual decomposition, and the method of
multipliers. The recent work of [21] deals with similar problems
but from a game theoretic perspective.

Distributed optimization problems, in the absence of con-
straints though, have been considered in [22]–[31]. In most
of these references the underlying network is allowed to be
time varying. In the presence of constraints, Newton-based
or gradient/subgradient-based approaches are adopted in [20],
[32]–[34], which show asymptotic agreement of the agents’
solutions to an optimizer of the centralized problem; in [35]
and [36], a distributed alternating direction method of multi-
pliers approach is adopted and its convergence properties are
analyzed, whereas in [37] and [38] a constraints consensus ap-
proach is adopted. In these contributions, however, the underly-
ing network is time-invariant, while agents are required to have
certain memory capabilities. In a time-varying environment, as
that considered in this paper, Nedı́c et al. [39] and Zhu and
Martı́nez [40] propose a projected subgradient methodology to
solve distributed convex optimization problems in the presence
of constraints. In [39], however, the particular case where the
agents’ constraint sets are all identical is considered. As a result,
the computational complexity of each agents’ local optimization
program is the same as that of the centralized algorithm. Our
approach, which allows for different constraint sets per agent, is
most closely related to the work of [40], but we adopt a proximal
minimization instead of a subgradient-based perspective, thus
avoiding the requirement for gradient/subgradient computation.

In most of the aforementioned references, a deterministic set-
up is considered. Results taking into account both constraints
and uncertainty have recently appeared in [41]–[43]. In [42], a
penalty-based approach is adopted and the convergence of the
proposed scheme is shown under the assumption that the algo-
rithm is initialized with some feasible solution, which, however,
can be difficult to compute. This is not required in the approach
proposed in this paper. In [43], an asynchronous algorithm is
developed for a quite particular communication protocol that in-
volves gossiping, i.e., pairwise communication, under stronger
regularity conditions (strong convexity of the agents’ objective
function).

Our set-up is closely related, albeit different from the ap-
proach of [41], which proposes a projected gradient descent
approach, where at every iteration a random extraction of each
agents’ constraints is performed. In [41] almost sure conver-
gence is proved, but this requires that different scenarios are
extracted at every iteration, and these scenarios must be in-
dependent from each other, and independent across iterations.
This creates difficulties in accounting for temporal correlation
of the uncertain parameter, and poses challenges if sampling
from the underlying distribution is computationally expensive.
On the contrary, in our algorithm each agent is provided with a

TABLE I
CLASSIFICATION OF RELATED WORK

given number of scenarios and the same uncertainty scenarios
are used at every iteration. In this case, convergence in [41]
is not guaranteed, whilst our scenario-based approach provides
probabilistic feasibility, as opposed to almost sure feasibility,
guarantees. This probabilistic treatment of uncertainty, which is
particularly suited to data-based optimization, does not appear,
to the best of our knowledge, in any of the aforementioned refer-
ences. Moreover, differently from [41], our proximal minimiza-
tion perspective allows us to bypass the requirement for gradient
computations, rendering the developed programs amenable to
existing numerical solvers, and does not impose differentiabil-
ity assumptions on the agents’ objective functions and Lipschitz
continuity of the objective gradients.

Finally, it is perhaps worth mentioning that our approach is
fundamentally different from the randomized algorithm of [37],
which is based on iteratively exchanging active constraints over
a time-invariant network; in our case, the network is time varying
and we do not require for constraint exchange, thus reducing the
communication requirements.

For a quick overview, Table I provides a classification of the
literature most closely related to our work in terms of communi-
cation requirements (which is related to whether the underlying
network is time varying or not) and their ability to deal with dif-
ferent types of constraints (which is also related to the overall
computational effort as explained before).

All the aforementioned references, and our work as well,
are concerned with static optimization problems, or problems
with discrete-time dynamics. As for distributed optimization
for continuous-time systems, the interested reader is referred to
[44]–[49], and references therein.

C. Structure of the Paper

In Section II, we provide a formal statement of the prob-
lem under study, and, focusing on the deterministic case, for-
mulate the proposed distributed algorithm based on proximal
minimization; convergence and optimality are also discussed,
but to streamline the presentation all proofs, along with some
preparatory results and useful relations regarding the agents’ lo-
cal solutions, are deferred to Section V. Section III deals with the
stochastic case, where constraints are affected by uncertainty,
following a scenario-based methodology. To illustrate the effi-
cacy of our algorithm, Section IV provides a distributed imple-
mentation of a regression problem subject to L1-regularization.
Finally, Section VI concludes the paper and provides some di-
rections for future work.

C. Notation

R, R+ denote the real and positive real numbers, and N,
N+ the natural and positive natural numbers, respectively. For
any x ∈ Rn , ‖x‖ denotes the Euclidean norm of x, whereas
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for a scalar a ∈ R, |a| denotes its absolute value. Moreover, x�
denotes the transpose vector of x. For a continuously differen-
tiable function f(·) : Rn → R, ∇f(x) is the gradient of f(x).
Given a set X , we denote by co(X) its convex hull. We write
dist(y,X) to denote the Euclidean distance of a vector y from a
set X , i.e., dist(y,X) = infx∈X ‖y − x‖.

A vector a ∈ Rm is said to be a stochastic vector if all
its components aj are nonnegative and sum up to one, i.e.,∑m

j=1 aj = 1. Consider a square matrix A ∈ Rm×m and denote
its ith column by ai ∈ Rm , i = 1, . . . , m. A is said to be doubly
stochastic if both its rows and columns are stochastic vectors,
i.e.,

∑m
i=1 ai

j = 1 for all j = 1, . . . ,m, and
∑m

j=1 ai
j = 1 for

all i = 1, . . . ,m.

II. DISTRIBUTED CONSTRAINED CONVEX OPTIMIZATION

A. Problem Set-Up

We consider a time-varying network of m agents that com-
municate to cooperatively solve

Pδ : min
x∈Rn

m∑

i=1

fi(x)

subject to x ∈
⋂

δ∈Δ

m⋂

i=1

Xi(δ) (1)

where x ∈ Rn represents a vector of n decision variables, and
δ ∈ Δ. We assume that Δ is endowed with a σ-algebra D and
that P is a fixed, but possibly unknown, probability measure
defined over D. For each i = 1, . . . ,m, fi(·) : Rn → R is the
objective function of agent i, whereas, for any δ ∈ Δ, Xi(δ) ⊆
Rn is its constraint set.1

Problem Pδ is a robust program, where any feasible solution
x should belong to

⋂m
i=1 Xi(δ) for all realizations δ ∈ Δ of the

uncertainty. Note that the fact that uncertainty appears only in
the constraints and not in the objective functions is without loss
of generality; in the opposite case, an epigraphic reformulation
would recast the problem in the form of Pδ .

Due to the presence of uncertainty, problem Pδ may be very
difficult to solve, especially when Δ is a continuous set. Hence,
a proper way to deal with uncertainty must be introduced. More-
over, our perspective is that fi(·) and Xi represent private infor-
mation, available only to agent i and/or even though the whole
information were available to all agents, imposing all the con-
straints in one shot, would result in a computationally intensive
program. This motivates the use of a distributed algorithm.

To ease the exposition of our distributed algorithm, we focus
first on the following deterministic variant of Pδ with constraint
sets being independent of δ:

P : min
x∈Rn

m∑

i=1

fi(x)

subject to x ∈
m⋂

i=1

Xi. (2)

Pδ will be revisited in Section III, where we will specify how to
deal with the presence of uncertainty. We impose the following
standing assumption.

1For any δ ∈ Δ, Xi (δ) is supposed to represent all constraints to the decision
vector imposed by agent i, including explicit constraints expressed, e.g., by

Algorithm 1: Distributed Algorithm.
1: Initialization
2: Set {ai

j (k)}k≥0 , for all i, j = 1, . . . , m.
3: Set {c(k)}k≥0 .
4: k = 0.
5: Consider xi(0) ∈ Xi , for all i = 1, . . . ,m.
6: For i = 1, . . . ,m repeat until convergence
7: zi(k) =

∑m
j=1 ai

j (k)xj (k).
8: xi(k+1)= arg minxi∈Xi

fi(xi)+ 1
2c(k) ‖zi(k)− xi‖2 .

9: k ← k + 1.

Assumption 1 (Convexity and Compactness): For each i =
1, . . . ,m, the function fi(·) : Rn → R is convex, and the set
Xi ⊆ Rn is convex and compact.

B. New Proximal Minimization-Based Algorithm

The pseudocode of the proposed proximal minimization-
based iterative approach is given in Algorithm 1. Initially, each
agent i, i = 1, . . . ,m, starts with some tentative value xi(0)
which belongs to the local constraint set Xi of agent i, but not
necessarily to

⋂m
i=1 Xi . One sensible choice for xi(0) is to set

it such that xi(0) ∈ arg minxi ∈Xi
fi(xi). At iteration k, each

agent i constructs a weighted average zi(k) of the solutions
communicated by the other agents and its local one (step 7, Al-
gorithm 1, where ai

j (k) are the weights). Then, each agent solves
a local minimization problem, involving its local objective func-
tion fi(xi) and a quadratic term, penalizing the difference from
zi(k) (step 8, Algorithm 1, where the coefficient c(k), which
is assumed to be nonincreasing with k, regulates the relative
importance of the two terms). Note that, unlike P , under As-
sumption 1 and due to the presence of the quadratic penalty
term, the resulting problem is strictly convex with respect to xi ,
and hence admits a unique solution.

For each k ≥ 0, the information exchange between the m
agents can be represented by a directed graph (V,Ek ), where
the nodes V = {1, . . . , m} are the agents and the set Ek of
directed edges (j, i) indicating that at time k agent i receives
information from agent j is given by

Ek =
{
(j, i) : ai

j (k) > 0
}
. (3)

From (3), we set ai
j (k) = 0 in the absence of communication.

If (j, i) ∈ Ek , we say that j is a neighboring agent of i at time
k. Under this set-up, Algorithm 1 provides a fully distributed
implementation, where at iteration k each agent i = 1, . . . ,m
receives information only from out-neighbors. Moreover, this
information exchange is time varying and may be occasion-
ally absent. However, the following connectivity and com-
munication assumption is made, where E∞ =

{
(j, i) : (j, i) ∈

Ek for infinitely many k
}

denotes the set of edges (j, i) repre-
senting agent pairs that communicate directly infinitely often.

Assumption 2 (Connectivity and Communication): The
graph (V,E∞) is strongly connected, i.e., for any two nodes
there exists a path of directed edges that connects them.
Moreover, there exists T ≥ 1 such that for every (j, i) ∈ E∞,
agent i receives information from a neighboring agent j at least
once every consecutive T iterations.

inequalities like hi (x, δ) ≤ 0 and restrictions to the domain of the objective
function fi .
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Assumption 2 guarantees that any pair of agents commu-
nicates directly infinitely often, and the intercommunication
interval is bounded. For further interpretation of the imposed
network structure, the reader is referred to [28], [39].

Algorithm 1 terminates if the iterates maintained by all
agents converge. From an implementation point of view, agent
i, i = 1, . . . ,m, will terminate its update process if the ab-
solute difference (relative difference can also be used) between
two consecutive iterates ‖xi(k + 1)− xi(k)‖ keeps below some
user-defined tolerance for a number of iterations equal to T (see
Assumption 2) times the diameter of the graph (i.e., the greatest
distance between any pair of nodes connected via an edge in
E∞). This is the worst-case number of iterations required for an
agent to communicate with all others in the network; note that
if an agent terminated the process at the first iteration where the
desired tolerance is met, then convergence would not be guar-
anteed since its solution may still change as an effect of other
agents updating their solutions.

The proposed iterative methodology resembles the struc-
ture of proximal minimization for constrained convex opti-
mization [7, Chapter 3.4.3]. The difference, however, is that
our set-up is distributed and the quadratic term in step 8
does not penalize the deviation of xi from the previous iter-
ate xi(k), but from an appropriately weighted average zi(k).
Note that, in contrast with the inspiring work in [39]–[41] ad-
dressing P under a similar set-up but following a projected
subgradient approach, our proximal minimization-based ap-
proach allows for an intuitive economic interpretation: at ev-
ery iteration k, we penalize a consensus residual proxy by
the time-varying coefficient 1/(2c(k)), which progressively in-
creases. This can be thought of as a pricing settling mechanism,
where the more we delay to achieve consensus the higher the
price is.

In the case where ai
j (k) = 1/m for all i, j = 1, . . . , m, for all

k ≥ 0, that corresponds to a decentralized control paradigm, the
solution of our proximal minimization approach coincides with
the one obtained when the alternating direction of multipliers
[7], [19], is applied to this problem (see [7, eq. (4.72)–(4.74),
p. 254]). In the latter, the quadratic penalty term is not added
to the local objective function as in step 8 of Algorithm 1,
but to the Lagrangian function of an equivalent problem, and
the coefficient c(k) is an arbitrary constant independent of k;
however, a dual-update step is required. Formal connections
between penalty methods and the method of multipliers have
been established in [50].

Remark 1 (Application to a Specific Problem Structure):
Algorithm 1 can be simplified when the underlying optimization
problem exhibits a specific structure, namely agents need to
agree on a common vector y ∈ Rn̄ , but each of them decides
upon a local vector ui ∈ Rni , i = 1, . . . ,m as well:

min
y∈Rn̄ ,{ui ∈Rn i }mi = 1

m∑

i=1

fi(y, ui)

subject to y ∈
m⋂

i=1

Yi, ui ∈ Ui, i = 1, . . . ,m (4)

where Yi ∈ Rn̄ and Ui ⊆ Rni , for all i = 1, . . . , m. Pro-
vided that Assumptions 1-5 hold for problem (4) with
x = (y, u1 , . . . , um ) and Xi = Yi ×Rn1 × · · · × Ui × · · · ×
Rnm , we can rewrite it as miny∈Rn̄

∑m
i=1 gi(y) subject to

y ∈ ⋂m
i=1 Yi , where gi(y) = minui ∈Ui

fi(y, ui) and simplify

Algorithm 1 by replacing steps 7 and 8 with

zi(k) =
m∑

j=1

ai
j (k)yj (k),

(
yi(k + 1), ui(k + 1)

)

= arg min
yi ∈Yi ,ui ∈Ui

fi(yi, ui) +
1

2c(k)
‖zi(k)− yi‖2 .

This entails that agents only need to communicate their local
estimates yi(k), i = 1, . . . , m, of y while the local solutions
related to ui , i = 1, . . . , m, need not be exchanged.

C. Further Structural Assumptions and Communication
Requirements

We impose some additional assumptions on the structure of
problem P in (2) and the communication set-up that is consid-
ered in this paper. These assumptions will play a crucial role in
the proof of convergence of Section V.

Note that due to Assumption 1, co
(⋃m

i=1 Xi

)
is also com-

pact. Let then D ∈ R+ be such that ‖x‖ ≤ D for all x ∈
co

( ⋃m
i=1 Xi

)
. Moreover, due to Assumption 1, fi(·) : Rn →

R is Lipschitz continuous on Xi with Lipschitz constant
Li ∈ R+ , i.e., for all i = 1, . . . , m

|fi(x)− fi(y)| ≤ Li‖x− y‖, for all x, y ∈ Xi. (5)

Assumption 3 (Interior Point): The feasibility region
⋂m

i=1
Xi of P has a nonempty interior, i.e., there exists x̄ ∈ ⋂m

i=1 Xi

and ρ ∈ R+ , such that {x ∈ Rn : ‖x− x̄‖< ρ} ⊂ ⋂m
i=1 Xi .

Due to Assumption 3, by Weierstrass’ theorem ([7, Propo-
sition A.8, p. 625]), P admits at least one optimal solution.
Therefore, if we denote by X∗ ⊆ ⋂m

i=1 Xi the set of optimizers
ofP , then X∗ is nonempty. Notice also that fi(·), i = 1, . . . ,m,
is continuous due to the convexity condition of Assumption 1;
the addition of the compactness part of the assumption is to
imply Lipschitz continuity. However, fi(·), i = 1, . . . , m, is not
required to be differentiable.

We impose the following assumption on the coefficients
{c(k)}k≥0 , that appear in step 8 of Algorithm 1.

Assumption 4 (Coefficient {c(k)}k≥0): Assume that for all
k ≥ 0, c(k) ∈ R+ and {c(k)}k≥0 is a nonincreasing sequence,
i.e., c(k) ≤ c(r) for all k ≥ r, with r ≥ 0. Moreover,

1)
∑∞

k=0 c(k) =∞;
2)

∑∞
k=0 c(k)2 <∞.

In standard proximal minimization [7] convergence is highly
dependent on the appropriate choice of c(k). Assumption 4 is
in fact needed to guarantee the convergence of Algorithm 1.
A direct consequence of the last part of Assumption 4 is that
limk→∞ c(k) = 0. One choice for {c(k)}k≥0 that satisfies the
conditions of Assumption 4 is to select it from the class of
generalized harmonic series, e.g., c(k) = α/(k + 1) for some
α ∈ R+ . Note that Assumption 4 is in a sense analogous to
the conditions that Nedic et al. [39] and Zhu and Martı́nez [40]
impose on the step size of their subgradient algorithms. It should
be also noted that our set-up is synchronous, using the same c(k)
for all agents, at every iteration k. Extension to an asynchronous
implementation is a topic for future work.

In line with [17], [18], and [29], we impose the following
assumptions on the information exchange between the agents.
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Assumption 5 (Weight Coefficients): There exists η ∈ (0, 1)
such that for all i, j ∈ {1, . . . , m} and all k ≥ 0, ai

j (k) ∈
R+ ∪ {0}, ai

i(k) ≥ η, and ai
j (k) > 0 implies that ai

j (k) ≥ η.
Moreover, for all k ≥ 0

1)
∑m

j=1 ai
j (k) = 1 for all i = 1, . . . ,m;

2)
∑m

i=1 ai
j (k) = 1 for all j = 1, . . . ,m.

Assumptions 2 and 5 are identical to [39, Assumptions 2
and 5] (the same assumptions are also imposed in [40]), but
were reported also here to ease the reader and facilitate the ex-
position of our results. Note that these are rather standard for
distributed optimization and consensus problems; for possible
relaxations, the reader is referred to [29] and [51]. The inter-
pretation of having a uniform lower bound η, independent of k,
for the coefficients ai

j (k) in Assumption 5 is that it ensures that
each agent is mixing information received by other agents at a
nondiminishing rate in time [39]. Moreover, points 1) and 2)
in Assumption 5 ensure that this mixing is a convex combina-
tion of the other agent estimates, assigning a nonzero weight to
its local one since ai

i(k) ≥ η. Note that satisfying Assumption
5 requires agents to agree on an infinite sequence of doubly
stochastic matrices (double stochasticity arises due to condi-
tions 1 and 2 in Assumption 5), where ai

j (k) would be element
(i, j) of the matrix at iteration k. This agreement should be per-
formed prior to the execution of the algorithm in a centralized
manner, and the resulting matrices have to be communicated to
all agents via some consensus scheme; this is standard in dis-
tributed optimization algorithms of this type (see also [29], [39],
and [40]). It would be of interest to construct doubly stochastic
matrices in a distributed manner using the machinery of [52];
however, exploiting these results requires further investigation
and is outside the scope of the paper.

D. Statement of the Main Convergence Result

Under the structural assumptions and the communication set-
up imposed in the previous section, Algorithm 1 converges and
agents reach consensus, in the sense that their local estimates
xi(k), i = 1, . . . ,m, converge to some minimizer of problem
P . This is formally stated in the following theorem, which con-
stitutes one main contribution of our paper.

Theorem 1: Consider Assumptions 1–5 and Algorithm 1. We
have that, for some minimizer x∗ ∈ X∗ of P

lim
k→∞

‖xi(k)− x∗‖ = 0, for all i = 1, . . . ,m. (6)

To streamline the contribution of the paper, the rather techni-
cal proof of this statement is deferred to Section V-B2.

III. DEALING WITH UNCERTAINTY

In this section, we revisit problem Pδ in (1), and give a
methodology to deal with the presence of uncertainty. Moti-
vated by data driven considerations, we assume that each agent
i, i = 1, . . . ,m, is provided with a fixed number of realizations
of δ, referred to as scenarios, extracted according to the under-
lying probability measure P with which δ takes values in Δ.
According to the information about the scenarios that agents
possess, two cases are distinguished in the sequel, scenarios as
a common resource versus scenarios as a private resource.

Throughout, the following modifications to Assumptions 1
and 3 are imposed.

1) For each i = 1, . . . ,m, Xi(δ) is a convex set for any
δ ∈ Δ.

2) For each i = 1, . . . ,m, and for any finite set S of values
for δ,

⋂
δ∈S Xi(δ) is compact.

3) For any finite set S of values for δ,
⋂m

i=1
⋂

δ∈S Xi(δ) has
a nonempty interior.

For the subsequent analysis, note that for any N ∈ N+ , PN

denotes the corresponding product measure. We assume mea-
surability of all the involved functions and sets.

A. Probabilistic Feasibility—Scenarios as a Common
Resource

We first consider the case where all agents are provided with
the same scenarios of δ, i.e., scenarios can be thought of as
a common resource for the agents. This is the case if all the
agents have access to the same set of historical data for δ, or
if agents communicate the scenarios with each other. The latter
case, however, increases the communication requirements.

Let N̄ ∈ N+ denote the number of scenarios, and S̄ =
{δ(1) , . . . , δ(N̄ )} ⊂ Δ be the set of scenarios available to all
agents. The scenarios are independently and identically dis-
tributed (i.i.d.) according to P . Consider then the following
optimization program PN̄ , where the subscript N̄ is introduced
to emphasize the dependency with respect to the uncertainty
scenarios

PN̄ : min
x∈Rn

m∑

i=1

fi(x)

subject to x ∈
⋂

δ∈S̄

m⋂

i=1

Xi(δ). (7)

Clearly, x ∈ ⋂
δ∈S̄

⋂m
i=1 Xi(δ) is equivalent to x ∈ ⋂m

i=1⋂
δ∈S̄ Xi(δ), and PN̄ is amenable to be solved via the dis-

tributed algorithm of Section II-A. In fact, one can apply Algo-
rithm 1 with

⋂
δ∈S̄ Xi(δ) in place of Xi , for all i = 1, . . . ,m.

Let X ∗̄
N
⊆ ⋂m

i=1
⋂

δ∈S̄ Xi(δ) be the set of minimizers of PN̄ .
We then have the following corollary of Theorem 1.

Corollary 1: Consider Assumptions 1–5 with the modifica-
tions stated in Section III and Algorithm 1. We have that, for
some x∗̄

N
∈ X ∗̄

N

lim
k→∞

‖xi,N̄ (k)− x∗̄N ‖ = 0, for all i = 1, . . . , m (8)

where xi,N̄ (k) denotes the solution generated at iteration k, step
8 of Algorithm 1, when Xi is replaced by

⋂
δ∈S̄ Xi(δ).

We address the problem of quantifying the robustness of the
minimizer x∗̄

N
of PN̄ to which our iterative scheme converges

according to Corollary 1. In the current set-up, a complete an-
swer is given by the scenario approach theory [9], [10], which
shows that x∗̄

N
is feasible for Pδ up to a quantifiable level ε̄.

This result is based on the notion of support constraints (see
also [9, Definition 4]), and in particular on the notion of support
set [15] (also referred to as compression scheme in [14]). Given
an optimization program, we say that a subset of the constraints
constitutes a support set, if it is the minimal cardinality subset
of the constraints such that by solving the optimization problem
considering only this subset of constraints, we obtain the same
solution to the original problem, where all the constraints are
enforced. As a consequence, all constraints that do not belong
to the support set are in a sense redundant since their removal
leaves the optimal solution unaffected.

By [9, Theorem 3], for any convex optimization program, the
cardinality of the support set is at most equal to the number
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of decision variables n, whereas in [53], a refined bound is
provided. The subsequent result is valid for any given bound on
the cardinality of the support set. Therefore, and since PN̄ is
convex, let d ∈ N+ be a known upper bound for the cardinality
of its support set. A direct application of the scenario approach
theory in [9] leads to the following result.

Theorem 2: Fix β ∈ (0, 1) and let

ε̄ = 1− N̄ −d

√
β

(
N̄
d

) . (9)

We then have that

P N̄

{

S̄ ∈ ΔN̄ :

P

{

δ ∈ Δ : x∗̄N /∈
m⋂

i=1

Xi(δ)
}

≤ ε̄

}

≥ 1− β. (10)

In words, Theorem 2 implies that with confidence at least 1−
β, x∗̄

N
is feasible forPδ apart from a set of uncertainty instances

with measure at most ε̄. Notice that ε̄ is in fact a function of N̄ , β,
and d. We suppress this dependency though to simplify notation.
Note that even though PN̄ does not necessarily have a unique
solution, Theorem 2 still holds for the solution returned by
Algorithm 1 (assuming convergence), since it is a deterministic
algorithm and hence serves as a tie-break rule to select among
the possibly multiple minimizers.

Following [10], (9) could be replaced with an improved ε̄, ob-

tained as the solution of
∑d−1

k=0

(
N̄
k

)
ε̄k

(
1− ε̄

)N̄−k = β. How-
ever, we use (9) since it gives an explicit relation expression
for ε̄, and also renders (10) directly comparable with the results
provided in the next section.

In case ε̄ exceeds one, the result becomes trivial. However,
note that Theorem 2 can be also reversed (as in experiment
design) to compute the number N̄ of scenarios that is required
for (10) to hold for given ε̄, β ∈ (0, 1). This can be determined
by solving (9) with respect to N̄ with the chosen ε̄ fixed (e.g.,
using numerical inversion). The reader is referred to Theorem 1
of [9] for an explicit expression of N̄ .

B. Probabilistic Feasibility—Scenarios as a Private
Resource

We now consider the case where the information carried
by the scenarios is distributed, that is, each agent has its own
set of scenarios, which constitute agents’ private information.
Specifically, assume that each agent i, i = 1, . . . ,m, is pro-
vided with a set Si = {δ(1)

i , . . . , δ
(Ni )
i } ⊂ Δ of Ni ∈ N+ i.i.d.

scenarios of δ, extracted according to the underlying proba-
bility measure P . Here, δ

(j )
i denotes scenario j of agent i,

j = 1, . . . , Ni , i = 1, . . . ,m. The scenarios across the differ-
ent sets Si , i = 1, . . . ,m, are independent from each other. The
total number of scenarios is N =

∑m
i=1 Ni . Consider then the

following optimization program PN , where each agent has its
own scenario set

PN : min
x∈Rn

m∑

i=1

fi(x)

subject to x ∈
m⋂

i=1

⋂

δ∈Si

Xi(δ). (11)

Program PN can be solved via the distributed algorithm of
Section II-A, so that a solution is obtained without exchanging
any private information regarding the scenarios. In fact, one can
apply Algorithm 1 with

⋂
δ∈Si

Xi(δ) in place of Xi , for all
i = 1, . . . ,m.

Similarly to Corollary 1, letting X∗N ⊆
⋂m

i=1
⋂

δ∈Si
Xi(δ) be

the set of minimizers of PN , we have the following corollary of
Theorem 1.

Corollary 2: Consider Assumptions 1–5 with the modifica-
tions stated in Section III, and Algorithm 1. We have that, for
some x∗N ∈ X∗N

lim
k→∞

‖xi,N (k)− x∗N ‖ = 0, for all i = 1, . . . ,m (12)

where xi,N (k) denotes the solution generated at iteration k, step
8 of Algorithm 1, when Xi is replaced by

⋂
δ∈Si

Xi(δ).
As in Section III-A, we show that the minimizer x∗N of PN to

which our iterative scheme converges according to Corollary 2 is
feasible in a probabilistic sense for Pδ . Here, a difficulty arises,
since we seek to quantify the probability that x∗N satisfies the
global constraint

⋂m
i=1 Xi(δ), where δ is a common parameter

to all Xi(δ), i = 1, . . . , m, while x∗N has been computed con-
sidering Xi(δ) for uncertainty scenarios that are independent
from those of Xj (δ), j �= i, i = 1, . . . ,m.

Let S = {Si}mi=1 be a collection of the scenarios of all agents.
Similarly to the previous case, we denote by d ∈ N+ a known
upper bound for the cardinality of the support set of PN . How-
ever, the way the constraints of the support set are split among the
agents depends on the specific S employed. Therefore, for each
set of scenarios S and for i = 1, . . . , m, denote by di,N (S) ∈ N
(possibly equal to zero) the number of constraints that belong to
both the support set ofPN and Si , i.e., the constraints of agent i.
We then have that

∑m
i=1 di,N (S) ≤ d, for any S ∈ ΔN . We will

write di,N in short instead of di,N (S) and make the dependency
on S explicit only when necessary.

1) Naive Result: For any collection of agents’ scenarios, it
clearly holds that di,N ≤ d for all i = 1, . . . ,m, for any scenario
set. Thus, for each i = 1, . . . ,m, Theorem 2 can be applied
conditionally to the scenarios of all other agents to obtain a
local, in the sense that it holds only for the constraints of agent
i, feasibility characterization. Fix βi ∈ (0, 1) and let

ε̃i = 1− N i −d

√
βi

(
Ni

d

) . (13)

We then have that

PN
{

S ∈ ΔN : P
{

δ ∈ Δ : x∗N /∈ Xi(δ)
}
≤ ε̃i

}
≥ 1− βi.

(14)

By the subadditivity of PN and P , (14) can be used to quantify
the probabilistic feasibility of x∗N with respect to the global
constraint

⋂m
i=1 Xi(δ). Following the proof of [54, Corollary

1], where a similar argument is provided, we have that

PN
{

S ∈ ΔN : P
{

δ ∈ Δ : x∗N /∈
m⋂

i=1

Xi(δ)
}
≤

m∑

i=1

ε̃i

}

= PN
{
S ∈ ΔN : P

{
δ ∈ Δ : ∃i ∈ {1, . . . ,m}, x∗N /∈ Xi(δ)

}

≤
m∑

i=1

ε̃i

}
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= PN
{
S ∈ ΔN : P

{ m⋃

i=1

{
δ ∈ Δ : x∗N /∈ Xi(δ)

}}
≤

m∑

i=1

ε̃i

}

≥ PN
{

S ∈ ΔN :
m∑

i=1

P
{

δ ∈ Δ : x∗N /∈ Xi(δ)
}
≤

m∑

i=1

ε̃i

}

≥ PN
{ m⋂

i=1

{
S ∈ ΔN : P

{
δ ∈ Δ : x∗N /∈ Xi(δ)

}
≤ ε̃i

}}

≥ 1−
m∑

i=1

PN
{

S ∈ ΔN : P
{
δ ∈ Δ : x∗N /∈ Xi(δ)

}
> ε̃i

}

≥ 1−
m∑

i=1

βi (15)

which leads to the following proposition.
Proposition 1: Fix β ∈ (0, 1) and choose βi , i = 1, . . . , m,

such that
∑m

i=1 βi = β. For each i = 1, . . . ,m, let ε̃i be as in
(13) and set ε̃ =

∑m
i=1 ε̃i . We then have that

PN
{

S ∈ ΔN : P
{

δ ∈ Δ : x∗N /∈
m⋂

i=1

Xi(δ)
}
≤ ε̃

}
≥ 1− β.

(16)
Proposition 1 implies that with confidence at least 1− β, x∗N

is feasible for Pδ apart from a set with measure at most ε̃. This
result, however, tends to be very conservative thus prohibiting
its applicability to problems with a high number of agents. This
can be seen by comparing ε̃ with ε̄, where the latter corresponds
to the case where scenarios are treated as a common resource.
To this end, consider the particular set-up where Ni = N̄ and
βi = β/m, for all i = 1, . . . , m. By (9) and (13), it follows that
ε̃ = mε̃i ≈ mε̄, thus growing approximately (we do not have
exact equality since βi = β/m) linearly with the number of
agents. This can be also observed in the numerical comparison
of Section III-B2 (see Fig. 1). The issue with Proposition 1 is
that it accounts for a worst-case setting, where di,N = d for all
i = 1, . . . , m; however, this cannot occur, since

∑m
i=1 di,N ≤ d

implies that if di,N = d for some i, then dj,N = 0, for all j �= i,
i = 1, . . . , m.

2) Tighter Result: To alleviate the conservatism of Propo-
sition 1, and exploit the fact that

∑m
i=1 di,N ≤ d, we use the

recent results of [15].
For each i = 1, . . . ,m, fix βi ∈ (0, 1) and consider a function

εi(·) defined as follows:

εi(k) = 1− N i −k

√
βi

(d + 1)
(
Ni

k

) , for all k = 0, . . . , d. (17)

Notice that εi(·) is also a function of Ni , βi , and d, but this
dependency is suppressed to simplify notation. For each i =
1, . . . ,m, working conditionally with respect to the scenarios
S \ Si of all other agents, [15, Theorem 1] entails that

PN
{
S ∈ ΔN : P

{
δ ∈ Δ : x∗N /∈ Xi(δ)

}
≤ εi(di,N )

∣
∣
∣
{
S \ Si ∈ ΔN−Ni

}}
≥ 1− βi. (18)

Fig. 1. Probability of constraint violation as a function of the num-
ber of agents, for the case where d = 50, β = 10−5 , Ni = N̄ = 4500,
and βi = β/m, for all i = 1, . . . , m. The probability of violation ε̄ (green
dashed line) for the case of Section III-A is independent of m, so it
remains constant as the number of agents m increases. For the case
of Section III-B1, ε̃ ≈ mε̄ (red dotted–dashed line) for the considered
set-up, so it grows approximately linearly with m. For the case of
Section III-B2, ε (blue solid line) is moderately increasing with m, thus
offering a less conservative result compared to the approach of Section
III-B1, while, in contrast to the approach of Section III-A, it allows for
distributed information about the scenarios.

Integrating (18) with respect to the probability of realizing the
scenarios S \ Si , we have that

PN
{

S ∈ ΔN : P
{

δ ∈ Δ : x∗N /∈ Xi(δ)
}
≤ εi(di,N )

}

≥ 1− βi. (19)

The statement in (19) implies that for each agent i = 1, . . . ,m,
with confidence at least 1− βi , the probability that x∗N does not
belong to the constraint set Xi(δ) of agent i is at most equal to
εi(di,N ).

Note, however, that (19) is very different from (14), which
is obtained by means of the basic scenario approach theory,
since di,N is not known a priori but depends on the extracted
scenarios. Using (19) in place of (14) in the derivations of (15),
by the subadditivity of PN and P , we have that

PN
{

S ∈ ΔN : P
{

δ ∈ Δ : x∗N /∈
m⋂

i=1

Xi(δ)
}

≤
m∑

i=1

εi(di,N )
}
≥ 1−

m∑

i=1

βi. (20)

Unlike (10) and (16), (20) is an a posteriori statement due to the
dependency of εi(di,N ) on the extracted scenarios. However,
the sought a priori result can be obtained by considering the
worst-case value for

∑m
i=1 εi(di,N ), with respect to the different

combinations of di,N , i = 1, . . . , m, satisfying
∑m

i=1 di,N ≤ d.
This can be achieved by means of the following maximization
problem:

ε = max
{di ∈N+ }mi = 1

m∑

i=1

εi(di)

subject to
m∑

i=1

di ≤ d. (21)
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Problem (21) is an integer optimization program. It can be solved
numerically to obtain ε. The optimal value ε of the problem
above depends on {Ni, βi}mi=1 and d, but this dependency is
suppressed to simplify notation. Notice the slight abuse of no-
tation, since {di}mi=1 in (21) are integer decision variables and
should not be related to {di,N }mi=1 .

Theorem 3: Fix β ∈ (0, 1) and choose βi , i = 1, . . . , m,
such that

∑m
i=1 βi = β. Set ε according to (21). We then have

that

PN
{

S ∈ ΔN : P
{

δ ∈ Δ : x∗N /∈
m⋂

i=1

Xi(δ)
}
≤ ε

}
≥ 1− β.

(22)
Proof: Fix β ∈ (0, 1) and choose βi , i = 1, . . . ,m, such that∑m
i=1 βi = β. Consider any set S of scenarios and notice that∑m
i=1 di,N (S) ≤ d. This implies that {di,N (S)}mi=1 constitute

a feasible solution of (21). Due to the fact that ε is the optimal
value of (21),

∑m
i=1 εi(di,N (S)) ≤ ε for any S, which together

with (20), leads to (22) and hence concludes the proof. �
The result of Theorem 3 can be significantly less conservative

compared to that of Proposition 1, since we explicitly account
for the fact that

∑m
i=1 di,N ≤ d in the maximization problem

in (21). This can be also observed by means of the numeri-
cal example of Fig. 1, where we investigate how ε̄, ε̃, and ε
change as a function of the number of agents m. We consider
a particular case, where d = 50, β = 10−5 , Ni = N̄ = 4500,
and βi = β/m, for all i = 1, . . . ,m. For this set-up, where β is
split evenly among agents and all agents have the same number
of scenarios, it turned out that the maximum value ε in (21) is
achieved for di = d/m, i = 1, . . . , m. As it can be seen from
Fig. 1, ε̄ (green dashed line) for the case of Section III-A is inde-
pendent of m, so it remains constant as the number of agents m
increases. For the case of Section III-B1, ε̃ (red dotted–dashed
line) rows approximately linearly with m (see also discussion at
the end of Section III-B1). For the case of Section III-B2, ε (blue
solid line) is moderately increasing with m, thus offering a less
conservative result compared to the approach of Section III-B1,
while, in contrast to the approach of Section III-A, it allows for
distributed information about the uncertainty scenarios.

In certain cases (e.g., when the number of agents is high), ε
may still exceed one and hence the result of Theorem 3 becomes
trivial (the same for Proposition 1 in such cases). Similarly
to the discussion at the end of Section III-A, Theorem 3 can
be reversed to compute the number of scenarios Ni that need
to be extracted by agent i, i = 1, . . . ,m, for a given value of
ε, β ∈ (0, 1). This can be achieved by numerically seeking for
values of Ni , i = 1, . . . ,m, that lead to a solution of (21) that
attains the desired ε.

IV. NUMERICAL EXAMPLE

We address a multiagent regression problem subject to L1-
regularization, which is inspired by [55, Example 1]. Specifi-
cally, we consider m functions si(δ), i = 1, . . . ,m, which can,
for instance, represent the effect of the same phenomenon at dif-
ferent locations of m agents. The functions are unknown, and
each agent i has access to a (private) dataset {(δ(j )

i , si(δ
(j )
i ), j =

1, . . . , Ni} of measurements of function si(δ) only.
The agents seek to determine the magnitude of d cosinu-

soids at given frequencies, so that their superposition provides
a central approximation of all the si(·), i = 1, . . . ,m. To this
end, letting x = [x[1], . . . , x[d], x[d+1]] ∈ Rd+1 , the following

Fig. 2. Data points (grey crosses), and the functions (solid lines) cor-
responding to the local solutions returned by Algorithm 1 (a) at the ini-
tialization and (b) after 150 iterations.

program is considered:

min
x∈X⊂Rd + 1

x[d+1] + λ‖x‖1

subject to
∣
∣
∣

d∑

	=1

x[	] cos(	δ(j )
i )− si(δ

(j )
i )

∣
∣
∣ ≤ x[d+1],

for all j = 1, . . . , Ni, for all i = 1, . . . ,m. (23)

In (23), one minimizes x[d+1] , which is the worst-case ap-
proximation error over the data-points of all agents, plus
a regularization term λ‖x‖1 , which induces sparsity in the
solution. The set X is a hyperrectangular with high enough
edge length so that the solution remains the same as in the
unconstrained case, and it is introduced to ensure compact-
ness so that Algorithm 1 can be applied (in fact this set could
be different per agent, and does not need to be agreed up-
front). By setting fi(x) = (1/m)(x[d+1] + λ‖x‖1), Xi(δ) =
{x ∈ X : |∑d

	=1 x[	] cos(	δ)− si(δ)| ≤ x[d+1]}, and Si =
{δ(1)

i , . . . , δ
(Ni )
i }, i = 1, . . . , m, it is seen that problem (23)

is in the form of PN , and, moreover, it satisfies the assumptions
of Corollary 2. Hence, the distributed Algorithm 1 can be em-
ployed to compute the optimal solution of (23). Notice that xi

in Algorithm 1 corresponds to a copy of x maintained by agent i
and should not be confused with x[	] , which is the 	th component
of x. Each objective function fi(x) is nondifferentiable. In our
simulation, we considered m = 6 agents on a ring of alternat-
ing communicating pairs (time-varying communication graph),
and assigned at each step the same weight to both the local
solution and that transmitted by the active neighbor. Moreover,
we set n = d + 1 = 51, λ = 0.001, and Ni = N = 4500 for
all i = 1, . . . , m. All samples δ

(j )
i , i = 1, . . . , m, j = 1, . . . , N ,

were independently drawn from a uniform distribution with sup-
port [−π, π], while, mimicking [55], each si(δ

(j )
i ) was obtained

by evaluating the sum of a certain number of randomly shifted
cosinusoids. Finally, Algorithm 1 was initialized with the solu-
tions satisfying the local constraints only and c(k) = 0.05/(k +
1). Fig. 2 shows the data points for each agent (grey dots) and
the functions

∑d
	=1 x

[	]
i cos(	δ) corresponding to the agents’

solutions returned by Algorithm 1 (a) at the initialization and
(b) after 150 iterations. As it appears, in conformity to Corol-
lary 2, all local solutions converge to a unique solution. The
fact that this solution is also optimal can be experimentally
inspected from Fig. 3, where the objective values correspond-
ing to the agent local solutions as iterations progress are dis-
played against the optimal objective value of problem (23)
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Fig. 3. Objective values corresponding to the agent local solutions as
iterations progress (solid lines) versus optimal value of problem (23)
computed via a centralized algorithm (dashed line).

computed via a centralized algorithm for comparison purposes.
The value to which x

[d+1]
i converged was 0.88. In our sim-

ulations, scenarios were treated as private resources as each
agent’s scenarios are independent of the scenarios of other
agents. Nonetheless, for a newly seen observation δ, one may be
interested in assessing the joint-constraint violation probability

P
{

δ ∈ Δ : x∗N /∈ Xi(δ)
}

, which in the present example corre-

sponds to the probability of being apart from the obtained central
function

∑d
	=1 x

[	]
i cos(	δ) more than 0.88 for at least one of the

function si(δ), i = 1, . . . , m. Using 80 000 new scenarios (dif-
ferent from those used in the optimization process), this prob-
ability was empirically estimated as 0.01. Using β = 10−5 and
d = 50 (the bound on the dimension of the support set is d = 50
and not d + 1, since we do not need to account for the epigraphic
variable x[d+1] , see [53]), Proposition 1 and Theorem 3 give ε̃ =
0.37 and ε = 0.097, respectively. As it can be seen, the novel
bound of Theorem 3 provides a much tighter guaranteed upper
bound for the probability of joint-constraint violation compared
to ε̃, while not requiring agents to have access to the same set
of scenarios. Other runs of the example, with new observations
extracted, always gave an estimate of the joint-constraint viola-
tion probability smaller than 0.09, as it was expected given the
high-confidence 1− 10−5 with which the bound is guaranteed.

V. CONVERGENCE ANALYSIS AND PROOF OF THEOREM 1

A. Preparatory Results

We establish several relations between the difference of the
agent estimates from certain average quantities. At the end of
this section, we provide a summability result that is fundamental
for the proof of Theorem 1 in Section V-B. Proofs for the results
of this subsection V-A are provided in the appendix.

Let

v(k) =
1
m

m∑

i=1

xi(k), for all k ≥ 0. (24)

Under Assumptions 1 and 3, (compactness of Xi can be relaxed
to closedness), it is shown in [39, Lemma 2] that

v̄(k) =
ε(k)

ε(k) + ρ
x̄ +

ρ

ε(k) + ρ
v(k) ∈

m⋂

i=1

Xi,

for all k ≥ 0 (25)

where ε(k) =
∑m

i=1 dist(v(k),Xi), and x̄ ∈ Rn , ρ ∈ R+ are as
in Assumption 3. Note that unlike xi(k) and v(k), which do not
necessarily belong to

⋂m
i=1 Xi , for v̄(k) this is always the case,

thus providing a feasible solution of P .
For each i = 1, . . . , m, denote by

ei(k + 1) = xi(k + 1)− zi(k), for all k ≥ 0 (26)

the error between the values computed at steps 7 and 8 of Al-
gorithm 1, i.e., the difference of the weighted average zi(k)
computed by agent i at time k from its local update xi(k + 1).

1) Error Relations: We provide some intermediate results
that form the basis of the subsequent summability result.

Lemma 1: Consider Assumptions 1 and 3. For all k ≥ 0

m∑

i=1

‖xi(k)− v̄(k)‖ ≤ μ

m∑

i=1

‖xi(k)− v(k)‖ (27)

where μ = (2/ρ)mD + 1, with D as given in Section II-C.
From step 7 of Algorithm 1, we have that for all k ≥ 0, for

all i = 1, . . . ,m

xi(k + 1) =
m∑

j=1

ai
j (k)xj (k) + xi(k + 1)− zi(k)

=
m∑

j=1

ai
j (k)xj (k) + ei(k + 1) (28)

where the last equality follows from (26).
Following [28], for each k ≥ 0 consider a matrix A(k) ∈

Rm×m
+ , such that ai

j (k) is the jth element of its ith column.
For all k, s with k ≥ s, let Φ(k, s) = A(s)A(s + 1) . . . A(k −
1)A(k), with Φ(k, k) = A(k) for all k ≥ 0. Denote by
[
Φ(k, s)

]i

j
element j of column i of Φ(k, s). It is then shown

in [28] that, under Assumption 5, Φ(k, s) is doubly stochastic.
Similarly to [28], by propagating (28) in time, it can be shown
that for all k > s (the inequality is strict for convenience of the
subsequent derivations), for all i = 1, . . . , m

xi(k + 1) =
m∑

j=1

[
Φ(k, s)

]i

j
xj (s)

+
k−1∑

r=s

m∑

j=1

[
Φ(k, r + 1)

]i

j
ej (r + 1) + ei(k + 1). (29)

For all k > s, the last statement, together with (24) and the fact
that Φ(k, s) is a doubly stochastic matrix, leads to

v(k + 1) =
1
m

m∑

j=1

xj (s)

+
1
m

k−1∑

r=s

m∑

j=1

ej (r + 1) +
1
m

m∑

j=1

ei(k + 1). (30)

We then have the following lemma, which relates ‖xi(k +
1)− v(k + 1)‖ to ‖ei(k + 1)‖, i = 1, . . . , m. Its proof follows
from [39, Lemma 8].
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Lemma 2: Consider Assumptions 2 and 5. For all k, s with
s ≥ 0, k > s, and for all i = 1, . . . ,m

‖xi(k + 1)− v(k + 1)‖ ≤ λqk−s
m∑

j=1

‖xj (s)‖

+
k−1∑

r=s

λqk−r−1
m∑

j=1

‖ej (r + 1)‖

+ ‖ei(k + 1)‖+
1
m

m∑

j=1

‖ej (k + 1)‖ (31)

where λ = 2(1 + η−(m−1)T )/(1− η(m−1)T ) ∈ R+ and q =
(1− η(m−1)T )

1
(m −1 )T ∈ (0, 1).

2) Summability Relation: Let N ∈ N+ and consider

2L̄

N∑

k=1

c(k)
m∑

i=1

‖xi(k + 1)− v̄(k + 1)‖ (32)

where L̄ = maxi=1,...,m Li with Li defined according to (5).
We will show that (32) has an interesting relation with
∑N

k=1
∑m

i=1 ‖ei(k + 1)‖2 and will come back to it often in
the next section to establish certain summability results.

Consider Lemma 1 with k + 1 in place of k and Lemma 2,
summing both sides of (31) with respect to i = 1, . . . ,m and
setting s = 0. After some algebraic manipulations and index
changes, we have that

2L̄
N∑

k=1

c(k)
m∑

i=1

‖xi(k + 1)− v̄(k + 1)‖

≤ 2mμλL̄

N∑

k=1

c(k)qk
m∑

i=1

‖xi(0)‖

+ 2mμλL̄

N∑

k=1

k−1∑

r=0

c(k)qk−r−1
m∑

i=1

‖ei(r + 1)‖

+ 4μL̄

N∑

k=1

c(k)
m∑

i=1

‖ei(k + 1)‖. (33)

Lemma 3: Consider Assumptions 1–5. Fix any α1 ∈ (0, 1),
and consider (24)–(26). We then have that for any N ∈ N+

2L̄

N∑

k=1

c(k)
m∑

i=1

‖xi(k + 1)− v̄(k + 1)‖

<α1

N∑

k=1

m∑

i=1

‖ei(k + 1)‖2 + α2

N∑

k=1

c(k)2 + α3 (34)

where

α2 =
2
α1

mμ2L̄2
(
m2λ2 1

(1− q)2 + 4
)
,

α3 = 2m3μ2λ2L̄2c(0)2 1
α1(1− q)2

+ 2m2μλL̄Dc(1)
q

1− q
+ 2α1mD2 . (35)

B. Algorithm Analysis

1) Error Convergence: We prove convergence properties
for the error in (26), which are instrumental to the proof of
Theorem 1. We use the following result, which is proven in
[7, Lemma 4.1, p. 257] for the case where the constraint sets
are polyhedral. As mentioned in [7, p. 662], the assertion of
the lemma remains valid also in the case of general convex
constraint sets. For the latter, we refer the reader to [56], and to
[57, Lemma 9] for a recent use of the lemma in case of convex
constraint sets.

Lemma 4 (Lemma 4.1 in [7], p. 257): If y∗ = arg miny∈Y

J1(y) + J2(y) (assuming uniqueness of the minimizer), where
Y ⊆ Rn is a closed, convex set, J1(·), J2(·) : Rn → R are
convex functions and J2(·) is continuously differentiable, then
y∗ = arg miny∈Y J1(y) +∇J2(y∗)�y, where ∇J2(y∗) is the
gradient of J2(y) with respect to y, evaluated at y∗.

Consider step 8 of Algorithm 1. By Assumptions 1 and 3,
and the fact that (1/(2c(k)))‖zi(k)− xi‖2 is continuously dif-
ferentiable with respect to xi , Lemma 4 can be applied to the
problem with xi,Xi in place of y, Y , respectively, fi(xi) in
place of J1(y) and (1/(2c(k)))‖zi(k)− xi‖2 in place of J2(y).
We have that

xi(k + 1) = arg min
xi ∈Xi

fi(xi)

− 1
c(k)

(zi(k)− xi(k + 1))�xi (36)

where in the second term of (36), −(1/c(k))(zi(k)− xi(k +
1)), is the gradient of (1/(2c(k)))‖zi(k)− xi‖2 with respect
to xi , evaluated at xi(k + 1). We then have the following
lemma, which provides a useful relation between the consec-
utive algorithm iterates xi(k + 1) and xi(k), and we will be
using it extensively in the subsequent results. The subsequent
proof strongly depends on the use of Lemma 4, and deviates
from the proofs of the basic iterate relations in [39, Lemma
6] and [41, Lemma 5]; it is motivated by the proof of the al-
ternating direction method of multipliers ([7, Proposition 4.2],
[19, Appendix A]), and relies on our proximal minimization
perspective.

Lemma 5: Consider Assumptions 1, 3, and 5. We then have
that for any k ∈ N+ , for any x∗ ∈ X∗

2c(k)
m∑

i=1

fi(v̄(k + 1)) +
m∑

i=1

‖ei(k + 1)‖2

+
m∑

i=1

‖xi(k + 1)− x∗‖2

≤ 2c(k)
m∑

i=1

fi(x∗) +
m∑

i=1

‖xi(k)− x∗‖2

+ 2L̄c(k)
m∑

i=1

‖xi(k + 1)− v̄(k + 1)‖ (37)

where ei(k + 1) is given as in (26).
Proof: By Lemma 4, (36) holds true. Since xi(k + 1) ∈ Xi

is the minimizer of the optimization problem that appears in the
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right-hand side of (36), we have that

fi(xi(k + 1))− 1
c(k)

(zi(k)− xi(k + 1))�xi(k + 1)

≤ fi(x)− 1
c(k)

(zi(k)− xi(k + 1))�x,

for all x ∈ Xi. (38)

Since the last statement holds for any x ∈ Xi , it will also hold
for any minimizer x∗ ∈ X∗ ⊆ ⋂m

i=1 Xi of problem P in (2).
We have that for any x∗ ∈ X∗

−(zi(k)− xi(k + 1))�(xi(k + 1)− x∗)

=
1
2
‖xi(k + 1)− zi(k)‖2 +

1
2
‖xi(k + 1)− x∗‖2

− 1
2
‖zi(k)− x∗‖2 . (39)

By (38) and (39), we have that for any x∗ ∈ X∗

fi(xi(k + 1)) +
1

2c(k)
‖xi(k + 1)− zi(k)‖2

+
1

2c(k)
‖xi(k + 1)− x∗‖2

≤ fi(x∗) +
1

2c(k)
‖zi(k)− x∗‖2

≤ fi(x∗) +
1

2c(k)

m∑

j=1

ai
j (k)‖xj (k)− x∗‖2 (40)

where the last inequality follows by the definition of zi(k)
(see step 7 of Algorithm 1), the fact that, under Assumption 5,
‖∑m

j=1 ai
j (k)xj (k)− x∗‖2 = ‖∑m

j=1 ai
j (k)

(
xj (k)− x∗

)‖2
and the convexity of ‖ · ‖2 .

Multiply both sides of (40) by 2c(k), sum with respect to
i = 1, . . . , m, and notice that for any k ≥ 0, under the double
stochasticity condition of Assumption 5,

∑m
i=1 ai

j (k) = 1. We
then have that

2c(k)
m∑

i=1

fi(xi(k + 1)) +
m∑

i=1

‖xi(k + 1)− zi(k)‖2

+
m∑

i=1

‖xi(k + 1)− x∗‖2

≤ 2c(k)
m∑

i=1

fi(x∗) +
m∑

i=1

‖xi(k)− x∗‖2 . (41)

Consider Assumption 3, and let v̄(k) be as in (25). Under
Assumption 1, by (5), we have that fi(xi(k + 1)) ≥ fi(v̄(k +
1))− L̄‖xi(k + 1)− v̄(k + 1)‖, where L̄ = maxi=1,...,m Li .
Recall also that ‖xi(k + 1)− zi(k)‖ = ‖ei(k + 1)‖ by (26).
Therefore, for any x∗ ∈ X∗, the last statements together with
(41), lead to (37) and hence concludes the proof. �

Proposition 2: Consider Assumptions 1–5 and Algorithm 1.
We have that

1)
∑∞

k=1
∑m

i=1 ‖ei(k)‖2 <∞;
2) limk→∞ ‖ei(k)‖ = 0, for all i = 1, . . . , m

where ei(k) is given as in (26).

Proof: By Lemma 5, (37) holds. Fix any α1 ∈ (0, 1). Under
the compactness part of Assumption 1 and Assumption 2, let
α2 , α3 as in (35), and consider (34). Sum then (37) with respect
to k = 1, . . . , N for an arbitrary N ∈ N+ , and upper bound the
resulting last term in the right-hand side of (37) using (34). We
then have that, for all x∗ ∈ X∗

2
N∑

k=1

c(k)
m∑

i=1

(
fi(v̄(k + 1))− fi(x∗)

)

+ (1− α1)
N∑

k=1

m∑

i=1

‖ei(k + 1)‖2

≤
m∑

i=1

‖xi(1)− x∗‖2 −
m∑

i=1

‖xi(N + 1)− x∗‖2

+ α2

N∑

k=1

c(k)2 + α3 . (42)

Since v̄(k + 1) ∈ ⋂m
i=1 Xi for all k ≥ 0, and x∗ is a min-

imizer of P , 2
∑N

k=1 c(k)
∑m

i=1(fi(v̄(k + 1))− fi(x∗)) ≥ 0.
Moreover,

∑m
i=1 ‖xi(N + 1)− x∗‖2 ≥ 0, hence these two

terms can be dropped from (42). Therefore,

(1− α1)
N∑

k=1

m∑

i=1

‖ei(k + 1)‖2

≤
m∑

i=1

‖xi(1)− x∗‖2 + α2

N∑

k=1

c(k)2 + α3 . (43)

Let now N →∞. Since α1 ∈ (0, 1) and
∑m

i=1 ‖xi(1)−
x∗‖2 + α2

∑∞
k=1 c(k)2 + α3 <∞, by the compactness

part of Assumption 1 and Assumption 4, (43) implies
that

∑∞
k=1

∑m
i=1 ‖ei(k + 1)‖2 <∞, and hence also∑∞

k=1
∑m

i=1 ‖ei(k)‖2 <∞, thus establishing the first
part of the proposition. The second part directly fol-
lows from the fact that

∑∞
k=1

∑m
i=1 ‖ei(k)‖2 <∞ and

‖ei(k)‖ is a nonnegative quantity, thus concluding the
proof. �

2) Average Tracking: We show that the agents’ estimates
xi(k), i = 1, . . . , m, track their arithmetic average v(k), in the
sense that limk→∞ ‖xi(k)− v(k)‖ = 0 for all i = 1, . . . ,m.
This is summarized in the following proposition. The proof
follows from [39, Lemma 8], however, we include it also here
for completeness.

Proposition 3: Consider Assumptions 1–5 and Algorithm 1.
We have that

lim
k→∞

‖xi(k)− v(k)‖ = 0, for all i = 1, . . . , m (44)

where v(k) is given by (24).
Proof: Under Assumptions 1–5, by the second part of Propo-

sition 2, we have that limk→∞ ‖ei(k)‖ = 0, for all i = 1, . . . ,m.
Then, for any ε > 0, we can choose s > 0, such that ‖ei(k)‖ ≤ ε
for all k > s, for all i = 1, . . . ,m.
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By (31) of Lemma 2, we then have that for all i = 1, . . . ,m

‖xi(k + 1)− v(k + 1)‖ ≤ λqk−s
m∑

j=1

‖xj (s)‖

+ mλε

k−1∑

r=s

qk−r−1 + 2ε

= λqk−s
m∑

j=1

‖xj (s)‖+ mλε

k−s−1∑

t=0

qt + 2ε

< λqk−s
m∑

j=1

‖xj (s)‖+ mλε

∞∑

t=0

qt + 2ε

≤ mλDqk−s + mλ
1

1− q
ε + 2ε (45)

where the equality is due to a change of the summation lim-
its, and the last inequality is due to the compactness part of
Assumption 1 and the fact that q ∈ (0, 1).

Taking limit superior in both sides of (45) as k →∞

lim sup
k→∞

‖xi(k + 1)− v(k + 1)‖ ≤ mλ
1

1− q
ε + 2ε. (46)

Note that taking the limit superior as k →∞ is well defined,
since ε is assumed to be fixed, and hence also s. Notice also
that the resulting quantity in the right-hand side of (46) no
longer depends on s. Since ε > 0 is arbitrary, relation (46)
implies that limk→∞ ‖xi(k + 1)− v(k + 1)‖ = 0, and hence
limk→∞ ‖xi(k)− v(k)‖ = 0, for all i = 1, . . . , m, thus con-
cluding the proof. �

3) Convergence and Optimality: In this last part of the
section, we will provide a proof of Theorem 1. To achieve this,
we will first show an intermediate convergence result. Notice
that by the first part of Proposition 2 (under Assumptions 1–5),∑∞

k=1
∑m

i=1 ‖ei(k)‖2 <∞. Letting then N →∞ in (34) leads
to the following summability result, which states that

2L̄

∞∑

k=1

c(k)
m∑

i=1

‖xi(k + 1)− v̄(k + 1)‖<∞. (47)

We can then show the following convergence result.
Theorem 4: Consider Assumptions 1–5 and Algorithm 1. We

have that, for any minimizer x∗ ∈ X∗, the sequence
{‖xi(k)−

x∗‖}
k≥0 is convergent for all i = 1, . . . ,m.

Proof: By Lemma 5, (37) holds. Summing then (37) with
respect to k = M, . . . , N for arbitrary M,N ∈ N+ , we have
that, for all x∗ ∈ X∗

2
N∑

k=M

c(k)
m∑

i=1

(
fi(v̄(k + 1))− fi(x∗)

)

+
N∑

k=M

m∑

i=1

‖ei(k + 1)‖2 +
m∑

i=1

‖xi(N + 1)− x∗‖2

≤
m∑

i=1

‖xi(M)− x∗‖2

+ 2L̄

N∑

k=M

c(k)
m∑

i=1

‖xi(k + 1)− v̄(k + 1)‖. (48)

As in the proof of Proposition 2, notice that since
v̄(k + 1) ∈ ⋂m

i=1 Xi for all k ≥ 0, and x∗ is a minimizer
of P , 2

∑N
k=M c(k)

∑m
i=1(fi(v̄(k + 1))− fi(x∗)) ≥ 0. More-

over,
∑N

k=M

∑m
i=1 ‖ei(k + 1)‖2 ≥ 0, hence these two terms

can be dropped from the left-hand side of (48). Therefore, by
(48) we have that

m∑

i=1

‖xi(N + 1)− x∗‖2 ≤
m∑

i=1

‖xi(M)− x∗‖2

+ 2L̄

N∑

k=M

c(k)
m∑

i=1

‖xi(k + 1)− v̄(k + 1)‖. (49)

Notice that, under Assumptions 1–5, the summability state-
ment of (47) holds. Taking then in (49) the limit superior as
N →∞ and the limit inferior as M →∞, we have that

lim sup
N→∞

m∑

i=1

‖xi(N + 1)− x∗‖2

≤ lim inf
M→∞

m∑

i=1

‖xi(M)− x∗‖2 . (50)

The last statement, together with the fact that the sequence{ ∑m
i=1 ‖xi(k)− x∗‖}

k≥0 is bounded due to the compactness

part of Assumption 1, implies that
{ ∑m

i=1 ‖xi(k)− x∗‖}
k≥0

converges for all x∗ ∈ X∗.
Consider now v(k) = 1

m

∑m
i=1 xi(k). We have that

‖v(k)− x∗‖ = ‖ 1
m

m∑

i=1

xi(k)− x∗‖ ≤ 1
m

m∑

i=1

‖xi(k)− x∗‖.
(51)

Moreover, from

‖xi(k)− x∗‖ ≤ ‖v(k)− x∗‖+ ‖xi(k)− v(k)‖ (52)

it also holds that ‖v(k)− x∗‖ ≥ 1
m

∑m
i=1 ‖xi(k)− x∗‖ − 1

m∑m
i=1 ‖xi(k)− v(k)‖, which, together with (51), and since, for

all i = 1, . . . , m, limk→∞ ‖xi(k)− v(k)‖ = 0 by Proposition
3, and

{ ∑m
i=1 ‖xi(k)− x∗‖}

k≥0 is convergent for all x∗ ∈ X∗,
gives ‖v(k)− x∗‖k≥0 is also convergent for any x∗ ∈ X∗. From
(52) and

‖v(k)− x∗‖ − ‖xi(k)− v(k)‖ ≤ ‖xi(k)− x∗‖
the convergence of ‖v(k)− x∗‖, along with limk→∞ ‖xi(k)−
v(k)‖ = 0, for all i = 1, . . . ,m, gives the statement of the the-
orem. �

We are now in a position to prove Theorem 1 of
Section II-D, showing that there exists some minimizer x∗ ∈ X∗
ofP , such that limk→∞ ‖xi(k)− x∗‖ = 0, for all i = 1, . . . ,m,
i.e., all agents reach consensus to a common minimizer of P .

Proof of Theorem 1: By Lemma 5, (37) holds. Fix any α1 ∈
(0, 1). Under Assumptions 1–5, let α2 , α3 as in (35), and con-
sider (34). As in the proof of Proposition 2, sum (37) with respect
to k = 1, . . . , N for an arbitrary N ∈ N+ , and upper bound the
resulting last term in the right-hand side of (37) using (34). We
then have that, for all x∗ ∈ X∗, (42) holds.

Since
∑N

k=1
∑m

i=1 ‖ei(k + 1)‖2 ≥ 0 and
∑m

i=1 ‖xi(N +
1)− x∗‖2 ≥ 0, we can drop the two terms in the left-hand side
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of (42). Therefore, by (42), we have that

2
N∑

k=1

c(k)
m∑

i=1

(fi(v̄(k + 1))− fi(x∗))

≤
m∑

i=1

‖xi(1)− x∗‖2 + α2

N∑

k=1

c(k)2 + α3 . (53)

Let now N →∞. Notice that, by the compactness part
of Assumption 1 and Assumption 4,

∑m
i=1 ‖xi(1)− x∗‖2 +

α2
∑∞

k=1 c(k)2 + α3 <∞. Therefore, 2
∑∞

k=1 c(k)
∑m

i=1
(fi(v̄(k+1))− fi(x∗))<∞; however,

∑∞
k=0 c(k) =∞, by

Assumption 4. Hence

lim inf
k→∞

m∑

i=1

(fi(v̄(k + 1))− fi(x∗)) = 0. (54)

Due to the continuity of fi(·), i = 1, . . . , m, under the convexity
requirement of Assumption 1, (54) implies that there exists some
x̄∗ ∈ X∗, such that

lim inf
k→∞

‖v̄(k)− x̄∗‖ = 0. (55)

In other words, {‖v̄(k)− x̄∗‖}k≥0 converges to 0 across a sub-
sequence.

By Proposition 3 and Lemma 1, we have that limk→∞ ‖xi

(k)− v̄(k)‖ = 0, for all i = 1, . . . ,m. Therefore, and since
‖xi(k)− x̄∗‖ ≤ ‖v̄(k)− x̄∗‖+ ‖xi(k)− v̄(k)‖, by (55) we
have that, for all i = 1, . . . , m

lim inf
k→∞

‖xi(k)− x̄∗‖ = 0. (56)

On the other hand, it was shown in Theorem 4 that, for all i =
1, . . . ,m, {‖xi(k)− x∗‖}k≥0 converges for all x∗ ∈ X∗, and
hence also for x̄∗. Hence, it must be limk→∞ ‖xi(k)− x̄∗‖ = 0,
for all i = 1, . . . , m, which concludes the proof. �

Note that a direct byproduct of Proposition 3, Theorem 1,
and Lemma 1, is that there exists x∗ ∈ X∗, such that limk→∞
‖xi(k)− x∗‖ = limk→∞ ‖v(k)− x∗‖ = limk→∞ ‖v̄(k)− x∗‖
= 0, for all i = 1, . . . ,m.

VI. CONCLUSION

In this paper, a unifying framework for distributed convex op-
timization over time-varying networks, in the presence of con-
straints and uncertainty is provided. We constructed an iterative,
proximal minimization-based algorithm, and analyzed its con-
vergence and optimality properties. To deal with the case where
the agents’ constraint sets are affected by a possibly common
uncertainty vector, a scenario-based methodology was adopted,
allowing agents to use a different set of uncertainty scenarios.

Current work concentrates on three main directions:
1) Investigating the convergence rate properties of the de-

veloped algorithm, and the potential of an asynchronous
implementation.

2) Developing rolling horizon implementations, extending
the work of [58] to the case where constraints are also
present.

3) Analyzing the quality of the scenario-based solutions,
providing confidence intervals connecting the optimal
values of PN̄ , PN with the one of Pδ by exploiting the
results of [59] and [60].

From an application point of view, the main focus is on ap-
plying the proposed algorithm to the problem of energy efficient
control of a building network [61].

APPENDIX

Proof of Lemma 1: We have that for all k ≥ 0

‖xi(k)− v̄(k)‖

=
∥
∥
∥
∥

ε(k) + ρ

ε(k) + ρ
xi(k)− ε(k)

ε(k) + ρ
x̄− ρ

ε(k) + ρ
v(k)

∥
∥
∥
∥

≤ 1
ε(k) + ρ

(
ε(k)‖xi(k)− x̄‖+ ρ‖xi(k)− v(k)‖)

≤ 1
ρ

(
ε(k)‖xi(k)− x̄‖+ ρ‖xi(k)− v(k)‖) (57)

where the last inequality is due to the fact that ε(k) ≥ 0.
By the definition of dist(·, ·), and since xi(k) ∈ Xi for all

i = 1, . . . ,m, we have that for all k ≥ 0

ε(k) =
m∑

i=1

dist(v(k),Xi) ≤
m∑

i=1

‖xi(k)− v(k)‖. (58)

By (57) and (58), we have that

‖xi(k)− v̄(k)‖ ≤ 1
ρ

( m∑

i=1

‖xi(k)− v(k)‖
)

‖xi(k)− x̄‖

+ ‖xi(k)− v(k)‖. (59)

Summing both sides of (59) with respect to i = 1, . . . ,m

m∑

i=1

‖xi(k)− v̄(k)‖

≤ 1
ρ

( m∑

i=1

‖xi(k)− v(k)‖
)( m∑

i=1

‖xi(k)− x̄‖
)

+
m∑

i=1

‖xi(k)− v(k)‖

≤
(2

ρ
mD + 1

) m∑

i=1

‖xi(k)− v(k)‖ (60)

where the last inequality is since ‖xi(k)− x̄‖ ≤ ‖xi(k)‖+
‖x̄‖ ≤ 2D for all i = 1, . . . ,m, [D as defined above (5)], by
the compactness part of Assumption 1. �

Proof of Lemma 2: By (29) and (30), for all k, s with s ≥ 0,
k > s, and for all i = 1, . . . ,m we have that

‖xi(k + 1)− v(k + 1)‖ =
∣
∣
∣
∣
∣
∣

m∑

j=1

([
Φ(k, s)

]i

j
− 1

m

)
xj (s)

+
k−1∑

r=s

m∑

j=1

([
Φ(k, r + 1)

]i

j
− 1

m

)
ej (r + 1)

+ ei(k + 1)− 1
m

m∑

j=1

ej (k + 1)
∣
∣
∣
∣
∣
∣
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≤
m∑

j=1

∣
∣
∣
[
Φ(k, s)

]i

j
− 1

m

∣
∣
∣‖xj (s)‖

+
k−1∑

r=s

m∑

j=1

∣
∣
∣
[
Φ(k, r + 1)

]i

j
− 1

m

∣
∣
∣‖ej (r + 1)‖

+ ‖ei(k + 1)‖+
1
m

m∑

j=1

‖ej (k + 1)‖. (61)

Under Assumptions 2 and 5, by [28, Lemma 4], for all k, s
with s ≥ 0, k ≥ s, we have that

∣
∣
∣
[
Φ(k, s)

]i

j
− 1

m

∣
∣
∣ ≤ 2

1 + η−(m−1)T

1− η(m−1)T

(
1− η(m−1)T ) k −s

(m −1 )T .

(62)
Setting λ = 2(1 + η−(m−1)T )/(1− η(m−1)T ) and q = (1−
η(m−1)T )

1
(m −1 )T , (62) implies that |[Φ(k, s)]ij − 1

m | ≤ λqk−s ,
for all k ≥ s. Noticing that q ∈ (0, 1), since η ∈ (0, 1), (61) and
(62) lead to (31), thus concluding the proof. �

Proof of Lemma 3: Fix any N ∈ N+ and, under Assump-
tions 1–5, consider (33). To show (34), we treat each of the
three terms in the right-hand side of (33) separately.

Term 1: 2mμλL̄
∑N

k=1 c(k)qk
∑m

i=1 ‖xi(0)‖.
Due to the compactness part of Assumption 1, ‖xi(0)‖ ≤

D, for all i = 1, . . . ,m. Therefore,
∑m

i=1 ‖xi(0)‖ ≤ mD. The
last statement together with the fact that, under Assumption 4,
c(k) ≤ c(1), leads to

2mμλL̄

N∑

k=1

c(k)qk
m∑

i=1

‖xi(0)‖ ≤ 2m2μλL̄Dc(1)
N∑

k=1

qk

<
2m2μλL̄Dc(1)q

1− q
(63)

where the last step is due to the fact that, by Lemma 2, q ∈ (0, 1)
and hence

∑∞
k=1 qk = q

∑∞
k=0 qk = q/(1− q).

Term 2: 2mμλL̄
∑N

k=1
∑k−1

r=0 c(k)qk−r−1∑m
i=1‖ei(r+1)‖.

Fix any α1 ∈ (0, 1). We then have that

2mμλL̄

N∑

k=1

k−1∑

r=0

c(k)qk−r−1
m∑

i=1

‖ei(r + 1)‖

=
m∑

i=1

N∑

k=1

k−1∑

r=0

2

(

mμλL̄

√
2

α1(1− q)
c(k)

)

(√
α1(1− q)

2
‖ei(r + 1)‖

)

qk−r−1

≤
m∑

i=1

N∑

k=1

k−1∑

r=0

m2μ2λ2L̄2 2
α1(1− q)

qk−r−1c(k)2

+
m∑

i=1

N∑

k=1

k−1∑

r=0

α1(1− q)
2

qk−r−1‖ei(r + 1)‖2 (64)

where in the last step we used the fact that 2xy ≤ x2 + y2 for
all x, y ∈ R. We have that

N∑

k=1

k−1∑

r=0

qk−r−1c(k)2

≤
N∑

k=1

k−1∑

r=0

qk−r−1c(r)2 =
N−1∑

r=0

c(r)2
N−r−1∑

t=0

qt

<

N−1∑

r=0

c(r)2
∞∑

t=0

qt =
N−1∑

k=0

1
1− q

c(k)2

<
1

1− q
c(0)2 +

N∑

k=1

1
1− q

c(k)2 (65)

where the first inequality is due to the fact that, under Assump-
tion 4, c(k) ≤ c(r) since k > r. The first equality is due to series
convolution, in the last equality, we performed an index change
from r to k and the last inequality is included to introduce the
desired summation limits.

Repeating the same derivation as in (65) with ‖ei(r + 1)‖2
in place of c(r)2 leads to

N∑

k=1

k−1∑

r=0

qk−r−1‖ei(r + 1)‖2

<
1

1− q
‖ei(1)‖2 +

N∑

k=1

1
1− q

‖ei(k + 1)‖2

≤ 4
1− q

D2 +
N∑

k=1

1
1− q

‖ei(k + 1)‖2 (66)

where the last inequality is due to the fact that ‖ei(1)‖ ≤ 2D
under the compactness part of Assumption 1.

By (64), (65), and (66), and noticing that some terms are
independent of i, we have that

2mμλL̄
N∑

k=1

k−1∑

r=0

c(k)qk−r−1
m∑

i=1

‖ei(r + 1)‖

< 2m3μ2λ2L̄2 1
α1(1− q)2 c(0)2 + 2α1mD2

+ 2m3μ2λ2L̄2 1
α1(1− q)2

N∑

k=1

c(k)2

+
α1

2

N∑

k=1

m∑

i=1

‖ei(k + 1)‖2 . (67)

Term 3: 4μL̄
∑N

k=1 c(k)
∑m

i=1 ‖ei(k + 1)‖.
We have that

4μL̄
N∑

k=1

c(k)
m∑

i=1

‖ei(k + 1)‖

=
N∑

k=1

m∑

i=1

2
(

2
√

2
α1

μL̄c(k)
) (√

α1

2
‖ei(k + 1)‖

)
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≤
N∑

k=1

m∑

i=1

8
α1

μ2L̄2c(k)2 +
α1

2

N∑

k=1

m∑

i=1

‖ei(k + 1)‖2

=
8
α1

mμ2L̄2
N∑

k=1

c(k)2 +
α1

2

N∑

k=1

m∑

i=1

‖ei(k + 1)‖2 . (68)

where for the first inequality we follow the same reasoning with
the last step of (64), and the second equality is since the first
term of the first inequality is independent of i.

We are now in a position to show (34). Substituting (63), (67),
and (68) in (33), and setting α2 , α3 according to (35), leads to
(34) (the inequality is strict since the inequalities in (63), (67)
are also strict), thus concluding the proof. �
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